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ABSTRACT Reliable detection and recovery of a microseismic event in large volume of passive moni-
toring data is usually a challenging task due to the low signal-to-noise ratio environment. The accuracy
of weak microseismic event identification is a very important step in the analysis and interpretation of
microseismic data. This paper introduces an approach for detecting (presence indication) and denoising
(accurate recovery) microseismic events using tensor decomposition by considering the time–frequency
representation of multiple traces as a 3-D tensor. A tensor is a multiway array having dimension greater
than two, and recent signal processing techniques have been developed to manipulate such data by taking
advantage of the multidimensional structure. With advances in technology and the availability of cheap
memory, it is now possible to store and do mathematical operations, such as higher order singular-value
decomposition or tensor decomposition, on multiway data. In active seismic, tensor decomposition has
been used for multidimensional reconstruction via higher order interpolation to obtain missing observations.
In this paper, we use 3-D tensor decomposition to process passive seismic data. Experiments performed on
synthetic and field data sets show promising results achieved by these new methods.

INDEX TERMS Tensor decomposition, higher order singular values decomposition (HOSVD), microseis-
mic, denoising, detection, nuclear norm.

I. INTRODUCTION
Microseismic events induced during hydraulic fracturing,
reservoir monitoring, geothermal studies and carbon cap-
tured and sequestration studies are characterized by small
magnitudes. Furthermore, microseismic data is noisy, espe-
cially when geophones are located at the surface due to the
interference of surface waves. These noisy events may result
in incorrect detection and inaccurate location estimates of
weak microseismic events. In this work, we consider a mul-
tichannel scenario where each trace resulted from the record-
ings contains a time-delayed arrival from the microseismic
event. Before processing a large volume of microseismic
data acquired during long-term monitoring, it is necessary
to detect the part of the data that contains microseismic
events. This avoids subsequent processing of redundant data

and reduces the overall computational requirements. This
detection process is also helpful for the parameter estimation
methods in seismic (e.g., [2]–[7]) that rely on the part of the
data which is without event (noise-only part).Moreover, it can
also be used as a preprocessing step in ambient noise studies
(e.g., see [8], [9]). After initial detection, the next step is to
denoise the microseismic data for accurate recovery of event
signals that can be be used for localization purpose in the
later stage of processing. While this field is still evolving,
novel and better methods continue to emerge for detecting
and enhancing the signal-to-noise ratio (SNR).

Generally, there exit several denoising or SNR enhance-
ment methods in the literature, which are discussed next.
Spectral filtering and band-pass filtering are widely used
methods for the attenuation of the noise outside the signal
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band. However, these filters do not remove the noise fully
without distorting the original signal. The signal often shares
some frequency bands with noise and hence, these methods
are not effective. Spectral filtering can also results in artifacts
that can be confused with the original signal [10]. Therefore,
more reliable and efficient denoising methods have been
proposed for seismic data. Interferometry is another well-
known method, which mainly consists of three steps, cross-
correlation, alignment, stacking and convolution [11]–[13].
Another similar technique typically used for this purpose
is the matched filter technique, in which a high-SNR event
(signal) acts as a template or master event to be used for
cross-correlation with the noisy seismic record. Recently,
Liu et al. [14] modify the basic interferometry method
and eliminate the alignment step by proposing an auto-
correlation based method instead of cross-correlation. With
this approach, ambiguities resulted from the alignment step in
cross-correlation based methods are removed. A well-known
method for detection of an event is Short-term average/long-
term average (STA/LTA) method [15] which is used in earth-
quake seismology. The method works by finding the ratio of
energies in two windows (long and short) and then comparing
it with a threshold. The performance of STA/LTA method is
justified in a high-SNR scenario. Wiener filtering, which is
known for more than four decades, is another famous method
for denoising of active seismic data. It requires knowledge
of signal or noise statistics which are not readily available
in practice. This problem is solved by intuitively finding
the noise-only part of the active seismic data [2]–[4], [6].
A similar approach is based on Kalman filtering [7]. Note that
distinguishing the signal from the noise is the main challenge
in passive microseismic scenario in case of a low SNR envi-
ronment. A different approach that allows the reconstruction
of signals from noisy observation is based on time-frequency
peak filtering [16]–[19]. This filtering method encodes the
noisy signal as the instantaneous frequency of a frequency
modulated analytic signal. The signal is recovered by estimat-
ing the peak of the time-frequency distribution of the analytic
signal. This approach is sensitive to the noise interferences
which detract the energy concentration in time-frequency dis-
tribution. Add to this, wavelet transform based methods [5],
[20]–[23] are another class that decompose the noisy signal
using certain type of a mother wavelet. Here, a threshold
is necessary to obtain the enhanced signal. Proper selection
of the mother wavelet and the number of decomposition
levels are some of the hurdles with this method. The basis
function (mother wavelet) does not necessarily match with
every real signal. A data driven approach that derives the basis
function from the noisy signal is called as empirical mode
decomposition [24], [25]. However for this case, the basis
function might not be accurate due to the strong noise which
affects the denoising results in a low SNR environment. Other
less famous techniques proposed in the transform domain are:
curvelets [26]–[28], contourlets [29], shearlets [30], seislet
[31], [32], dreamlet [33]. The list is really long, however,
the focus of this work is on rank-reduction method.

