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ABSTRACT The manipulation of the magnetic field has been a proven effective method to change the
flow velocity in magnetohydrodynamics (MHD) flow systems. In this paper, we consider a novel bilinear
magnetic control problem arising in a 1-DMHD flow system modeled by a set of coupled partial differential
equations (PDEs). We formulate the control of the magnetic field as a finite-time PDE-constrained dynamic
optimal control problem and our aim is to realize the desired stationary state of the flow velocity at a specific
terminal time. A model order reduction technique, based on proper orthogonal decomposition and Galerkin
projection procedure, is first adopted to approximate the original complex optimization problem governed
by PDEs into a semi-discrete approximation problem governed by a low-dimensional reduced-order model,
and therefore can efficiently reduce the computational burden of the dynamic system. Then, the piecewise-
linear control parameterizationmethod is used to obtain an approximate optimal parameter selection problem
that can be solved using nonlinear optimization techniques such as sequential quadratic programming. The
exact formulas for the gradients of the defined cost functional with respect to the decision parameters are
analytically derived via state sensitivity method. Numerical simulation results verify the effectiveness of our
proposed computational method. The methodology proposed in this paper is a potential implementation of
a real-time control strategy in a number of MHD flow systems.

INDEX TERMS Distributed parameter systems, PDE-constrained optimization, control parameterization,
Galerkin projection, proper orthogonal decomposition (POD), MHD flow.

I. INTRODUCTION
In various natural physical phenomena and engineering
problems, i.e., heat and diffusion procedures [1]–[3], flow
fluid [4], [5], flexible structure systems [6]–[11] and plasma
transport processes [12]–[14], one can find that the dynamic
behaviors of these systems are not only related with the
temporal evolution, but also related with the spatial evolu-
tion. These spatial-temporal evolutionary processes are usu-
ally mathematically modeled by a set of partial differential
equations (PDEs), which are also commonly referred to as
distributed parameter systems (DPS). As an important type
of DPS, the magnetohydrodynamics (MHD) flow system,
whose dynamics can be mathematically modeled by a set

of Navier-Stokes PDEs and Maxwell equations, is gener-
ally characterized by an electrically conducting fluid moving
between parallel plates in the presence of an external imposed
magnetic and electric fields (See Fig. 1) [15]. In an MHD
flow system, the movement of the conducting fluid between
the parallel plates will produce an electric field and subse-
quently an electric current. Due to these natures, MHD flow
has been covered numerous applications (e.g., [15]–[20]).
Seeking efficient control strategies for the MHD flow system
has attracted considerable attention in recent years.

In this paper, we consider a one-dimensional (1-D) incom-
pressible, Newtonian MHD flow system, whose dynamic is
controlled by an external induction of the magnetic field.
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FIGURE 1. Sketch of a 3-D MHD flow.

The mathematical model of the 1-D MHD flow system stud-
ied in this paper is formulated as the following dimensionless
form [21]:

∂u(l, t)
∂t

= ν
∂2 u(l, t)
∂l2

+ %(t)
∂B(l, t)
∂l

− p(t), (1a)

∂B(l, t)
∂t

= νm
∂2 B(l, t)
∂l2

+ %(t)
∂u(l, t)
∂l

, (1b)

u(0, t) = 0, u(1, t) = 0, (1c)

B(0, t) = 0, B(1, t) = 0, (1d)

u(l, 0) = u0(l), B(l, 0) = B0(l), (1e)
where t ∈ [0,T ] denotes the time; l ∈ [0, 1] denotes the
space variable; u(l, t) and B(l, t) denote the flow velocity
and the magnetic induction, respectively; p(t) is the pressure
difference per unit of the channel length; ν = 1/Re and
νm = 1/Rem, Re is the flow Reynolds number and Rem is the
magnetic Reynolds number. In our current work, we assume
the ranges of the coefficients ν and νm in (1) are small con-
stants ranging from 0.01 to 10. The function %(t), which is the
induction of the external magnetic field, is considered as the
control input and satisfied the following physical constraint:

0 ≤ %(t) ≤ %max , (2)

where %max denotes the maximum magnetic filed.
The dynamic coupled PDEs (1) described above represents

a typical class of MHD flow systems, and in PDE system (1),
the flow velocity and electromagnetic fields are tightly cou-
pled. The velocity in the MHD flow is also perpendicular to
the magnetic vector. Besides, in the 1-D MHD flow system,
the boundary conditions are zeros, which denote the velocity
of the viscous fluid and the magnetic field corresponding to
the continuity of the magnetic field strength on the parallel
solid surfaces are zeros, respectively. In the past decades,
various dynamic models of MHD flow systems which are
based on boundary control inputs have been well investigated
in the literature [4], [5], [22], [23]. Other recent developments
about the modeling and control of the MHD flow systems
have also been investigated [24], [25]. Compared to these
boundary control problems of MHD flow such as in prior
works [4], [5], [22], [23], the significant characteristic of the
system (1) studied in this paper is that the external control
input (external induction of magnetic field) is taken multi-
plicative effect exerted on momentum and magnetic compo-
nents of the system variables. The MHD flow system (1) is
thus so-called a bilinear control PDEs system, and to our best
knowledge, there are very fewworks of literature studied with
such a spirit.

