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ABSTRACT Microseismic monitoring is widely applied in dams, mines, and various fields of underground
engineering. The number of sensors in microseismic monitoring systems is usually very large, which
will result in a huge amount of data being produced if the Nyquist sampling theorem is used to acquire
microseismic signals. To reduce the data storage costs and accelerate the transmission speed, we propose
a distributed compressed sensing (CS) scheme for microseismic monitoring signals in this paper. The
distributed compressed sensing scheme begins when it detects the first break time in the microseismic signal.
The data recoding of the first break time is coded and transmitted together with the measured values of CS.
Depending on the correlations between the microseismic signals, the first break time of the signals are aligned
to that of the reference signal. Furthermore, we make use of the distributed CS to reduce the amount of data
to be transmitted and to increase the reconstruction accuracy. Simulation results show that, compared with
the sampling scheme based on the Nyquist sampling theorem, the independent CS scheme or the traditional
distributed CS scheme, our proposed scheme improves the accuracy in the first break time detection and the
reconstruction accuracy, and the scheme reduces the energy consumption at the same time.

INDEX TERMS Compressed sensing, first break time, microseismic signal, signal sampling, signal

reconstruction.

I. INTRODUCTION

The monitoring of microseismic signals, which enables peo-
ple to master the structure of buildings and the stability of
strata in a timely, accurate and comprehensive manner, helps
to reduce the chance of disasters caused by the structural
damage or wrecks. It is important for ensuring the stability
and security of structures and avoiding major catastrophic
disasters. Despite the necessity of microseismic monitoring,
the arrangement of a large number of sensors will produce
vast data when the Nyquist sampling theorem is used to
acquire microseismic signals, thus exerting tremendous pres-
sure on the transmission and storage of the system is a major
bottleneck in the field of signal acquisition [1]. The com-
pressed sensing (CS) theory proposed by Donoho, Candes
and Tao in 2006 can solve this problem properly. According
to the CS theory, as long as signals are sparse or compressible
in a certain domain, they can be observed at a rate far lower
than that of the Nyquist sampling frequency; meanwhile,

the original signals can be accurately reconstructed based on
a construction algorithm [2]-[5].

In the area of microseismic monitoring, relevant research
on signal denoising and reduction of the communication
load are guided by the CS theory. Song et al. [6] proposed
a promising CS technique to mitigate the load of wireless
communication on nodes and the complexity of data pro-
cessing and caching. Gholami [7] presented a non-convex
CS scheme for the reconstruction and denoising of seismic
data. Rodriguez et al. [8] developed a source location algo-
rithm based on CS to improve the accuracy of detection of
a microseismic event. Vera et al. [9] put forth a segmen-
tation compression algorithm according to the characteris-
tics of microseismic signals and the CS theory used in the
transmission process to achieve a high compression ratio.
Furthermore, the utilization of correlation between signals
can more effectively reduce the redundant information,
compress signals and decrease the resource consumption.
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However, there is very little research on CS using the cor-
relation between microseismic signals. Based on the CS
and network coding theories, Yang et al. [10] put forward
a universal distributed data storage scheme characterized by
compressed network coding by exploiting the correlation
between sensor readings. However, the scheme is mainly con-
ducted mathematically and theoretically, and microseismic
signals is not mentioned.

Microseismic signals collected by two physically close
microseismic sensors usually have a certain correlation, and
their first break moments show a certain time shift due to their
different distances from the microseismic source. Therefore,
the use of the correlation between signals to realize CS and a
better reconstruction effect is a key issue in this field. In 2009,
the concept of distributed CS was proposed by the American
scholar Baron, who put forward three kinds of joint sparsity
models in his research [11].