Low-rank/reduced-rank modeling generally refers to a cat-
egory of methods that solve problems by representing vari-
ables of interest as reduced-rank matrices. These methods
achieved great success in various fields including bioinfor-
matics, data mining, computer vision, and signal processing.
Rank reduction is also a popular approach for denoising.
The basic assumption behind these methods is that properly
sampled seismic data, in the absence of noise, is low rank.
Additive noise increases the rank of the seismic data matrix.
Hence, denoising can easily be implemented using rank
reduction by methods such as the Singular Value Decom-
position (SVD), a well-known tool used for rank reduction
which preserves only the significant singular values [34].
Conventionally, SVD operates on 2D matrices.

Recently, rank reduction techniques have been applied on
tensors to solve the multidimensional (3D or higher) data
problems, e.g., in clustering tasks for estimating the num-
ber of clusters, in blind source separation for estimating the
number of latent signals and in dimensionality reduction for
appropriate dimension estimation [35]–[37]. A tensor is a
multidimensional array of numerical values with the order
defined by the number of dimensions. Tensors are more nat-
ural to represent high dimensional data and to extract useful
information from high dimensions data rather than reshaping
the data into a 2Dmatrix, which may lose crucial information
on one of the axes [38]–[40].

In order to process multidimensional data, many stud-
ies introduced tensor-based mathematical tools, with Tucker
model [41] as the most frequently used tensor decomposi-
tion model. This model includes methods, such as, gener-
alization of matrix SVD to tensors, i.e., higher-order SVD
(HOSVD) [38] and denoising methods, e.g., reduced rank
approximation to tensors [42], multidimensional wiener fil-
tering (MWF) [43]–[46] and generic kernel Tucker decompo-
sition [47]. Reduced rank or sub-space based methods require
to estimate the rank of a tensor. Unlike matrices, where the
solution is obtained by truncating the SVD, the approach of
finding the best rank is not straight forward for its multilin-
ear counterpart. Hence, the alternating least-squares (ALS)
method is proposed for this purpose, which in tensor domain,
known as TUCKALS [38], [48]–[50]. In order to estimate
only the dominant singular-vectors for fast computation of
the ALS method, Marot et al. [51] proposed an algorithm
based on the fixed point algorithm to estimate an a priori
required number of singular vectors. It is shown in [52] that
the fixed point algorithm allows real time response for image
enhancement and classification, hence it is necessary for the
scenarios where the memory and time requirements are sig-
nificantly important. There are other rank estimationmethods
like the minimum description length or Bayesian information
criteria which are sensitive to noise [53]. Apart from Tucker,
another way to decompose a tensor into its low rank com-
ponents is through the canonical decomposition (CANDE-
COMP)/parallel factor analysis (PARAFAC) [54], [55]. The
PARAFAC-based denoising methods include the rank-1 ten-
sor approximation, e.g., see [56] and [57]. However, the lack
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of an efficient way for estimating the rank of PARAFAC is the
major constraint for automatic denoising [58]. Furthermore,
PARAFAC type decomposition is computationally challeng-
ing and best r-rank approximationmay not even exist in some
cases [59]. In addition to the above mentioned methods, there
exists multidimensional wavelet packet transform (MWPT)
based methods which have been applied to 3D hyperspectral
images [60], [61]. A survey onMWF and PARAFACmethods
is done by Lin and Bourennane [58], where a combina-
tion of MWF and MWPT is proposed. Unlike MWF and
PARAFAC, this novel combination gives better performance
and preserves rare signals in the denoising process. All of
the aforementioned methods are based on the assumption of
the priori knowledge of the signal and moreover, they are
implicitly developed for signals corrupted by additive white
gaussian noise [62].

Tensors are also well known in the seismic field. For
example, they are extensively used for data completion of
higher dimension (3D, 4D, and 5D) active seismic data
(see [63], [64] and references therein). In [63], a novel ten-
sor decomposition known as tensor singular-value decom-
position (tSVD) is used. The tSVD is developed by Kilmer
and Martin [65] for 3D tensors and later extended by
Martin et al. [66] to higher order tensors.

Motivated by the promising performance of SVD in our
previous work [34], in this paper, we introduce a method
for detection and denoising of microseismic data using
the so-called SVD-like tensor decomposition. We consider
microseismic data as a tensor of order 3. Microseismic data
is collected by an array of geophones in a downhole or on
the ground surface, which is then formatted as 2D data (time
and trace number). Our scenario of passive microseismic
data is different from that of active seismic data for two
reasons. First, passive microseismic data is much noisier
than the active case. Second, active seismic data is already
multidimensional (3D or more), since it has multiple source
records. However, microseismic data has one source record
(2D), which motivates us to transform it to a 3D scenario.

One way to denoise microseismic data is to apply rank
reduction using matrix SVD on a 2D data array. However,
this might not be a good approach in a very noisy environ-
ment, as it is the case in microseimic monitoring. There-
fore, we transform 2D microseismic data to 3D data using
a time-frequency representation (TFR) of each trace and
then obtain the desired denoising results by using SVD-
like decomposition on the tensor of order 3 whose three
dimensions represent frequency, time, and spatial informa-
tion. The reason we expect good performance with this
approach is that the desired signal will be recovered from
a 3D tensor (more information) instead of a 2D matrix
(less information). Furthermore, SVDs are applied on various
components of a 3D tensor which gives a better denoising
result as compared to when applying matrix SVD on the
whole 2D microseismic data. Lastly, the tensor analysis fully
represents the correlation among the traces in time, space
and the frequency domains altogether. Denoising method

that uses the transformation of a 1D trace to its 2D time-
frequency representation is already available in the literature
([5], [16]–[23]). However, for the first time, inspired by the
previous transformation, we take the lead to suggest this
3D technique. We move one step further and take the time-
frequency representations of all the traces together (tensor),
which makes it a 3D tensor problem.