In this paper, we focus on solving an optimal bilinear con-
trol problem governed by the PDE system (1). The tracking
control of the desired stationary state of the flow velocity
at a specific terminal time in the 1-D MHD flow is for-
mulated as a dynamic optimal control problem. Our aim
is to design an optimal controller %(t) to drive the flow
velocity u(l, t) to within close proximity of the stationary
state of the desired flow velocity (i.e., u(l,T ) = 0) at the
pre-indicated terminal time T . Different with various exist-
ing control strategies successfully applied in infinite dimen-
sional systems [4], [19], [26]–[30], it is a very challenging
task to provide analytic optimal strategies for such cou-
pled MHD flow system (1) involving bilinear control. Thus,
computational optimal control algorithms for the solution
of these PDEs arise an effective alternative. However, due
to the high dimensionality and complexity of the original
coupled PDEs, i.e., required a large computation time for
solving the PDEs numerically, it is often hard to use the
PDE model directly to analyze and control the system in
real-time. One most effective way in real applications is to
first reduce the original PDE model to a lower dimensional
dynamic system governed by an ordinary differential equa-
tion (ODE) model. This procedure is well known as reduced
order modeling (ROM) techniques. The proper orthogonal
decomposition (POD) method is an efficient ROM technique
of obtaining the lower finite dimensional dynamical systems
from the data ensembles arising from experimental observa-
tion or numerical simulations of high-dimensional systems,
and it has been successfully applied in many areas [31]–[33].
In present work, we first use the POD method combined the
Galerkin projection to reduce the original PDEs system (1)
to a low order dynamic system modeled by ODEs, leading
to a more simple real-time optimal control problem for the
MHD flow system. Then, we use the piecewise-linear control
parameterization method to approximate the control input
by a linear combination of temporal basis functions with
the constant coefficients to be determined by the numerical
optimization procedures such as sequential quadratic pro-
gramming (SQP). The exact formulas for the gradients of
the defined cost function with respect to the decision param-
eters are analytically derived via state sensitivity method.
Based on the obtained gradient formulas, the gradient-based
optimization method is used to obtain the optimal solu-
tions. Numerical simulation results verify the effectiveness
of our proposed computational method. The main contri-
bution of this paper is that we develop an effective com-
putational optimal control method based on POD method
and control parameterization method to realize the optimal
target of the stationary state of the flow velocity arising
in a novel bilinear controlled 1-D MHD flow system, and
this methodology proposed in this paper is potential imple-
mentation of a real-time receding-horizon control strategy in
future.

The rest of this paper is organized as follows. In Section II,
we propose the bilinear optimal control problem for the
1-D MHD flow system. In Section III, we use the
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PODmethod combinedwith the Galerkin projection to obtain
a lower finite-dimensional model derived from the original
coupled PDEs. In Section IV, we give the detailed pro-
cedure of the optimal control computation which is
based on piecewise-linear control parameterization. The
gradients of the cost function are derived analytically.
In Section V, the numerical results for the 1-D MHD
flow system are presented. Finally, the paper is closed
in Section VI by summarizing our results and research
topics.
Notations: ut (l, t) = ∂u(l, t)/∂t , ul(l, t) = ∂u(l, t)/∂x,

ull(l, t) = ∂2 u(l, t)/∂l2, Bt (l, t) = ∂B(l, t)/∂t , Bl(l, t) =
∂B(l, t)/∂l, Bll(l, t) = ∂2 B(l, t)/∂l2, < f (l), g(l) >=∫ 1
0 f (l)g(l)dl.

II. OPTIMAL PROBLEM FORMULATION
In MHD flow, due to the non-physical interaction, one best
feasible and efficient way of changing the fluid velocity
or realizing a desired fluid velocity is through manipulation
of the magnetic field. In this paper, our aim is to control
the external magnetic input %(t) optimally so that the output
flow velocity u(l, t) can be brought as close as possible to
the stationary state u(l,T ) = 0 at the given time T . This
manipulation is very crutial for many applications of the
MHD flow systems with the purpose of enhance mix-
ing or suppress turbulence. Thus, in this paper, we propose
the following cost functional to be minimized:

J (u, %(t)) =
λ1

2

∫ 1

0
u2(l,T )dl +

λ2

2

∫ T

0
%2(t)dt, (3)

where λ1 ≥ 0 and λ2 ≥ 0 are non-negative weighting
constants. The first term in (3) is to penalty the flow velocity
u(l,T ) at the terminal time, and the second term in (3) is to
penalty the energy of the magnetic input.

Recalling that the control input %(t) satisfies physical con-
straint (2), any valued piecewise-continuous function %(t)
that satisfies the bound constraint (2) is called an admissible
control. Let 2 be the class of all such admissible control.
Now, we state our dynamic optimal control problem formally
as follows.
Problem P0: Given the PDE system (1) with the boundary

conditions and initial condition, the aim is to find an admis-
sible control %(t) ∈ 2 such that the cost functional (3) is
minimized.

III. SEMI-DISCRETE APPROXIMATION PROBLEM
In this section, the ROM technique will be used to
approximate the original distributed optimal Problem P0
as a semi-discrete approximation problem. We will first
give a brief formulation of the POD basis functions
computation, then combine the POD model reduction
theory with Galerkin projection to reduce the original
PDEs system into a low order dynamical system mod-
eled by ODEs, and thus will lead to another more simple
optimal control problem to be solved for the MHD flow
system.

A. POD METHOD BASED ON SNAPSHOTS
Consider the following dynamical system modeled by a non-
linear PDEs form

ż(t, x) = F(z(t, x), p, u(t)) ∈ Z, (4)

where Z denotes an infinite-dimension Hilbert space, z(t, x)
denotes the states, p ∈ Rm denotes physical parameters in
the dynamical system, u(t) is the vector of control inputs. The
basis idea of the PODmethod is to find a set of optimal spatial
basis functions V = {υ1(x), υ2(x), . . . , υl(x)} (l ≤ s) that can
capture most energy of the original PDEs from a given col-
lection of snapshots over a finite time solutions of the PDEs
Sz = {z(t1, x), z(t2, x), . . . , z(ts, x)} = {zi(x)}, i = 1, 2 . . . , s.
These snapshots can be obtained by solving an approximation
of the high-dimensional PDEs or from the observed exper-
imental data. Based on the optimal basis functions υi(x),
the original PDE system can be then approximated as

z(t, x) ≈ 8zpod (t, x) =
l∑
i=1

qi(t)υi(x), (5)

where8 is a s×r matrix containing the basis functions υi(x).
To obtain the optimal basis functions υi(x) by the snapshots

method [34], the POD method is to minimize the following
projection error of given data set Sz onto the subspace, i.e.,

min
υi(x)∈V

Jpod (υ1, υ2, . . . , υl)

=

s∑
i=1

〈 l∑
j=1

〈
zi, υj

〉
υj − υi,

l∑
j=1

〈
zi, υj

〉
υj − υi

〉
,

s.t.
〈
υi, υj

〉
= δij =

{
1, if i < j,
0, if i 6= j.