The CS scheme proposed in this paper is based on the
distributed CS scheme and the joint sparse models, but it is
different in the following aspects: (1) The proposed scheme
first obtains the time offset for the first break moment of
microseismic signals via an algorithm for microseismic sig-
nal first break time extraction and signal alignment. (2) Then
the scheme aligns the other microseismic signals to the ref-
erence microseismic signal, and subsequently conducts the
distributed CS and encodes them together with the first break
moment. (3) At the decoding end, this scheme first extracts
the first break time, then conducts the multi-sensor data joint
reconstruction. (4) Finally it adds the first break time to the
recovered microseismic signal, thus recovering the micro-
seismic signal containing accurate time information. It can
be concluded that the proposed scheme based on the first
break time extraction and signal alignment can achieve better
effects of distributed CS and joint reconstruction, as it not
only ensures the accuracy of first break time extraction but
also makes effective use of the correlation between micro-
seismic signals collected by physically close sensors.

This paper is organized as follows. In Section II, the prob-
lem description is presented. In Section III, the mathemat-
ical foundations of CS and distributed CS are introduced.
In Section IV, the distributed CS scheme for microseismic
signal monitoring based on first break extraction and signal
alignment is proposed. In Sections V, the relevant theoretical
basis of the reconstruction error and outcome assessment
are given. Furthermore, simulation results and performance
evaluation are provided to validate the proposed algorithm.
In Section VI, the conclusions are drawn.

Il. PROBLEM DESCRIPTION

The area to be monitored is considered as a three-dimensional
area. The monitoring sensors are arranged in the area
(illustrated in Fig.1) uniformly, randomly or in light of an
optimization algorithm. The monitoring sensors comprise
four types of nodes, namely, a terminal node, a cluster-head
node, a transmission node and a sink node. The terminal node
is responsible for sensing the environment, collecting data
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FIGURE 1. Diagram of distributed microseismic monitoring.

and uploading the collected data to the cluster-head node.
The cluster-head node receives data collected by nodes in
the cluster and then spreads the data to the transmission node
after fusing them. The transmission node is only used for the
transparent transmission of data. After a hop or hops, the data
reach the sink node which finally uploads the data to the
server or the host computer for processing or operation. In a
microseismic monitoring system, the traditional method is
that the signal terminal nodes of the same cluster are acquired
at the Nyquist sampling rate before they are uploaded to the
cluster-head nodes; after that, the nodes are uploaded to the
sink node through one hop or several hops of the transmission
nodes; and finally, the nodes are uniformly decoded, pro-
cessed and analyzed by the sink node. A point at the edge of
the monitoring area is determined as the origin point, and the
coordinates of certain sensors i and j are set as (x;, y;, z;) and
(%}, ¥j» zj), respectively; then, the distance between sensors i
and j can be expressed as

dj=\Joi— 5P+ =P+ =g (W)

Given the moment of the microseismic source as f, the posi-
tion as (xg, Yo, 20), and the transmission speed of the micro-
seismic signal as v € [Viin, Vinax 1, Where vy,i, and vy, are the
minimum and maximum speeds, respectively, the first break
moment of this microseismic sensor i is

/%me—mﬂ+m—mﬂ+w—mﬁ
i = dv
V)

+ fo
(2)

1%

'min

where x;, y; and z; are all functions of v.

lll. MATHEMATICAL FOUNDATIONS

A. MATHEMATICAL FOUNDATION OF CS

Assuming a discrete signal x with length N to be K sparse,
then a matrix & of M x N(K < M < N) is built as
the observation matrix, and matrix ¢ should also meet the
condition of restricted isometry property (RIP). Then the
inner product y of the observation matrix and the signal is
acquired, that is [12],

y=dx 3)
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Accordingly, the number of inner products of signal acquisi-
tion is M, which is far smaller than the number of samples
acquired using the Nyquist sampling theorem. Since the
number of unknown numbers is far greater than that of
equations, equation (3) is an underdetermined equation with
infinitely many solutions. The reconstruction algorithm aims
to find the sparsest set among the solutions of equation (3) to
set it as the estimation of the original signal. Its mathematical
model is used to solve an [y norm optimization problem, i.e.,

minimize ||x||o
X
sty = ®x 4)