Many high-resolution TFRs have been developed. Among
them are the continuous wavelet transform and the short-
time Fourier transform (STFT), which are well-known trans-
forms for recovering the signal contents [67]–[69]. Other
transforms are synchrosqueezing transform [70], empirical
mode decomposition [24], matching pursuit [71] and basis
pursuit [72]–[74], to name a few. Here, we will use the
STFT [75]–[77], since it is easy to compute (low computa-
tional complexity) and invertible.

In this study, two SVD-like tensor decompositions are
used, namely, tSVD [65] and HOSVD [38]. The tSVD is used
for denoising since it retains the orientation information and
it is useful for time-series applications. However, the HOSVD
is found to be a good choice for detection purpose only. The
reason is that singular values, in this case, contain the move-
out1 information, which is lost when low-rank approximation
is performed by shrinking the singular values.

In summary, the main contributions of this work are:
• Development of a method for detection of passive events
using HOSVD.

• Development of a method for denoising of microseismic
data using tSVD.

• Development of a method for threshold identification in
tSVD.

• Development of a method for denoising/detection in
presence of correlated noise.

• Demonstration of the effectiveness of the proposed
method using synthetic and field microseismic data sets.

• Demonstration of the performance superiority of the
proposed method over other methods.

In [1], we have presented synthetic results for tSVD only and
therefore, the work reported here completes the whole study
that is not found in [1]. The rest of this paper is organized as
follows. Section II is devoted to themathematical background
of tools used in this work together with problem formulation.
Detection using the HOSVD and denoising using tSVD are
presented in Section III and Section IV, respectively. Denois-
ing/detection in presence of correlated noise is discussed in
Section V. In Section VI, theoretical findings are validated
using synthetic and real data set. Finally, Section VII draws
the conclusions.

II. MATHEMATICAL BACKGROUND AND
PROBLEM FORMULATION
In this section, mathematical background about TFR, SVD,
and tensors is presented, followed by a precise problem
formulation.

1Moveout is the difference in arrival times of waves (P and S) at each
geophone in an array.
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A. SHORT TIME FOURIER TRANSFORM (STFT)
ConsiderG geophones for collectingmicroseismic data. Each
sensor records a time series of sampled measurements at time
instant t = nT , say yin, as

yin = sin + w
i
n, i = 1, 2, · · · ,G (1)

where sin and w
i
n represent the signal and noise, respectively

(the procedure is done for all the traces, therefore, we ignore
the superscript i for simplicity)

The STFT is computed by applying Fast Fourier
Transform (FFT) on subsets of observation (data/trace)
points/samples, selected from the trace of M samples (i.e,
y = [y0, y1, . . . , yM−1]) using a moving window w =

[w0,w1, · · · ,wl−1]. The sections are overlapped, so after the
FFT is computed for l data points, the window is moved by h
data points before calculating the next FFT. Note that, h is the
hop size and l − h is the window overlap. Hence, the STFT
is defined as,

Y(k,m) =
l−1∑
p=0

yp+mhwp exp
(
−j2πkp

l

)
,

k = 0, 1, · · · , l − 1, m = 0, 1, 2, · · · ,
M − l
h

(2)

The time series can be recovered from the STFT as follows:
First, the inverse FFT (IFFT) is applied at each time instant

ỹp,m =
1
l

l−1∑
k=0

Y(k,m) exp
(
j2πkp
l

)
,

p = 0, 1, · · · , l − 1, m = 0, 1, 2, · · · ,
M − l
h

(3)

Then, the overlap-add method is used to get the final time-
domain data,

y =
h

‖w‖22

(M−l)/h∑
m=0

φ(w� ỹm,mh), (4)

where ỹm = [ỹ0,m, ỹ1,m, · · · , ỹl−1,m, 0, 0, · · · , 0︸ ︷︷ ︸
(M−l) zeros

], φ(a, b) is

the circular shift of vector a by b samples, and � is the
sample-by-sample multiplication.

B. SVD DECOMPOSITION OF MATRICES
Using the SVD, a 2D matrix A ∈ CP×Q can be decomposed
as

A = USVT , (5)

where U ∈ CP×P is a unitary matrix whose columns are the
left singular vectors, V ∈ CQ×Q is a unitary matrix whose
columns are the right singular vectors, and S ∈ CP×Q is
the rectangular diagonal matrix of singular values arranged
in descending order. The singular values can be extracted as
a vector d = diag(S) = [σ1, σ2, · · · , σr ], where diag is the
diagonal operator.

C. PRELIMINARIES ON TENSORS
The SVD is a commonly used tool for analyzing 2D arrays,
but it can also be used directly with higher dimensional
arrays by extending the concept of SVD with tensor theory.
To formally define a tensor, let A ∈ CI1×I2×···×IN be an N th

order tensor having N indices, where I1, I2, · · · , IN are the
upper limits of each dimension. Thus, a scalar is a zero-order
tensor denoted by lowercase italic letters (e.g., a), a vector
is a 1st-order tensor denoted by lower case bold letters (e.g.,
a), a matrix is a 2nd-order tensor denoted by capital bold
letters (e.g., A), and arrays with more than two dimensions
are higher-order tensors represented by calligraphic letters
(e.g., A). The TFR of a set of traces can be represented by
a 3rd-order tensor A ∈ CI1×I2×I3 , having 3 indices, where
I1, I2, and I3 represent total number of frequency samples,
time samples, and traces, respectively.