(6)

Problem (6) can be commonly solved by many existed opti-
mization algorithms. According to the proof in [35], the
i-th optimal POD basis function can be obtained by

υi(x) =
1√
λzi

j=s∑
j=1

ξ zi (j)z(tj, x), i = 1, 2, . . . , rpod , (7)

where rpod ≤ s is the number of retained POD basis functions
and λzi , ξ

z
i (j) are elements of the normalized eigenvalues and

eigenvectors of correlation matrix K z whose elements are
defined as

K z
ij =

1
s
< z(ti, x), z(tj, x) >, i, j = 1, 2, . . . , s. (8)

By incorporating (5) and the POD basis functions υi(x)
obtained in (7), then the original PDE system (4) can be
projected on the reduced dimension POD space by using a
Galerkin projection. This will lead to an ODE system in form

q̇pod (t) = f (qpod (t), p, u(t)) ∈ Rrpod , (9)

where qpod (t) denotes the POD projection coefficients and
f is related to the structure of the original PDE (4). In the
following section, we will give the detailed procedure for the
reduce-order model by using the Galerkin projection method.
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B. REDUCED-ORDER MODEL VIA GALERKIN PROJECTION
Let υ1 and υ2 be trial functions, respectively. We now take
the normal inner product of (1) with υ1 and υ2 to obtain the
weak form of the original PDEs

< υ1(l), ut (l, t) >=< υ1(l), νull(l, t) >

+ < υ1(l), %(t)Bl(l, t) > − < υ1(l), p(t) >, (10a)

< υ2(l),Bt (l, t) >=< υ2(l), νmBll(l, t) >

+ < υ2(l), %(t)ul(l, t) > . (10b)

Using integration by parts on the right-hand side of (10),
we obtain

< υ1(l), ut (l, t) >= νυ1(1)ul(1, t)− νυ1(0)ul(0, t) >

− < υ ′1(l), νul(l, t) > − < υ ′1(l), %(t)B(l, t) >

− < υ1(l), p(t) >, (11a)

< υ2(l),Bt (l, t) >= νmυ2(1)Bl(1, t)− νmυ2(0)Bl(0, t)

− < υ ′2(l), νmBl(l, t) > − < υ ′2(l), u(l, t)%(t) > .

(11b)

Now, we assume the flow velocity u(l, t) and the magnetic
B(l, t) in (1) can be spanned by the POD basis functions
φi, ψi, i.e.,

u(l, t) ≈ upod (l, t) =
r1∑
i=1

upodi (t)φi(l), (12a)

B(l, t) ≈ Bpod (l, t) =
r2∑
i=1

Bpodi (t)ψi(l), (12b)

where upodi (t),Bpodi (t), i = 1, . . . , r1, are weighting func-
tions to be determined.

By substituting (12a) into the weak form (11a) and choos-
ing the trial function υ1(l) as the POD basis functions
φj(l), j = 1, . . . , r1, we can obtain

< φj(l),
r1∑
i=1

u̇podi (t)φi(l) >

= νφj(1)
r1∑
i=1

upodi (t)φ′i(1)− νφj(0)
r1∑
i=1

upodi (t)φ′i(0)

− < φ′j(l), ν
r1∑
i=1

upodi (t)φ′i(l) >

− < φ′j(l), %(t)
r2∑
i=1

Bpodi (t)ψi(l) >

− < φj(l), p(t) > . (13)

Similarly, substituting (12b) into the weak form (11b) and
choosing υ2(l) = ψj(l), j = 1, . . . , r2, we can obtain

< ψj(l),
r2∑
i=1

Ḃpodi (t)ψi(l) >

= νmψj(1)
r2∑
i=1

Bpodi (t)ψ ′i (1)− νmψj(0)
r2∑
i=1

Bpodi (t)ψ ′i (0)

− < ψ ′j (l), νm
r2∑
i=1

Bpodi (t)ψ ′i (l) >

− < ψ ′j (l), %(t)
r1∑
i=1

upodi (t)φi(l) > . (14)

Now, we introduce the following notations:

upod (t) = [upod1 (t), upod2 (t), . . . , upodr1 (t)]>,

Bpod (t) = [Bpod1 (t),Bpod2 (t), . . . ,Bpodr2 (t)]>,

A = [< φi(l), φj(l) >] ∈ Rr1×r1 ,

Ã = [< ψi(l), ψj(l) >] ∈ Rr2×r2 ,

C = [< φ′i(l), φ
′
j(l) >] ∈ Rr1×r1 ,

C̃ = [< ψ ′i (l), ψ
′
j (l) >] ∈ Rr2×r2 ,

E = [< φ′i(l), ψj(l) >] ∈ Rr1×r1 ,

Ẽ = [< φ′i(l), ψj(l) >] ∈ Rr2×r2 ,

F = [φi(1)φ′j(1)] ∈ Rr1×r1 ,

F̃ = [φi(0)φ′j(0)] ∈ Rr1×r1 ,

G = [ψi(1)ψ ′j (1)] ∈ Rr2×r2 ,

G̃ = [ψi(0)ψ ′j (0)] ∈ Rr2×r2 ,

d = [< φj(l), 1 >] ∈ Rr1×1, .

Then, equations (13)-(14) can be rewritten in following
matrix forms:

Au̇pod (t) = (F− νF̃− νC)upod (t)

−%(t)EBpod (t)− p(t)d, (15a)

ÃḂ
pod

(t) = (G− νmG̃− νmC̃)Bpod (t)

−%(t)Ẽ · upod (t), (15b)
To simplify the notations, let

x(t) =
[
upod1 (t), upod2 (t), . . . , upodr1 (t),

Bpod1 (t),Bpod2 (t), . . . ,Bpodr2 (t)
]>
∈ Rn, n = r1 + r2.

Then, (15) can be written in the following compact form

ẋ(t) = Â
−1 [

Ĉx(t)− %(t)Êx(t)− p(t)d̂
]
, (16)

where

Â =
[
A 0

0 Ã

]
∈ Rn×n,

Ĉ =
[
F− νF̃− νC 0

0 −νmG− νmG̃− νmC̃

]
∈ Rn×n,

d̂ =
[
d 0

]>
∈ Rn,

Ê =
[
0 E
Ẽ 0

]
∈ Rn×n.