In reality, however, most of the signals in the time domain
are not sparse. If the projection vectors on the N x P basic
matrix W are sparse, i.e.,

N
x=W¥s= Zsz'llfi ()
=1
where s is a P x 1 dimensional sparse vector. In this case, then
the observed value is

y=®x = d¥Us = Os (6)

where © is the product of observation matrix ¢ and sparse
basis W. At this point, the mathematical model of signal
reconstruction becomes

minimize ||s||o
)
s.t.y=0s (7)

In the condition with the existence of noise, the mathematical
model can be expressed as

minimize ||s]|o
N
s.t. |@s —yll2 <€ (®)

where € is an arbitrary small positive number.

B. DISTRIBUTED CS
The traditional CS algorithm only takes the structural char-
acteristics of the signal itself into consideration and ignores
the correlation between signals. Thus, the application of
large-scale sensors faces problems of large reconstruction
error and data transmission amount. Different from the tra-
ditional CS, the distributed CS proposed by Baron makes
full use of the correlation between signals measured by
different sensor nodes [13]. The whole process of distributed
CS contains three factors, namely, sparse representation,
measurement and joint reconstruction of the signal. Each
sensor node encodes the signal by independently projecting
it onto an unrelated observation base and then sends the
encoded observation data to the decoding side. Under optimal
conditions, the decoding end can accurately reconstruct each
signal [14]-[16].

In a microseismic monitoring system, because microseis-
mic information collected by each sensor is affected by
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both the global impact factor and the partial impact fac-
tor, the collected information fits in with the distributed
CS JSM-1 model, which deems that a related information
source consists of both common and unique parts.

In the JSM-1 model, the original signal can be abstracted
as an N dimensional vector, and it can be presented as [17]
and [18]

jell2, ... J} )

where the common part z. and the unique part z; both show
sparse features on a certain signal basis, that is [19]

lIscllo = K (10)
Isillo = K; (11)
Among these variables, K. <« N, and K; <« N. Using an
M x N(K < M <« N) matrix ® as the observation matrix to

obtain the linear projection of the signal, the measured value
is then

Xj = Ze + 2j

Ze = Wse,
g = Vsj,

yj = Ox;
= O(zc +z)

= dW(s.+s), je(l,2,...,J} 12)

For the joint reconstruction of two related signals x| and x»
(namely, J = 2), (K, + K1)c and (K, + K7)c measurements
are needed, respectively, where c is the oversampling factor
defined as

c=M/K (13)

There is a common part z. between two signals, while the
common part of x, that has already been reconstructed during
the construction of signal x; does not need to be reconstructed
repeatedly. Therefore, the joint reconstruction of signals x;
and x; only requires (K, + K; + Kz)c measurements. It is
thus evident that distributed CS can sharply lower the mea-
surements requirements. In addition, distributed CS shifts
the computational complexity from the encoding end to the
decoding end, making it especially appropriate for the appli-
cation scenarios with limited terminal node ability, such as
the microseismic monitoring system mentioned in this paper.

IV. PROPOSED ALGORITHM

The time and space of microseismic signals are usually cor-
related. A certain time offset exists for the moments first
break moments due to their different distances from the
microseismic source. In view of these microseismic signal
characteristics, the method presented in this paper uses the
first break pickup and signal alignment (FBP-SA) algorithm
to extract the offset time and then aligns the microseismic
signals. After the sparse transformation and observation, this
method encodes the measurement and the first break moment
together and conducts the distributed CS on multiple signals.
At the receiving end, the first break moment is first decoded
and extracted, and the microseismic signals are then jointly
reconstructed; finally, the microseismic signals are obtained
with time information by adding the first break moment. The
overall scheme is shown in Fig.2.
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FIGURE 2. Distributed CS scheme for microseismic signal monitoring based on first break pickup and signal alignment.