Tensors can be decomposed into slices and fibers (modes)
by fixing all indices except for one or two, respectively. A
tensor slice is a 2D matrix obtained by fixing one of the
three indices in a 3rd-order tensor. For example, a frontal
slice of a 3rd order tensor A is obtained by fixing the 3rd

index i3, denoted as A::i3 . Fixing the 2nd index, we get the
lateral (or vertical) slice A:i2:, and fixing the 1

st index, we get
the horizontal slice Ai1::. The slices of a 3rd-order tensor
are shown in Fig. 1. Each index in a tensor is called a
mode, and the upper limit for indices in each mode is the
mode dimension. For a 2D matrix, columns and rows are
mode-1 and mode-2 fibers, respectively. A 3rd-order tensor
has 3 modes (column, row and tube fibers) and the dimension
of each mode is I1, I2, and I3 corresponding to the vectors
a:i2i3 , ai1:i3 , and ai1i2:, respectively. For our application, mode-
1 (columns) andmode-2 (rows) represent frequency and time,
respectively, while mode-3 represents spatial information.
For illustration, a 3rd-order tensor containing the TFR of three
traces (G = 3) is shown in Fig. 2a. The fibers of a 3rd-order
tensor are shown in Figs. 2b, 2c, and 2d.

FIGURE 1. Three types of slices for 3rd-order tensor A ∈ CI1×I2×I3 . (a)
Frontal slices. (b) Lateral slices. (c) Horizontal slices.

D. PROBLEM FORMULATION
The system model in terms of tensor terminology is repre-
sented as

Y = X +N (6)

where X corresponds to the low-rank component and N
corresponds to the noise component of the tensor Y . The
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FIGURE 2. Example of 3rd-order tensor and its various Mode-n fibers.
(a) A 3rd-order tensor. (b) Mode-1 (column) fibers. (c) Mode-2 (row)
fibers. (d) Mode-3 (tube) fibers.

frontal slices of Y are the TFRs corresponding to the time-
series traces (as depicted in Fig. 2a). A conventional approach
to denoising (via low-rank approximation) is to solve the
following optimization problem:

min rank(X ) subject to ‖Y −X‖2F ≤ δ (7)

where ‖ · ‖2F is the Frobenius norm which is the sum of the
squares of elements of the tensor. This optimization prob-
lem (7), which can be interpreted as finding the optimal low-
rank estimate of Y using least-squares, is non-convex and
its direct minimization is an NP hard problem [78]. In order
to make the minimization tractable, a convex relaxation is
employed. The popular choice in this regard is to replace
rank(X ) with the nuclear norm (also called the trace norm)
as follows:

min ‖X‖∗ subject to ‖Y −X‖2F ≤ δ (8)

or

min
X

J (X ) = min
X

1
2‖Y −X‖2F + λ‖X‖∗ (9)

where ‖ · ‖∗ is the nuclear norm. For a matrix, the nuclear
norm (‖ · ‖∗) is the sum of its singular values, whereas,
the nuclear norm of a tensor is the sum of the nuclear norms
of the 2nd-order tensors (i.e., matrices) on which the SVD
is applied. Candès and Recht [79] demonstrated that low-
rank matrices are perfectly recovered by solving the nuclear
norm minimization problem. Furthermore, it is shown in [80]
that the low-rank approximation of a matrix using nuclear
normminimization together with Frobenius norm fidelity can
easily be solved with soft-thresholding of the singular values
of the concerned matrix. It is interesting to point out that rank
minimization and nuclear norm minimization can be viewed
as `0 and `1 minimization methods, respectively, in the SVD
analysis.

III. DETECTION USING HOSVD
A. HIGHER-ORDER SVD
In the HOSVD, tensors are transformed into 2D matrices as
needed for different applications [38]. Rearranging elements
of a tensor into a 2D matrix is known as unfolding or matri-
cization. The mode-n unfolding of the tensor Y is a matrix
Y(n) ∈ CIn×

∏
K 6=n IK that consists of mode-n fibers stacked

into the columns of a matrix. The HOSVD is formed from
the SVDs of all the tensor modal unfoldings. For an N th order
tensor Y , these SVDs are:

UT
KY(K ) = SKVT

K for 1 ≤ K ≤ N , (10)

where UT
K and VT

K are unitary matrices and SK contains the
singular values of Y(K ) on the diagonal.
The mode-n multiplication of a tensor Y ∈ CI1×I2×···×IN

with a matrix U ∈ CJn×In is denoted by (Y ×n U) ∈
CI1×I2×···×In−1×Jn×In+1···×IN , where the matrix product UY(n)
is the mode-n matricization of the mode-n tensor matrix
product. Using the mode-n product operator, ×n, the famous
matrix factorization Y = USVT becomes, in tensor frame-
work,Y = S×1U1×2U2. Similarly, theHOSVDdecomposes
a tensor Y ∈ CI1×I2×···×IN into mode products of a core
tensorS ∈ CJ1×J2×···×JN andN modematricesUn ∈ CIn×Jn ,

Y = S ×1 U1 ×2 U2 ×3 · · · ×N UN = S ×Nn=1 Un (11)

Fig. 3 provides a pictorial view of (11) for N = 3.