For the initial conditions in (1), they can be written as
u0(l) =

r∑
i=1

upodi (0)φi(l), (17a)

B0(l) =
r∑
i=1

Bpodi (0)ψi(l). (17b)
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Multiplying both sides of (17) by the POD basis functions
φj(l), ψj(l) and integrating over l ∈ [0, 1], it obtains

< φj(l), u0(l) >=< φj(l),
r1∑
i=1

upodi (0)φi(l) >, (18a)

< ψj(l),B0(l) >=< ψj(l),
r2∑
i=1

Bpodi (0)ψi(l) >, (18b)

We introduce the following matrix notations

g̃j = < φj(l), u0(l) >, j = 1, 2, . . . , r1,

h̃j = < ψj(l),B0(l) >, j = 1, 2, . . . , r2. (19)

Therefore, (18) can be also written in matrix forms as:

Aupod (0) = g̃, ÃBpod (0) = h̃, (20)

where g̃ = [g̃1, g̃2, . . . , g̃r1 ]
>, h̃ = [h̃1, h̃2, . . . , h̃r2 ]

>. Thus,
we have {

upod (0) = A−1g̃, (21a)

Bpod (0) = Ã
−1
h̃. (21b)

As a result, the initial condition for dynamic system (16) can
be defined as

x(0) = x0 =
[
upod1 (0), upod2 (0), . . . , upodr1 (0),

Bpod1 (0),Bpod2 (0), . . . ,Bpodr2 (0)
]>
∈ Rn. (22)

For the terminal state u(l,T ), based on the expansion (12a),
it can be approximated as follows:

upod (l,T ) =
r1∑
i=1

upodi (T )φi(l), (23)

where upodi (T ), i = 1, 2, . . . , r, are weighting coefficients.
Substituting (23) into the cost functional (3), we obtain

J (x(t), %(t))

=
λ1

2

∫ 1

0

[ r1∑
i=1

upodi (T )φi(l)

]2
dl +

λ2

2

∫ T

0
%2(t)dt

=
λ1

2

r1∑
i=1

r1∑
j=1

upodi (T )
[∫ 1

0
φi(l)φj(l)dl

]
upodj (T )

+
λ2

2

∫ T

0
%2(t)dt

=
λ1

2

[
upod (T )

]>
A
[
upod (T )

]
+
λ2

2

∫ T

0
%2(t)dt

=
λ1

2
x>1:r1 (T )Ax1:r1 (T )+

λ2

2

∫ T

0
%2(t)dt, (24)

where x1:r1 = [upod1 (T ), upod2 (T ), . . . , upodr1 (T )]>. Prob-
lem P0, the distributed parameter optimal control problem,
is now approximated by the following lumped parameter
optimal control problem, which is defined as the following
Problem P1.
Problem P1: Given the dynamic ODEs system (16) with the

initial conditon (22), the aim is to find an admissiable control
%(t) ∈ 2 such that the cost function (24) is minimized.

IV. OPTIMAL CONTROL COMPUTATION
A. PIECEWISE-LINEAR CONTROL PARAMETERIZATION
Based on the POD method and Galerkin projection in pre-
vious section, Problem P1 has become a semi-discrete opti-
mal control problem governed by lumped parameter system.
However, it is difficult, or impossible to provide the direct
design of optimal control strategies for such problems. Thus,
it is necessary to solve Problem P1 numerically. Now we
develop an efficient dynamic optimization method which is
based on the control parameterization approach [36]–[38] to
solve the approximation Problem P1. The control parameter-
ization method is a popular computational optimal control
approach for solving nonlinear dynamic optimization prob-
lems [39]–[43], where the time horizon is subdivided into
a number of subintervals and the control function is nor-
mally approximated by a piecewise-constant function with
possible discontinuities at a set of pre-assigned switching
points. Then, the heights of this piecewise-constant function
are regarded as decision variables to be selected optimally.
Each of them can be solved as a nonlinear programming
problem by using a gradient-based strategy.

We use the piecewise-linear basis functions to approximate
the control input %(t) instead of the conventional piecewise-
constant control approximation because the induction of the
external magnetic field %(t) in reality is required to be con-
tinuous. More specifically, we first subdivide the time hori-
zon [0,T ] into p subintervals [tk−1, tk ), k = 1, 2, . . . , p,
where tk , k = 0, 1, . . . , p, are monotonically increasing
sequences and t0 = 0 and tp = T , and the interior knot points
tk , k = 1, 2, . . . , p− 1, are predefined parameters, i.e.,

τmin ≤ tk − tk−1 ≤ τmax, k = 1, 2, . . . , p. (25)

Here, τmin > 0 and τmax > 0 are the minimum and maximum
subinterval durations, respectively.

Then, we approximate the derivative of the control function
%(t) on each time subinterval as follows:

%̇(t) ≈ σk , t ∈ [tk−1, tk ), k = 1, 2, . . . , p, (26)

Here, σk denotes the approximation of the derivative of
%(t) on each subinterval [tk−1, tk ). Mathematically, we can
express (26) as follows:

%̇(t) ≈ %̇p(t) =
p∑

k=1

σkχ[tk−1,tk )(t), t ∈ [0,T ], (27)

where χ[tk−1,tk ) : R→ R is the indicator function defined by

χ[tk−1,tk )(t) =

{
1, if t ∈ [tk−1, tk ),
0, otherwise.

(28)

Based on (27), we can know the control function %(t) is
piecewise-linear with jumps in the derivative at each time
points t1, t2, . . . , tp−1. Now we introduce another new state
variables xn+1(t) governed by the following state dynamics: ẋn+1(t) =

p∑
k=1

σkχ[tk−1,tk )(t), t ∈ [0,T ], (29a)

xn+1(0) = x0n+1. (29b)
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Then, the dynamic system (16) becomes

ẋ(t) = f (t, x(t), xn+1(t))

= Â
−1 [

Ĉx(t)− xn+1(t)Êx(t)− p(t)d̂
]
, (30)

We denote σ = [σ1, σ2, . . . , σp]> ∈ Rp and let xp(·|σ ),
xpn+1(·|σ ) denote the solutions of system (30) and (29) cor-
responding to σ , respectively. To determine xp(·|σ ) and
xpn+1(·|σ ), we can solve (29)-(30) sequentially over the subin-
tervals [tk−1, tk ), k = 1, 2, . . . , p.
Recall that the control function %(t) in system (1) must be

satisfied the physical constraint (2). Thus, the following con-
tinuous state inequality constraint on the new state variables
xN+1 is now satisfied

0 ≤ xpN+1(t|σ ) ≤ %max , t ∈ [0,T ]. (31)

Clearly, since xN+1(t) is piecewise-linear with break points
at t = t1, t2, . . . , tp−1, the continuous state inequality
constraint (31) is also equivalent to the following constraint:

0 ≤ xpN+1(tk |σ ) ≤ %max , k = 0, 1, . . . , p. (32)

Such constraints are special cases of the well-known canoni-
cal form in the optimal control literatures (see [37]).