A. THE FBP-SA ALGORITHM
In microseismic signal monitoring, the accuracy of first break
moment extraction plays an important role in calculating and
analyzing the source location and mastering the structure of
buildings and the stability of strata. The proposed FBP-SA
algorithm is used when terminal nodes collect microseismic
signals and send them to cluster-head nodes. First, a sampling
signal of a certain terminal node is randomly selected as the
reference signal. Subsequently, the signals of other terminal
nodes acquired within the same cluster are compared with the
reference signal one by one. After the first break moments
have been extracted, they are aligned to that of the reference
signal. The algorithm flow is shown in Algorithm 1.

The reference signal and another random signal are assu-
med to be x, and y,, respectively. The sampling frequency
is f;. Then, the correlation function of the two signals is

Rey(m) =) " x(m)y(n+m)

n=1

(14)

The time offset at the maximum correlation is calculated
according to the correlation function, sampling points and
sampling rate; then, the maximum value of the correlation

function is obtained as
Rinax = max{|Ryy(m)|} (15)
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Algorithm 1 First Break Pickup and Signal Alignment
(FBP-SA)

Input: signal x,, signal y,, sampling frequency f;, sequence
length N

Output: offset time T,

1: for n=1toN do
2 for m=1to N do
3 COTTyy(N) < ZnN=1 x(n)y(n + m)
4:  end for
5: end for
6
7
8
9

:for i=1toN do
Ryy(m) < Y corry(i)

: end for

: Rypax < max{|ny(m)|}
10: Obtain the sample number from the initial time to R,y

time, record it as N

11: Tojfvet < N/fv
12: return T e

The number of sampling points from the initial time to
time R4 is obtained and recorded as N. Then, the time offset
is

N
Toﬁ”set = f_.

N

(16)
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According to the T,p., calculated in the previous step,
the first break moment of a random signal y, is aligned with
that of the reference signal x,. Meanwhile, the correlation
coefficient between x, and y, is calculated. In this paper,
the algorithm is referred to as the FBP-SA algorithm.

B. SPARSE TRANSFORMATION
CS is carried out after the first break pickup and signal
alignment. In CS, the sparser the signal is, the more accurate
the reconstructed signal. Therefore, it is necessary to select a
suitable sparse basis to realize accurate signal reconstruction.
Microseismic signals are usually sparse in the frequency
domain, so the Fourier transformation basis is chosen.

For a finite length sequence x,,n = 1,2,...,N, its
discrete Fourier transform (DFT) is defined as

N
X (k) = DFT[x(n)] = Zx(n)e_hk"j/N ., 1<k<N
n=1

(17)

During signal reconstruction, the inverse discrete Fourier
transform (IDFT) is required to transform the signal to the
time domain for the convenience of analysis and feature
extraction. IDFT is defined as

N
x(n) = IDFT[X(k)] = le ZX(k)eZ”k"j/N , l<n<N
k=1
(18)

Using the experimental setup of Fig.3, an experiment was
also performed to obtain the real microseismic signal and
evaluate the performance of the proposed algorithm, where
the two-dimensional positioning space is a 12 mx8 m flat
surface. Sensors A, B and C are ADXL362 3-axis MEMS
accelerometer sensors. In this paper, we only use the results
from the X-axis of Sensors A, B and C.

A
Y

Sensor B Sensor A Sensor C

X o OmOmOc

Microseismic
Source

12
) = >

FIGURE 3. Experiment environment scheme.

As exhibited in Fig.4(a), the real microseismic signal
obtained from Sensor A is 2048 points in total length. Fig.4(b)
presents its signal in the frequency domain after the discrete
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FIGURE 4. Microseismic signal x in the time domain and frequency
domain.