FIGURE 3. Tensor decomposition of third-order tensor Y ∈ CI1×I2×I3 into
a core tensor S ∈ CJ1×J2×J3 and unitary matrices
U1 ∈ CI1×J1 ,U2 ∈ CI2×J2 ,U3 ∈ CI3×J3 .

B. DETECTION OF THE MICROSEISMIC EVENT
For the application of microseismic data denoising, we start
by decomposing the 3rd-order tensor into mode-1, mode-2
and mode-3 unfoldings and compute the singular values for
each unfolding. The 3 matrix SVDs of the unfoldings that
make up the HOSVD are done by taking two independent
variables at a time. In other words, taking the SVD of the
time-frequency unfolded structure of all the traces, then tak-
ing the SVD of the time-space unfolded structure of all the
traces, and, third, taking the SVD of the space-frequency
unfolded structure of all the traces. The important point to
be noted here is that the mode-1 singular values correspond
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to the frequency-time contents, mode-2 singular values pro-
vide time-space information and mode-3 singular values give
space-frequency information.

For detection, we select the largest singular value for all
three modes. The reason for selecting only the largest sin-
gular value along mode-1, mode-2, and mode-3 is that the
maximum energy corresponding to the largest singular value
is good enough to detect the event in a whole tensor (TFR
of all traces). Thanks to the localized nature of microseismic
event in time-frequency domain. The approximation X̂ d is
obtained by discarding the mode-n singular vectors corre-
sponding to themode-n singular values except the largest one.
The overall procedure can be cast as follows: first, we find

the core tensor as

Ŝ = Y ×1 ŪH
1 ×2 ŪH

2 ×3 ŪH
3 , (12)

where (·)H is the Hermitian transpose and Ūn is the unitary
matrix that contains the mode-n singular-vector correspond-
ing to the largest mode-n singular value, i.e., it contains only
the first column of the mode-n unitary matrix Un. Second,
the detection is carried out as

X̂ d = Ŝ ×1 Ū1 ×2 Ū2 ×3 Ū3 (13)

Finally, frontal slices of X̂ d are stacked to get the stacked
TFR as

X̂sd =
∑
i3

X̂d::i3
(14)

This will enhance the event so that it can be easily be detected
in the stacked TFR. The maximum energy in the stacked TFR
gives the indication of event presence in microseismic data.
Hence, the maximum energy (or the maximum amplitude)
is used as a criteria to automatically detect an event in the
acquired data set. After detection of an event in a large volume
of data, it is now ready for denoising.

IV. DENOISING USING tSVD
A. tSVD
tSVD is based on two operations [65]: t-product, which is
a multiplication of two tensors, and t-transpose, which is
a transposition operation applied on a tensor. The detailed
descriptions of these two operations are as follows:
t-Product:The t-product of two tensorsA of size I1×I2×I3

and B of size I2 × J × I3 is a tensor C of size I1 × J × I3,
denoted as C = A ∗B. The frontal slices of C are given as

C::i3 = [A::d1 , A::d2 , · · · , A::dI3 ][B
T
::1, B

T
::2, · · · , B

T
::I3 , ]

T ,

(15)

where di = i3− i− I3×b(
i3−i
I3

)c+1, b.c is the floor operator.
The t-product uses circulant convolution, as seen in the third
index, which can be performed efficiently using the FFT.
t-Transpose: LetV be a complex-valued tensor of size I1×

I2 × I3 written in terms of frontal slices as

V = {V::1,V::2, · · · ,V::I3}, (16)

then its conjugate transpose VH is I2 × I1 × I3 tensor, which
is obtained by conjugate transposing each of the frontal slices
and then reversing the order of frontal slices 2 through I3:

VH
= {VH

::1,V
H
::I3 ,V

H
::I3−1, · · · ,V

H
::2} (17)

Using the foregoing definitions, tSVD of a tensor Y ∈
CI1×I2×I3 is defined as

Y = U ∗ S ∗ VH , (18)

where U and V are orthogonal I1 × I1 × I3 and I2 × I2 × I3
tensor, respectively, and S is a I1 × I2 × I3 diagonal tensor
which can be calculated as follows: First, FFT is applied on
the third dimension of the tensor Y . Next, the SVD of each
frontal slice is calculated and finally, the IFFT is applied to
the third dimension of the resultant tensors to compute the
final tSVD.

B. DENOISING OF THE MICROSEISMIC EVENT
In the denoising operation of microseimic events using tSVD,
first the 3rd-order tensor Ý is obtained by applying FFT on the
third dimension ofY which can bewritten in aMATLAB-like
syntax as

Ý = fft(Y, [ ], 3) (19)

Then, the SVD of the ith frontal slice is computed giving

Ý::i = Ú::i Ś::i V́H
::i for i = 1, . . . , I3 (20)

where Ý::i is the ith frontal slice of Ý . Recall the cost func-
tion, defined in (9), involves the nuclear norm. In this case,
the nuclear norm of a tensor Y for tSVD is equivalent to the
sum of the nuclear norms of all frontal slices of its Fourier
transformed version Ý , i.e.,

‖Ý‖∗ =
G∑
i=1

‖Ý::i‖∗ (21)