Now, under the approximation (27), the cost func-
tional (24) becomes

J p(x(t), σ ) =
λ1

2
[xp1:r1 (T |σ )]

>A[xp1:r1 (T |σ )]

+
λ2

2

p∑
k=1

∫ tk

tk−1
xpn+1(t|σ )

2dt. (33)

Now we state the new approximate optimal control prob-
lem as follows.
Problem P2: Given the lumped parameter system

(29)-(30), the objective is now to find a control parameter
vector σ such that the cost functional (33) is minimized
subject to constraint (32).

B. GRADIENT COMPUTATION
Actually, Problem P2 is now become an optimal parame-
ter selection problem in canonical form [36], which can be
solved as a typical nonlinear optimization problem by using
the SQP method based on the gradients of the cost function.
We now show that these gradients can be obtained by the
following lemma.
Lemma 1: The gradients of cost function (33) with respect

to σk , k = 1, 2, . . . , p are given as

∂ J̃p(x(t), σ )
∂σk

=
λ1

2
[xp1:r1 (T |σ )]

>Aϕk1:r1 (T |σ )

+ λ2

p∑
k=1

∫ tk

tk−1
xpn+1(t|σ )

∂xpn+1(t|σ )

∂σk
dt. (34)

where ϕk1:r1 (·|σ ) denotes the first r1 solutions of (35) corre-

sponding to σ , and the state variations ϕk (t|σ ) =
∂xp(t|σ )
∂σk

are satisfied:

ϕ̇k (t) =
∂f (t, x(t|σ ), xn+1(t|σ ))

∂x
ϕk (t)

+
∂f (t, x(t|σ ), xn+1(t|σ ))

∂xn+1

∂xpn+1(t|σ )

∂σk
,

t ∈ [tl−1, tl), l = k, k + 1, . . . , p, (35a)

ϕk (t) = 0, t ≤ tk . (35b)
Proof: For each l = 1, 2, . . . , p, we can obtain (36)

from (30)

xp(t|σ ) = xp(tl−1|σ )+
∫ t

tl−1
f (η, x(η|σ ), xn+1(η|σ ))dη,

t ∈ [tl−1, tl). (36)

If k ≤ l, then differentiating (36) with respect to σk gets

∂xp(t|σ )
∂σk

=
∂xp(tl−1|σ )

∂σk

+

∫ t

tl−1

{
∂f (η, x(η|σ ), xn+1(η|σ ))

∂x
∂x(η|σ )
∂σk

}
dη,

+

∫ t

tl−1

{
∂f (η, x(η|σ ), xn+1(η|σ ))

∂xn+1

∂xpn+1(η|σ )

∂σk

}
dη,

t ∈ [tl−1, tl). (37)

If k > l, we have

∂xp(t|σ )
∂σk

= 0, t ∈ [tl−1, tl). (38)

By differentiating (37) with respect to t , we obtain

d
dt

{
∂xp(t|σ )
∂σk

}
=

{
∂f (η, x(η|σ ), xn+1(η|σ ))

∂x
∂x(η|σ )
∂σk

}
,

+

{
∂f (η, x(η|σ ), xn+1(η|σ ))

∂xn+1

∂xpn+1(η|σ )

∂σk

}
,

t ∈ [tl−1, tl). (39)

For the initial condition (22), we have

∂xp(0|σ )
∂σk

=
∂x0
∂σk
= 0. (40)

It follows from (39)-(40) that, for each k = 1, 2, . . . , p,
the state variations ϕk (t|σ ) =

∂xp(t|σ )
∂σk

satisfy:

ϕ̇k (t) =
∂f (t, x(t|σ ), xn+1(t|σ ))

∂x
ϕk (t)

+
∂f (t, x(t|σ ), xn+1(t|σ ))

∂xn+1

∂xpn+1(t|σ )

∂σk
,

t ∈ [tl−1, tl), l = k, k + 1, . . . , p,

with the initial condition

ϕk (t) = 0, t ≤ tk .

Therefore, the gradients ∂ J̃
p(x(t),σ )
∂σk

can be obtained, as given
in Lemma 1. �
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Lemma 2: For each l = 1, . . . , p, the state variation
∂xpn+1(t|σ )

∂σk
on the interval [tl−1, tl] is given by

∂ x̃pN+1(t|σ )

∂σk
=


t − tl−1, if k = l,
tl − tl−1, if k < l,
0, if k > l.

(41)

Proof: For l = 1, it obtains from (29) that

x̃pN+1(t|σ ) = x0N+1 + σ1(t − t0) = x0N+1 + σ1 t, t ∈ [0, t1].

Clearly, for all t ∈ [0, t1], it satisfies

∂xpN+1(t|σ )

∂σk
=

{
t, if k = 1,
0, if k > 1,

which shows that (41) is satisfied for l = 1. Now, we suppose
that (41) also holds for l = q. Then for all s ∈ [tq−1, tq],
it follows

∂ x̃pN+1(t|σ )

∂σk
=


t − tq−1, if k = q,
tk − tk−1, if k < q,
0, if k > q.

For l = q+ 1, we have from (29),

x̃pN+1(t|σ ) = x̃pN+1(tq|σ )+ σq+1(t − tq), t ∈ [tq, tq+1].

Hence, for all t ∈ [tq, tq+1],

∂ x̃pN+1(t|σ )

∂σk
=


t − tq, if k = q+ 1,
∂ x̃pN+1(tq|σ )

∂σk
, if k < q+ 1,

0, if k > q+ 1.

By the inductive hypothesis, we obtain

∂ x̃pN+1(t|σ )

∂σk
=


t − tq, if k = q+ 1,
tk − tk−1, if k < q+ 1,
0, if k > q+ 1.

The above results show that (41) also hold for l = q + 1.
Thus, we get Lemma 2. �
By incorporating Lemma 1 and Lemma 2 into a nonlinear

programming algorithm such as SQP, then we can solve
Problem P2 numerically.

V. NUMERICAL ILLUSTRATES
In this section, we illustrate the numerical simulation exam-
ple of the MHD flow system (1). The parameters are set
Re = 100, Rem = 100, f (t) = 0.001, and the ini-
tial conditions are chosen u0(l) = (2l2 + 5) sin(2π l),
B0(l) = l2 sin(π l). All the snapshots that can generate the
POD modes are obtained by solving an approximation of
the original PDE system (1), e.g., using FEM method. Our
codes also implement the gradient-based optimization pro-
cedure proposed in Section IV combined with the intrinsic
subroutines algorithm SQP (e.g., performing the optimization
steps).