Fourier transformation. It can be seen that there are still rel-
atively few zero values of the real microseismic signal in the
frequency domain, so the signal needs to be processed. In this
paper, a threshold in the frequency domain is set, and the
amplitude of the signal smaller than the proposed threshold
is set to 0. Experiments show that the reconstruction results
are related to the ratio of the threshold value to the largest
amplitude. Table 1 is a comparison of the reconstruction error
and the number of nonzero elements after IDFT in cases of
different ratios of the threshold value to the largest amplitude.
In the table, 7 is the ratio of the threshold value to the largest
amplitude; d is the average reconstruction error of the original
signal and the reconstruction signal; and ||x|o is the zero
norm of x, which means the number of nonzero elements of
signal x.

In the following section, a 10% threshold relative to the
largest amplitude is taken as the line, and the frequency
domain amplitudes with values smaller than this value are
all set to 0. The aim is to ensure that under the condition of
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TABLE 1. Comparison of reconstruction error and number of nonzero
elements in cases of different ratios of the threshold value to the
largest amplitude.

] d l[z]lo
1% 0.001 1871
2% 0.002 1416
3% 0.004 978
4% 0.005 648
5% 0.007 426
10% 0.009 216
15% 0.010 144
20% 0.012 116
30% 0.015 82
40% 0.018 56
50% 0.021 40
60% 0.023 24
70% 0.024 18
80% 0.026 12
90% 0.028 6
100% 0.029 4

a small recovery error, the signal can become as sparse as
possible, that is, as many 0 values as possible can be obtained
for the convenience of CS.

C. DISTRIBUTED CS FOR MICROSEISMIC SIGNALS

In this section, a method of distributed CS for microseismic
signals is proposed to effectively reduce the total amount of
data transmission. Similarly, this method divides the signal
into a sparse common part and a sparse unique part. For N
correlated microseismic signals, their time domain signals
are still represented by fi,f2,...,fn,n € (1, N) and their
frequency domain signals by sy, 52, ..., 8,,n € (1, N). The
sparse common part C is set to

N
C=1/N> s, (19)
n=1

The sparse unique part U, of signal s, is set to be

N
Up=sn—1/NY sy (20)

n=1

After the distributed CS is conducted on multiple signals in
accordance with the above method, the signals are observed
through the observation matrix, which satisfies the restricted
isometry property (RIP) in the CS theory.

D. JOINT CODE AND RECONSTRUCTION

The data collected by multiple sensors need to be encoded
and fused before signal transmission, and the matrix after
data coding and fusion is called a transmission matrix. This
matrix is composed of three parts, namely, the matrix head
part, the data part and the check part. The role of the matrix
head part is to plan the number of total matrix rows and data
rows. The data part, which includes the measurements after
CS, consists of the sparse common part, the sparse unique
part and the first break moment. Among them, the first break
moment of the reference signal equals zero, while the offsets
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of other signals relative to the first break moment of the
reference signal are represented by floating point numbers.
The check part can adopt a CRC check to ensure the accuracy
and integrity of data transmission.

The decoding and joint reconstruction can be imple-
mented at the receiving end or the decoding end. This pro-
cess includes the following steps. First, the offset time is
extracted, and then the common part and the unique part are
reconstructed using the orthogonal matching pursuit (OMP)
algorithm [20]. After the superposition of these two parts,
the complete reconstructed signal of each sensor is obtained,
after which the first break offset time of the corresponding
signal is superimposed on the reconstructed signal.

V. PERFORMANCE EVALUATION AND DISCUSSION

A. EVALUATION INDEXES

1) RELATIVE RECONSTRUCTION ERROR

The overall performance of CS depends on the relative
reconstruction error (the smaller the better). The relative
reconstruction error Err(p) is defined as follows:

Err(p) = |IX — xoll*/llxoll* 21)

where p = ¢g/Q x 100% represents the percentage of the
first ¢ maximum coefficients in the total coefficient Q after
ranking the original signal xo in descending order; X stands
for the approximation of the approximate value of x( obtained
by reconstructing Q maximum coefficients.