The frontal slices are matrices and the nuclear norm of a

matrix Ý is defined as ‖Ý‖∗ =
rank(Ý)∑
j=1

σj. Hence, minimiz-

ing (9) is equivalent to applying soft thresholding [81] on
singular values, i.e., shrinking the singular values of frontal
slices, as

sj = (σj − τ )+ (22)

where τ is the threshold value and sj is the soft thresholding
operator on the jth singular value σj and (·)+ = max{0, (·)}
extracts the positive part. After applying soft thresholding on
S::i, we get

X́::i = Ú::i
´̂S::i V́H

::i (23)

Along the 3rd dimension, the component tensors are con-
verted back to the time-domain via the IFFT, that is

U = ifft(Ú , [ ], 3), V = ifft(V́, [ ], 3), Ŝ = ifft( ´̂SSS, [ ], 3)
(24)
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and finally, X̂ is given as

X̂ = U ∗ Ŝ ∗ VH (25)

V. DENOISING IN PRESENCE OF CORRELATED NOISE
While performing the experiments, we observe that methods
described above give the best performance under white noise
(uncorrelated), however, under correlated noise the perfor-
mance gets affected. Therefore, for correlated noise, the pro-
cedure is to whiten the data by removing the minimum-phase
part and include it after applying the tensor decomposition
method for denoising/detection. This procedure is carried out
as follows:

The time samples yin of ith trace is concatenated into a
vector of length L as follows:

yin =
[
yin, y

i
n−1, , y

i
n−2, · · · y

i
n−L

]T
(26)

The minimum-phase part of the observation is obtained
from the z-transform of its autocorrelation sequence. In order
to estimate the autocorrelation of the observation, and ulti-
mately the z-transform, we first model the observation as an
auto-regressive (AR) process. For this purpose, the following
model is used for data y at instant n (again the procedure is
done for all the traces, therefore, we ignore the superscript i
for simplicity)

yn = −aTL yn−1 + γn, (27)

where aL = [a1, a2, . . . , aL]T are AR coefficients,
yn−1 = [yn−1, yn−2, . . . , yn−L]T and γn is a white noise
process with zero mean and variance σ 2

γ . The Yule-Walker
method is used to find aL . For this, taking the expectation of
yn in (27) after multiplying with yTn−1, we get

E
{
ynyTn−1

}
= −E

{
aTL yn−1y

T
n−1

}
+ E

{
γnyTn−1

}
(28)

Under the assumption that the data and noise are uncorrelated,
(28) becomes

−pTyy = aTLPyy (29)

and aL is calculated as following:

aL = −P−1yy pyy, (30)

where pyy = [py,1, py,2, . . . py,L]T , Pyy = Toeplitz
([py,0, py,1, . . . py,L−1], [py,0, py,−1, . . . py,−L+1]), py,q =

py,−q, and py,q = 1
M

∑M−q−1
n=0 ynyn+q, q = 0, 1, . . . ,L. The

first column and the first row of the Toeplitz matrix Pyy are
[py,0, py,1, . . . py,L−1] and [py,0, py,−1, . . . py,−L+1]), respec-
tively (here we have used Matlab-like syntax to represent a
Toeplitz matrix). A biased form of the estimator is used for
py,q in order to ensure the autocorrelation matrix in (30) is
positive semi-definite. This results in a stable AR model. To
avoid the matrix inversion in (30), the Levinson-Durbin algo-
rithm [82] is used, which is a recursive and computationally
efficient method that exploits the Toeplitz structure of the
correlation matrix. Next, (27) can be rewritten as

āTL yn = γn (31)

where āL = [1, a1, a2, . . . , aL]T and yn = [yn, yn−1, . . . ,
yn−L]T . Defining a z-domain vector for negative powers as
z− = [1, z−1, z−2, . . . , z−L]T , and for positive powers as
z+ = [1, z1, z2, . . . , zL]T , the z-transform of (31) looks like
the following:

Yn(z)
(
āTL z
−

)
= γ (z) (32)

Multiplying each side of (32) by its respective time-reversed
version gives

0yy,n(z)
(
āTL z
−

) (
āTL z
+

)
= σ 2

γ (33)

Thus, we model the observation by an AR process and the
z-transform of the autocorrelation sequence is

0yy,n(z) =
σ 2
γ(

āTL z
−

)
︸ ︷︷ ︸
W (z)

(
āTL z
+

)
︸ ︷︷ ︸
W (z−1)

, (34)

where σ 2
γ can be calculated from (27) as

σ 2
γ =

1
M

M−1∑
n=L

(
āTL yny

T
n āL

)
(35)

The data y is whitened by passing through the whitening
filter 1/W (z), where W (z) is a minimum-phase polynomial
formed from the roots of 0yy,n(z) that fall inside the unit
circle in the z-plane. After performing denoising using tensor
decomposition, the denoised whitened data is filtered using
W (z) to get the final denoised trace. The filterW (z), in the last
step, is calculated from the autocorrelation of the denoised
whitened data by first finding W (z−1) from the roots of the
z-transform of the autocorrelation that fall outside unit circle
using a similar procedure as above, and then applying the
time-reversal property of the z-transform to get W (z).