A. POD MODES COMPUTATION
In order to compute the POD basis functions mathemati-
cally, we first need to get a collection of snapshots from the
original PDEs (1). The approximation numerical solutions
can be done by discretizing the original PDEs using any
finite element basis functions such as piecewise-linear func-
tions or cubic functions based on FEM method. We denote
the approximation solutions of the system (1) by ufem(t, l)
and Bfem(t, l). Then, we choose a set of s snapshots from the
solutions {ufem(t, l),Bfem(t, l)}, i.e.,

Su = {ufem(t1, l), ufem(t2, l), . . . , ufem(ts, l)} ∈ Rn,

SB = {Bfem(t1, l),Bfem(t2, l), . . . ,Bfem(ts, l)} ∈ Rn. (42)

where n denotes the selected number of subintervals in the
spatial domain by FEM basis element functions.

Next, we define the following correlation matrices ele-
ments of Su and SB as

K u
ij =

1
s
< ufem(ti, l), ufem(tj, l) >, i, j = 1, 2, . . . , s,

(43a)

KB
ij =

1
s
< Bfem(ti, l),Bfem(tj, l) >, i, j = 1, 2, . . . , s.

(43b)

Based on the correlation matrices (43) and (7), the optimal
POD modes φi(l) and ψi(l) can be computed througth the
snapshots in (42). Let λu1 > λu2 > · · · > λul > · · · >

λud1 > 0 and λB1 > λB2 > · · · > λBl > · · · > λBd2 > 0
denote the positive decreasing eigenvalues corresponding
to the correlation matrices Ku and KB, respectively, where
d1 = rank(Ku) and d2 = rank(KB). The error energy ratios
associated with the approximation with the first l PODmodes
can be approximation as [34]

εul =

s∑
i=1

〈 l∑
j=1

〈
ui, φj

〉
φj − φi,

l∑
j=1

〈
ui, φj

〉
φj − φi

〉
=

d1∑
k=l+1

λuk , (44a)

εBl =

s∑
i=1

〈 l∑
j=1

〈
Bi, ψj

〉
ψj − ψi,

l∑
j=1

〈
Bi, ψj

〉
ψj − ψi

〉
=

d2∑
k=l+1

λBk (44b)

In this case, we can compute the energy of the original PDE
system captured by the PODmethod from the simulated data,
as shown in Fig. 2. We note that just three (r1 = 3) POD
modes are enough to capture more than 99% of the original
system energy u(l, t) and just four (r2 = 4) POD modes
for the original system energy B(l, t). In Fig. 3, we show
the first three POD basis functions φi, i = 1, 2, 3 for u(l, t)
and the first four POD basis functions ψi, i = 1, 2, 3, 4 for
B(l, t). In Fig. 4, we also give a comparison of the corre-
sponding system states u(l, t) generated by FEMmethod and
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FIGURE 2. Energy of the first ten POD eigenvalues corresponding to snapshots of u(l, t) and B(l, t). (a) Energy of the first ten POD eigenvalues
corresponding to snapshots of u(l, t). (b) Energy of the first ten POD eigenvalues corresponding to snapshots of B(l, t).

FIGURE 3. POD basis functions. (a) POD basis functions φi (l ). (b) POD basis functions ψi (l ).

FIGURE 4. Flow velocity state u(l, t) corresponding to the experimental input data. (a) Original state u(l, t). (b) POD model u(l, t).

POD model order reduction method. The numerical results
validate again that the model reduction method using POD
proposed in Section III is effective. Based on theMORmodel,

in next section, we will realize the optimal control
problem by using the gradient-based method proposed
in Section IV.
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FIGURE 5. Optimal control input %(t) (p = 5).

FIGURE 6. Optimal flow velocity u(l; t)(p = 5).

B. COMPUTATION OF THE OPTIMAL CONTROLLER
Based on the piecewise-linear control parameterization tech-
nique proposed in Section IV, we first subdivide the time
interval [0,T ] = [0, 1] into p subintervals. Then the control
input function %(t) is parameterized as in form (27), in which
tk , k = 1, 2, . . . , p, are equidistant switching time points
in the interval [0, 2], with t0 = 0 and tp = 1. Note that
the approximate control in (27) switches value at the instants
t = tk , k = 1, 2, . . . , p − 1. The upper bound in (2) is given
by βmax = 5. Our MATLAB code implements the gradient-
based optimization procedure by combining fmincon with
the sensitivity method for gradient computation. We also use
MATLAB’s non-stiff differential equation solver ODE45 to
integrate the state system and the sensitivity systems.

We first choose p = 5 for the subintervals. After the
gradient-based optimization procedure terminated, we obtain
the optimal piecewise-linear control input %(t), as shown in
Fig. 5. The output flow velocity state u(l, t) corresponding to
the optimal control %(t) is shown in Fig. 6. The results show
that our numerical optimization procedure can drive the final
flow velocity u(l,T ) to 0 as the optimized control variables
changing with time. This means that the flow velocity u(x, t)
can converge to stationary state under our designed optimal
control input %(t) as the time evolution. The results clearly
demonstrate that the control parameterization method com-
bined with the POD model reduction method is effective at
determining the optimal controls for the MHD flow velocity.

FIGURE 7. Optimal control input %(t) (p = 10).

FIGURE 8. Optimal flow velocity u(l, t) (p = 10).

FIGURE 9. Optimal control input %(t) (p = 20).

We next increase the subinterval p = 5 to p = 10 for the
time subintervals. The results of optimal control input %(t)
and optimal output flow velocity state u(l, t) are given
in Figs. 7-8, respectively. Compared with the results with
p = 5, the final output flow velocity is closer to the desired
flow velocity target, as expected. We also increase p = 10 to
p = 20 for the numerical simulations, as shown in Figs. 9-10.
The results further verify the effectiveness of our proposed
method. However, in our simulation procedure, we note that
increasing p further does not result in any significant change
in the objective functional value, despite an increase in the
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FIGURE 10. Optimal flow velocity u(l, t) (p = 20).

overall computation time. Thus, choosing p = 20 is enough
to obtain the optimal solutions.

VI. CONCLUSION
In this paper, we realize the optimal control of flow velocity
arising in a novel 1-D MHD flow system with bilinear con-
trol actuation. A finite-time PDE-constrained optimal con-
trol problem is formulated and then solved successfully by
using POD reduction technique and control parameterization
method. Simulation results show that the gradient-based opti-
mization procedure is efficient and can reduce the compu-
tational burden. The methodology proposed in this paper is
also potential for the real-time implementation in a close-loop
receding horizon scheme for the MHD flow systems.