The relative reconstruction error is also related to the signal
length and number of CS measurements, which should not be
too small. Otherwise, the performance of the CS scheme can-
not be evaluated objectively. The number of measurements M
usually satisfies [21]

M > K log,(N/K) (22)

where K is the sparseness; N is the length of the signal.

2) RESOURCE REQUIREMENTS

The decoding end is generally a server or wired nodes, so its
energy consumption is generally not taken into consideration;
therefore, this paper only takes the energy consumption of the
sending end (sensors in the monitoring area) into considera-
tion. Assuming that the average energy consumption of each
sensor for the proposed CS is Ecs [22], the average energy
consumption for transmission is E; per bit, the quantity of
data transmission is D bits, and the total number of sensors
is n, then the total energy consumption of the monitoring area
can be expressed as

E=nx(Ecs+DxE) (23)

To evaluate the performance of the proposed method for
microseismic signals CS and reconstruction, experiments are
conducted in this section. Microseismic signals are collected
from the real acceleration sensors, and the simulation param-
eters are listed in Table 2.
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TABLE 2. Simulation parameters.

Parameters Value
Sampling frequency Fs 200Hz
Ratio of threshold value to the large amplitude 0 10%
Length of signal N 2048
Measurement M 760
Average energy cost for CS Ec g 1000 nJ
Average energy cost for transmission E 1000 nJ

B. PERFORMANCE OF THE FBP-SA ALGORITHM AND

THE PROPOSED DISTRIBUTED CS

1) PERFORMANCE OF THE FBP-SA ALGORITHM

As shown in Fig.5, acquired by Sensors A, B and C in Fig.3,
respectively, Signals A, B and C are related to a certain
degree. The abscissa represents the signal length, whereas
the ordinate represents the signal amplitude. With Signal A
as the reference signal, the correlation functions between
Signals A and B and Signals A and C are illustrated in Fig.6.
The performance after using the FBP-SA algorithm is pre-
sented in Fig.7, from which it be seen that a good alignment
result can be obtained; meanwhile, the first break moment
can be exactly extracted, which is later conducive to the use
of distributed CS steps.

Signal A (reference signal)

0.5 " .
0 WWW\WW,WMW
-0.5 - - - -
500 1000 1500 2000
Signal B
0.5 r . . .
M P
-0.5 - - - -
500 1000 1500 2000
Signal C
0.5 r . . .
0 WWM&MJMMM—M
-0.5 - - - -
500 1000 1500 2000

FIGURE 5. Three microseismic signals of the same source.

2) PERFORMANCE OF THE PROPOSED DISTRIBUTED CS
The aforementioned improved distributed CS for microseis-
mic signals is applied to the three microseismic signals shown
in Fig.7, and the sparse common parts and the sparse unique
parts of each signal are presented in Fig.8. At the receiving
end, signal a, b and c can be reconstructed based on the
sparse common parts and the sparse unique parts of signal
a, b and c. The comparison of the extraction error, measure-
ment and energy consumption of proposed distributed CS and
distributed CS is shown in Fig.9, Fig.10 and Fig.11. The three
figures will be explained and analyzed in detail below.
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FIGURE 6. The correlation function between the reference signal and
other signals.

Signal A (reference signal)

0.5 " . . :
0 WNWW’.W
-0.5 L . . .
500 1000 1500 2000
Signal B after using the FBP-SA algorithm
0.5 T . . :
0 #WMM‘AM’WM
_05 L L L L
500 1000 1500 2000
Signal C after using the FBP—SA algorithm
0.5 " . . :
0 MWWMWMM
_05 !

500 1000 1500 2000

FIGURE 7. The microseismic signals after using the FBP-SA algorithm.