VI. EXPERIMENTAL RESULTS
In this section, we validate our theoretical findings using
synthetic and field data sets.

A. SYNTHETIC DATA SET WITH WHITE NOISE
For synthetic data, a constant velocity medium is assumed
and a Ricker wavelet with dominant frequency of 30Hz is
used. The sampling frequency is set to 500Hz and forty traces
are synthesized with each trace having a duration of 0.4 sec.
White Gaussian noise is added to this data set in order to
make SNR=−10 dB, consequently, the microseismic event is
difficult to detect. The noiseless and noisy synthetic data are
shown in Fig. 4a and 4b, respectively (for conciseness, only
a portion of the whole data is shown). The STFT processing
was carried out with a window length of l = 100 and hop
size of h = 2. To detect this event, (14) is applied to obtain
the result shown in Fig. 4c. For a large volume of data, it is
recommended to apply the proposed detection method in a
sliding window fashion and then the maximum amplitude
among all the windows is taken as the presence of an event.
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FIGURE 4. Synthetic data test (limited view showing 25 of 40 traces and 0.1 to 0.28 sec): (a) clean data,
(b) noisy traces with SNR =−10 dB, (c) detection using HOSVD, |X̂sd |

2, (d) denoised traces using tSVD.

In that case, M will be equal to the length of the sliding
window. This will relax the memory requirement needed to
store a large 3D array. As can be seen from Fig. 4c, an
event of frequency 30 Hz is detected in between 0.1 and
0.25 sec, which is in accordance with Fig. 4a. After initial
detection, tSVD is applied for denoising and the near-to-exact
matching of denoised traces and noiseless traces can be seen
by comparing Figs. 4d and 4a.

An important step in denoising is shrinking the singular
values using soft thresholding, which requires a threshold
parameter τ . For this purpose, we first plot the singular values
of all the frontal slices of Ý (see Fig. 5a). From this figure,
we conclude that the singular values corresponding to the
signal (event) subspace have high values and vice versa.
Therefore, to define the threshold τ , singular values obtained
for each frontal slice of Ý are averaged and then the rate of
change of the Averaged Singular Values (ASV) is taken into
account. The threshold is defined based on the fact that the
rate of change of the singular values belonging to the noise
subspace is low. ASV and the rate of change of ASV are
shown in Fig. 5b and 5c, respectively. From Fig. 5c, it can
be noted that the rate of change is very small for values above
−0.2. Therefore, the threshold is defined to lie between the
2nd and 3rd singular value. Hence, from Fig. 5a the value of
the threshold τ is set to 292 for synthetic data with white
noise. A similar approach of defining the threshold has been
proposed for 2D data in signal and image processing fields
[83]–[86]. Here, we extend it to the 3D data set. We use
this approach instead of the more complex rank estimation
methods (mentioned in Section II) because this is a straight

FIGURE 5. (a) Singular values of all frontal slices of Ý , (b) singular values
averaged over all frontal slices (ASV), (c) rate of change of averaged
singular values (derivative of ASV) for synthetic data set with white noise.

forward technique without any additional complexity to the
denoising method and it is also well-suited to our off line
application.

B. SYNTHETIC DATA SET WITH CORRELATED NOISE
Next, same synthetic data set is used with correlated noise
(Fig. 6a). SNR is set to the same value as previously. Here,
the whitening procedure, as detailed in Section V, is used
before denoising. The order of the filter is set to L = 1. The
reason for selecting the lowest order of the filter is to ensure
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FIGURE 6. Synthetic data in colored noise. (a) Noisy traces with SNR=−10 dB, (b) noisy traces
after applying a whitening filter, (c) denoising result (using tSVD) of whitened noisy data, (d)
denoised traces after applying inverse whitening filter.

FIGURE 7. (a) Singular values of all frontal slices of Ý , (b) ASV, (c) rate of
change of ASV for synthetic data set with correlated noise.

that the assumption of no correlation between the noise and
microseismic event is still valid. Denoising is performed on
whitened noisy data. Ultimately, the final denoised traces are
obtained by filtering the denoised whitened data using the
inverse whitening filter. The whitened noisy data, denoised
whitened data, and the final denoised data are depicted
in Figs. 6b, 6c, and 6d, respectively. A similar approach, as in
the previous case, is used for defining the threshold; this is
shown in Fig. 7. The threshold is defined to lie between the
3rd and 4th singular value. Hence, from Fig. 7a the value of
the threshold τ is set to 265 for synthetic data with correlated
noise.

FIGURE 8. Sensitivity analysis of the parameters, (a) window length, l ,
(b) hope size, h, (c) sampling frequency, fss, and (d) threshold, ε.

C. COMPARISON OF VARIOUS DENOISING METHODS
In order to show the performance superiority of the pro-
posed tensor decomposition based denoising, the proposed
technique is compared with the conventional SVD (that is
applied on the 2D microseismic data set), wavelet decompo-
sition, empirical mode decomposition, peak filtering, band-
pass filtering, and autocorrelation-based denoising methods.
Table 1 reports the following metrics used in the com-
parison: the maximum Correlation Coefficient (CC), Peak-
Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR),
Mean Absolute Error (MAE), and Mean Square Error (MSE)
from the synthetic data experiment (white Gaussian noise
case) using the above mentioned denoising methods. For the
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TABLE 1. Comparison of the proposed tensor method with other denoising methods.