REFERENCES
[1] D. Huang, J.-X. Xu, X. Li, C. Xu, andM. Yu, ‘‘D-type anticipatory iterative

learning control for a class of inhomogeneous heat equations,’’Automatica,
vol. 49, no. 8, pp. 2397–2408, 2013.

[2] Z. Zhen, S.-X. Tang, and Z. Zhou, ‘‘Stabilization of a heat-ODE system
cascaded at a boundary point and an intermediate point,’’ Asian J. Control,
vol. 19, no. 5, pp. 1834–1843, 2017.

[3] S. Zhang, ‘‘Sliding mode control for an inhomogeneous heat equation with
global constraint,’’ Asian J. Control, vol. 19, no. 6, pp. 2116–2126, 2017.

[4] C. Xu, E. Schuster, R. Vazquez, and M. Krstic, ‘‘Stabilization of linearized
2D magnetohydrodynamic channel flow by backstepping boundary con-
trol,’’ Syst. Control Lett., vol. 57, no. 10, pp. 805–812, 2008.

[5] E. Schuster, L. Luo, and M. Krstić, ‘‘MHD channel flow control in 2D:
Mixing enhancement by boundary feedback,’’ Automatica, vol. 44, no. 10,
pp. 2498–2507, 2008.

[6] W. He, S. Zhang, and S. S. Ge, ‘‘Robust adaptive control of a
thruster assisted position mooring system,’’ Automatica, vol. 50, no. 7,
pp. 1843–1851, 2014.

[7] W. He, Y. Dong, and C. Sun, ‘‘Adaptive neural impedance control of
a robotic manipulator with input saturation,’’ IEEE Trans. Syst., Man,
Cybern., Syst., vol. 46, no. 3, pp. 334–344, Mar. 2016.

[8] W. He and S. Zhang, ‘‘Control design for nonlinear flexible wings of
a robotic aircraft,’’ IEEE Trans. Control Syst. Technol., vol. 25, no. 1,
pp. 351–357, Jan. 2017.

[9] Z. Liu, J. Liu, and W. He, ‘‘Partial differential equation boundary control
of a flexible manipulator with input saturation,’’ Int. J. Syst. Sci., vol. 48,
no. 1, pp. 53–62, 2017.

[10] Z. Liu and J. Liu, ‘‘Boundary control of a flexible robotic manipulator with
output constraints,’’ Asian J. Control, vol. 19, no. 1, pp. 332–345, 2017.

[11] H. Yang and Z. Liu, ‘‘Active control of an elastic beam based on state and
input constraints,’’ IEEE Access, vol. 46, pp. 10635–10643, 2018.

[12] Y. Ou et al., ‘‘Optimal tracking control of current profile in tokamaks,’’
IEEE Trans. Control Syst. Technol., vol. 19, no. 2, pp. 432–441, Mar. 2011.

[13] C. Xu et al., ‘‘Ramp-up-phase current-profile control of tokamak plasmas
via nonlinear programming,’’ IEEE Trans. Plasma Sci., vol. 38, no. 2,
pp. 163–173, Feb. 2010.

[14] C. Xu, Y. Ou, and E. Schuster, ‘‘Sequential linear quadratic control of
bilinear parabolic PDEs based on POD model reduction,’’ Automatica,
vol. 47, no. 2, pp. 418–426, 2011.

[15] P. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge,
U.K.: Cambridge Univ. Press, 2001.

[16] U. Müller and L. Bühler, Magnetofluiddynamics in Channels and
Containers. Berlin, Germany: Springer, 2013.

[17] J. P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With
Applications to Laboratory and Astrophysical Plasmas. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[18] S. Qian and H. H. Bau, ‘‘Magneto-hydrodynamics based microfluidics,’’
Mech. Res. Commun., vol. 36, no. 1, pp. 10–21, 2009.

[19] I. Munteanu, ‘‘Boundary feedback stabilization of periodic fluid flows in
a magnetohydrodynamic channel,’’ IEEE Trans. Autom. Control, vol. 58,
no. 8, pp. 2119–2125, Aug. 2013.

[20] Z. Ren, S. Guo, Z. Li, and Z. Wu, ‘‘Adjoint-based parameter and state
estimation in 1-D magnetohydrodynamic (MHD) flow system,’’ J. Ind.
Manage. Optim., vol. 15, pp. 1213–1218, Jan. 2018.

[21] L. D. Landau, L. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Con-
tinuous Media. Amsterdam, The Netherlands: Elsevier, 2013.

[22] R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydro-
dynamic Channel Flows: Boundary Stabilization and State Estimation.
Boston, MA, USA: Springer, 2008.

[23] R. Vazquez, E. Schuster, andM. Krstic, ‘‘A closed-form full-state feedback
controller for stabilization of 3D magnetohydrodynamic channel flow,’’
J. Dyn. Syst., Meas., Control, vol. 131, no. 4, p. 041001, 2009.

[24] J. Baker and P. D. Christofides, ‘‘Drag reduction in transitional linearized
channel flow using distributed control,’’ Int. J. Control, vol. 75, no. 15,
pp. 1213–1218, 2002.

[25] K. Debbagh, P. Cathalifaud, and C. Airiau, ‘‘Optimal and robust control of
small disturbances in a channel flow with a normal magnetic field,’’ Phys.
Fluids, vol. 19, no. 1, p. 014103, 2007.

[26] J.-L. Wang, H.-N. Wu, T. Huang, S.-Y. Ren, and J. Wu, ‘‘Pinning control
for synchronization of coupled reaction-diffusion neural networks with
directed topologies,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 8,
pp. 1109–1120, Aug. 2016.

[27] C. Xu, Y. Dong, Z. Ren, H. Jiang, and X. Yu, ‘‘Sensor deployment for
pipeline leakage detection via optimal boundary control strategies,’’ J. Ind.
Manage. Optim., vol. 11, no. 1, pp. 199–216, 2015.

[28] W. He and S. S. Ge, ‘‘Vibration control of a flexible string with both
boundary input and output constraints,’’ IEEE Trans. Control Syst. Tech-
nol., vol. 23, no. 4, pp. 1245–1254, Jul. 2015.

[29] J. L. Wang, H. N. Wu, T. W. Huang, and R. S. Yan, ‘‘Pinning control
strategies for synchronization of linearly coupled neural networks with
reaction–diffusion terms,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 749–761, Jun. 2016.