C. THE RELATIONSHIP BETWEEN THE EXTRACTION
ERROR OF THE FIRST BREAK TIME AND

SIGNAL VARIANCE

The signal reconstruction after CS will cause errors, low-
ering the accuracy of first break moment extraction. As a
result, the proposed scheme extracts the first break moment
before CS and transmits the measurements of CS together
with the first break moment, which can reduce the error
of the first break moment extraction. Furthermore, because
there is a proportional relationship between the error of first
break moment extraction and the complexity of the signal,
the complexity can be reflected by the standard deviation
of the signal. Hence, we further simulate the relationship
between the standard deviation of the signal and the relative
error of the first break moment extraction to demonstrate the
performance of various schemes. Fig.9 shows the relationship
between the standard deviation of signal and the error of the
first break moment extraction during sampling according to
application of the Nyquist sampling theorem, independent CS
(called ICS), distributed CS (called DCS) and the proposed
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FIGURE 8. Sparse common parts and sparse unique parts.

]

—+H— Proposed scheme
51| —=*— Nyquist sampling -
—*%—ICS
—A— DCS

Relative error of moment extraction (%)

O 1 1 1
0 0.02 0.04 0.06 0.08 0.1
Standard deviation of the signal

FIGURE 9. Relationship between the relative error of moment extraction
and standard deviation of the signal.

scheme to signals. Fig.9 illustrates that with the increase of
the standard deviation of the signal, the errors of the first
break moment extractions of the three schemes increase; the
proposed scheme and the Nyquist sampling scheme have
smaller errors. The performance of the proposed scheme
increases by 69% and 54% on average compared with those
of Schemes 2 and 3, respectively.

D. MEASUREMENT COMPARISON

The number of measurements can reflect the data compres-
sion performance of a CS scheme, so the performances of
ICS, DCS and the proposed scheme are compared with the
control measurements obtained according to the Nyquist
sampling theorem. As shown in Fig.10, the number of mea-
surements increases with the growing number of sensors;
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FIGURE 10. Relationship between the number of measurements and the
number of sensors.

%1010
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DCS and the proposed CS scheme have minimum measure-
ments. Their performances increase by 59% and 45% on
average compared with those of the Nyquist sampling scheme
and ICS, respectively.

E. ENERGY CONSUMPTION

According to (23), the energy consumption of the Nyquist
sampling scheme, ICS, DCS and the proposed scheme are
simulated. Fig.11 shows the energy consumption increases
with the growing number of sensors; DCS and the proposed
CS scheme have the minimum energy consumption. Their
performances increase by 61% and 48% on average compared
with those of the Nyquist sampling scheme and ICS.

F. RECONSTRUCTION ERROR

Fig.12 shows the relationship among the reconstruction error,
the length of the signal and the number of measurements of
the three microseismic signals shown in Fig.7 after they are
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processed with the proposed distributed CS scheme. Fig.12
shows the reconstruction error of the proposed scheme when
the length of the signal and the number of measurements
range from 0-10000 and 0-4000, respectively. It can be seen
that the reconstruction error is always maintained at lower
levels; when the length of the signal is constant, the recon-
struction error decreases as the number of measurements
increases; when the number of measurements of the signal
is constant, the reconstruction error remains unchanged; the
overall trend is in conformity with (22).

VI. CONCLUSION

In this paper, we have proposed a distributed CS scheme
for microseismic monitoring based on first break pickup
and signal alignment, which is different from the traditional
distributed CS in the following aspects. Firstly, the proposed
scheme obtains the first break time offset of reference signal
and other signals via an algorithm. Then it aligns the other
signals to the reference signal. Subsequently it conducts the
distributed CS and encodes them together with the first break
moment. At the decoding end, this scheme first extracts the
first break moment. Then it conducts multi-sensor data joint
reconstruction. Finally it adds the first break time to the
recovered microseismic signal. Thus the microseismic sig-
nals containing accurate time information are obtained. The
scheme can effectively reduce transmitted data and avoid the
problem of inaccurate first break time caused by CS recon-
struction. Experimental results have been conducted using
real microseismic signals. The simulation shows that the
proposed scheme is superior to previous schemes in terms of
accuracy, energy consumption and reconstruction accuracy.
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