FIGURE 9. (a) Real data set, (b) detection using HOSVD, |X̂sd |
2, (c) denoised traces using tSVD.

wavelet decomposition based denoising technique, we use
‘‘wden’’ function in the wavelet toolbox of Matlab [87].
Moreover, we use the principle of Stein’s Unbiased Risk for
soft thresholding (for details see wavelet toolbox in Mat-
lab2016a and references [5] and [88]). For conventional SVD,
empirical mode decomposition, peak filtering and autocor-
relation based enhancements methods, we use the methods
proposed in [14], [19], [25], and [89], respectively. The reason
of the superior performance of our method is justified by the
use of the correlation in time and frequency domains together,
where as, the other methods either do not use this property
at all or use it in only one domain. The complexity of the
methods is compared in terms of the running time as shown
in Table 1. The time is estimated using an ordinary laptopwith
core i5 processor running MATLAB 2016a. For the proposed
method, we use Matlab toolbox name as ‘‘tensorlab’’ [90].
Here, in this study we have propose an application of tensor
decomposition in the microseismic field and compare it to
the well-known methods to justify the performance of our
method. It can be seen from Table 1, except for the computa-
tional complexity, our proposed algorithm resulted in the best
performance among the rest of the methods.

D. SENSITIVITY ANALYSIS OF THE PARAMETERS
Fig. 8 shows the effect of the window length l, the hope size
h, the sampling frequency used for STFT fss and the thresh-
old ε on the SNR enhancement. For the previous synthetic

examples we have set the aforementioned parameters based
on the experimental analysis. It can be seen from Fig. 8a
that as the window size increases, SNR after denoising also
increases until a steady state is reached, hence l = 100 is a
good choice. Conversely, Fig. 8b shows that with increasing
the hop size, SNR after denoising decreases, therefore, h = 2
(can be set at h = 1 with not much SNR enhancement) is used
for all the data set used . However, the sampling frequency
does not affect the performance as depicted in Fig. 8c. Finally,
the effect of the threshold ε is shown in Fig. 8d for white and
correlated noise. As can be seen from this figure that the max-
imum SNR is obtained when ε = 295. Based on the method
presented earlier, the threshold was set to ε = 292 for white
noise case. Also, as can be seen from this figure, the ε = 300
gives the maximum SNR, while the derived value is found to
be ε = 265 for correlated noise. From this we conclude that
the proposed method for the threshold indication is simple
and straight forward and, moreover, it is close to the actual
threshold (the one that yields maximum SNR enhancement).
The SNR enhancement in case of the correlated noise is more
as compared with the SNR enhancement in the white noise
case, this is due to the fact that in the former case an extra
stage of whitening filter is also used.

E. FIELD DATA SET
Finally, the denoising and detection methods are tested on
a recorded microseismic trace as depicted in Fig. 9a. The
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FIGURE 10. (a) Singular values of all frontal slices of Ý , (b) ASV, (c) rate
of change of ASV for field data set.

data used in this study is from the High Resolution Seismic
Network (HRSN), Berkeley Seismological Laboratory at the
University of California, Berkeley (for more details see [14]).
The sampling frequency for this data set is 250Hz. The
microseismic event is difficult to detect in this data set, which
is apparent from Fig. 9a (showing 23 out of 182 traces).
Initially, the detection is carried out using the HOSVD as
depicted in Fig. 9b. Detection result shows the presence of
an event in between 1 to 7 sec of the data. The denoising
result obtained using tSVD is shown in Fig. 9c. It can be seen
from the denoised traces that the proposed technique provides
an excellent outcome, showing P- and S-wave clearly, for
the real field data set. A similar approach, as in the previous
cases, is used for defining the threshold as shown in Fig. 10.
The threshold is defined to lie between the 4th and 5th singular
value. Hence, from Fig. 10a the value of the threshold τ
is set to 1688 for field data set. In the case of field data
where the nature of the noise is unknown we have passed
the data through all the stages of the denoising method,
i.e., pre-whitening, denoising and whitening inverse to get
the final output. The data after applying the whitening filter
and denoising result of the whitened noisy data are shown
in Figs. 11a and 11b, respectively. From these figures, it is
apparent that the whitening filter has not much effect on the
field data set. The reason is that the data has a flat spectrum
(white) as depicted in Fig. 12a. Hence, the filter also turns off
(see the impulse response of the filter in Fig. 12b). For com-
parison, we also report the correlated noise case in Fig. 12.

In summary, the proposedmethod has the following advan-
tages:

• It detects the microseismic event before enhancing it
using a simple higher-order SVD technique without
defining an explicit complex method for threshold.

• The detection step relaxes the computational require-
ments by not processing all the data in the denoising
step.

FIGURE 11. (a) Noisy field data set after applying a whitening filter, (b)
denoising result of whitened noisy data.

FIGURE 12. (a) Power spectral density estimate of the data, (b) impulse
response of the whitening filter.

• Unlike the previously proposed methods, the denoising
and detection are performed for the whole 3D tensor
and hence, the correlation among the time and frequency
contents of the traces are fully utilized.

• In case of denoising, a threshold is defined in a simple
and straight forward way.

• The correlated noise case is also embedded.
Finally, note that the threshold is defined in a semi-automatic
way.

VII. CONCLUSION
Microseismic data is typically noisy and requires detection
and a denoising step before further processing. In this study,
reliable multichannel detection and enhancement methods
for microseismic events using tensor decomposition are pre-
sented. By considering the time-frequency representation of
the traces as a third-order tensor, the higher order-singular
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value decomposition is used for the aforementioned purposes.
The denoised traces are obtained by shrinking the singular
values, where a method of obtaining the threshold is also
discussed. Tests on synthetic and real seismic data sets show
promising detection and denoising results in the presence of
uncorrelated and correlated noise.
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