[30] Z. J. Zhao, Y. Liu, and F. Luo, ‘‘Boundary control for a vibrating string
system with bounded input’’ Asian J. Control, vol. 20, no. 1, pp. 323–331,
2018.

[31] C. Xu and E. Schuster, ‘‘Low-dimensional modeling of linear heat transfer
systems using incremental the proper orthogonal decomposition method,’’
Asia–Pacific J. Chem. Eng., vol. 8, no. 4, pp. 473–482, 2013.

[32] K. Li, H. Su, J. Chu, and C. Xu, ‘‘A fast-POD model for simulation and
control of indoor thermal environment of buildings,’’ Building Environ.,
vol. 60, pp. 150–157, Feb. 2013.

[33] P. Benner, E. Sachs, and S. Volkwein, Model Order Reduction for
PDEConstrainedOptimization. Basel, Switzerland: Springer International
Publishing, 2014.

[34] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order
Reduction: Theory, Research Aspects and Applications, vol. 13. Berlin,
Germany: Springer, 2008.

[35] K. Kunisch and S. Volkwein, ‘‘Galerkin Proper orthogonal decomposition
methods for a general equation in fluid dynamics,’’ SIAM J. Numer. Anal.,
vol. 40, no. 2, pp. 492–515, 2002.

[36] K. L. Teo, C. J. Goh, and K. H. Wong, A Unified Computational Approach
for Optimal Control Problems. New York, NY, USA: Longman Scientific
Technical, 1991.

[37] Q. Lin, R. Loxton, and K. L. Teo, ‘‘The control parameterization method
for nonlinear optimal control: A survey,’’ J. Ind. Manage. Optim., vol. 10,
no. 1, pp. 275–309, 2013.

[38] R. C. Loxton, K. L. Teo, V. Rehbock, and K. F. C. Yiu, ‘‘Optimal control
problems with a continuous inequality constraint on the state and the
control,’’ Automatica, vol. 45, no. 10, pp. 2250–2257, 2009.

VOLUME 6, 2018 24473



Z. Ren et al.: Dynamic Optimal Control of a 1-D MHD System With Bilinear Actuation

[39] B. Li, C. Xu, K. L. Teo, and J. Chu, ‘‘Time optimal Zermelo’s navigation
problem with moving and fixed obstacles,’’ Appl. Math. Comput., vol. 224,
pp. 866–875, Nov. 2013.

[40] P. Liu, G. Li, and X. Liu, ‘‘Fast engineering optimization: A novel highly
effective control parameterization approach for industrial dynamic pro-
cesses,’’ ISA Trans., vol. 58, pp. 248–254, Sep. 2015.

[41] C. Yu, Q. Lin, R. Loxton, K. L. Teo, and G. Wang, ‘‘A hybrid time-scaling
transformation for time-delay optimal control problems,’’ J. Optim. Theory
Appl., vol. 169, no. 3, pp. 876–901, 2016.

[42] P. Liu et al., ‘‘Control variable parameterisation with penalty approach for
hypersonic vehicle reentry optimisation,’’ Int. J. Control, to be published,
doi: 10.1080/00207179.2018.1426882.

[43] G. Li, P. Liu, and X. Liu, ‘‘A control parameterization approach with vari-
able time nodes for optimal control problems,’’ Asian J. Control, vol. 18,
no. 3, pp. 976–984, 2016.

ZHIGANG REN received the M.S. degree in auto-
matic control from the South China University
of Technology, Guangzhou, China, in 2012, and
the Ph.D. degree in control science and engineer-
ing from Zhejiang University, Hangzhou, China,
in 2016. He is currently a Lecturer with the School
of Automation, GuangdongUniversity of Technol-
ogy. His research interests include optimal control
theory and applications in distributed parameter
systems, robotics, and machine learning control.

ZHIJIA ZHAO received the B.Eng. degree in auto-
matic control from the North China University of
Water Resources and Electric Power, Zhengzhou,
China, in 2010, and the M.S. and Ph.D. degree in
automatic control from the South China University
of Technology, Guangzhou, China, in 2013 and
2017, respectively. He is currently a Lecturer with
the School of Mechanical and Electrical Engineer-
ing, Guangzhou University. His research interests
include flexible system, ocean cybernetics, and
robotics.

ZONGZE WU received the B.S. degree in material
forming and control, theM.S. degree in control sci-
ence and engineering, and the Ph.D. degree in pat-
tern reorganization and intelligence system from
Xi’an Jiaotong University, Xi’an, China, in 1999,
2002, and 2005, respectively. He is currently a Pro-
fessor with the School of Automation, Guangdong
University of Technology, Guangzhou, China. His
research interests include automation control, sig-
nal processing, big data, and Internet of Things.

He has served as the Under-Secretary-General for Internet of Things and
Information Technology Innovation Alliance, Guangdong, China. He was
a recipient of the Microsoft Fellowship Award of the MSRA in 2003, and
the 2008, 2013, and 2014 recipient of the Technological Award First Prize
of Guangdong Province. He was a recipient of Second Prize of Ministry of
Education Technological Innovation twice, in 2012 and 2013, and the First
Prize of Ministry of Education Technological Innovation in 2017.

TEHUAN CHEN received the B.S. degree from
Hangzhou Dianzi University in 2011 and the
Ph.D. degree from the Department of Control Sci-
ence and Engineering, Zhejiang University, China,
in 2016. He is currently a Lecturer with the Fac-
ulty of Mechanical Engineering and Mechanics,
Ningbo University, Ningbo, China. His research
interests include robotics, optimal control theory,
and distributed parameter systems.

24474 VOLUME 6, 2018

http://dx.doi.org/10.1080/00207179.2018.1426882

	INTRODUCTION
	OPTIMAL PROBLEM FORMULATION
	SEMI-DISCRETE APPROXIMATION PROBLEM
	POD METHOD BASED ON SNAPSHOTS
	REDUCED-ORDER MODEL VIA GALERKIN PROJECTION

	OPTIMAL CONTROL COMPUTATION
	PIECEWISE-LINEAR CONTROL PARAMETERIZATION
	GRADIENT COMPUTATION

	NUMERICAL ILLUSTRATES
	POD MODES COMPUTATION
	COMPUTATION OF THE OPTIMAL CONTROLLER

	CONCLUSION
	REFERENCES
	Biographies
	ZHIGANG REN
	ZHIJIA ZHAO
	ZONGZE WU
	TEHUAN CHEN


