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ABSTRACT A motion parameter capturing method is proposed to jointly estimate the initial positions
and velocities of multiple mobile targets in robotic sensor networks. By using the time of arrival (TOA)
measurements between the sensor nodes, the proposed method does not require any motion sensors. Non-
cooperative unconstrained linear least square (ULLS), constrained linear least square (CLLS), semidefinite
programming (SDP), and mixed second-order cone semidefinite programming (SOCSDP) algorithms are
designed by only exploiting the TOAmeasurements between anchor nodes andmobile targets. Then, the SDP
and SOCSDP algorithms are extended to the cooperative approach in which the measurements between
the mobile targets are also employed into the optimization model, as well as the measurements in the
noncooperative approach. The simulations and real experiments show that the cooperative SDP and SOCSDP
algorithms provide better performance than the noncooperative ULLS, CLLS, SDP, and SOCSDP. Compared
with the linear ULLS and CLLS, the computation complexity of the convex SDP and SOCSDP is higher for
a large number of variables and equality constraints. The positioning error of the SOCSDP is approximately
identical to the SDP, but the SOCSDP runs faster than the SDP.

INDEX TERMS Robotic sensor network, semidefinite programming, mobile target, parameter capturing.

I. INTRODUCTION
Recent advances in computing, communication, and related
technologies have resulted in significant interest in sensor
networks. Sensor network is a collection of sensor nodes
that have a limited amount of computational and battery
capacity, the ability to communicate with each other, and
the ability to sense the environment. Mobile robots equipped
with sensor nodes can be used to assist with completing
some complex tasks of sensor networks and improving the
network performance. Robotic sensor network shows great
advantages for its flexible mobility ability [1], [2]. In the
robotic sensor network, the position obtaining of sensor nodes
is also a critical problem for its applications, such as, data
collection, coverage control [3], target tracking, and others.
Conventional global positioning system (GPS) is not suitable
for the position obtaining of sensor nodes due to its huge
volume, energy consumption and hardware cost. To reduce
the positioning cost, a few anchor nodes with know their
positions are used to derive the positions of the remaining

sensor nodes. By using the ranging measurement information
extracted from the signaling, the unknown positions of sensor
nodes are estimated.

Among all kinds of rangingmethods, time of arrival (TOA)
approach [4] has gained an increasing attention for high-
definition localization accuracywhen low complexity devices
are available. Based on whether there are mobile sensor
nodes or not, sensor networks are divided into station-
ary or robotic sensor networks. The traditional triangulation
positioning method may be feasible for the stationary sensor
networks, but it is not applicable for the robotic sensor net-
works. So a motion parameter capturing method is proposed
for robotic sensor networks in this paper. The motion param-
eters including the initial positions and velocities of multi-
ple mobile targets are jointly estimated when assuming the
velocities of the mobile targets to be invariable. The proposed
method does not require any motion sensors. By exploit-
ing the TOA measurements between anchor nodes and
mobile targets, the unconstrained linear least squares (ULLS),
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constrained linear least squares (CLLS), the convex semidef-
inite programming (SDP) and mixed second order cone
semidefinite programming (SOCSDP) algorithms are pro-
posed in the noncooperative approach. Then the convex
SDP and SOCSDP algorithms are extended to cooperative
approach in which the TOA measurements between the
mobile targets are additionally employed into the optimiza-
tion model. The main contributions of this paper are listed as
follows,

1) A motion parameter capturing method is proposed by
using the TOA measurements between sensor nodes.
The motion parameters including the initial positions
and velocities of multiple mobile targets are jointly
estimated. The proposed method does not require any
motion sensors only by using the TOA measurements.

2) To avoid the local convergence of conventional estima-
tor, the linear ULLS and CLLS estimators are designed
to jointly estimate the initial positions and velocities for
the proposed optimization model. Then convex SDP
and SOCSDP algorithms are also put forward in the
noncooperative or cooperative approach.

3) The proposed system is implemented on sensor nodes
and evaluated by both simulations and real-world
experiments. The results show that the convex SDP and
SOCSDP algorithms provide more robust performance
than the linear estimators in larger noise conditions.
However, the convex SDP and SOCSDP algorithms run
slower than the linear estimators for the high computa-
tional complexity.

This paper mainly presents a motion parameter capturing
method for the initial positions and velocities of multiple
mobile targets. The rest of this paper is structured as follows.
Firstly we describe the related work in Section II. Section III
presents the problem specification of motion parameter cap-
turing. Section IV in detail describes the noncooperative
ULLS, CLLS, SDP, and SOCSDP algorithms. Section V
introduces the cooperative SDP and SOCSDP algorithms.
Section VI derives the computational complexity of these
proposed algorithms. Section VII analyzes the simulation
results and real experiments. The conclusions are represented
in Section VIII. This paper contains a number of symbols.
Following the convention, we represent the matrices as bold
case letters. If we denote thematrix as (∗), (∗)−1 and (∗)T rep-
resent the matrix inverse and transpose operator, respectively.
‖∗‖ denotes `2 norm. diag{∗} represents a diagonal matrix.
[A]i,j denotes the element at the ith row and jth column of
matrix A. For arbitrary symmetric matrices A, A � 0 means
that A is positive semidefinite.

II. RELATED WORK
Sensor network has attracted much attention for its wide
applications, such as battlefields, habitat monitoring, medical
treatments, underwater sensing, ecological sensing and oth-
ers [5], [6]. To complete more complex tasks, some sensor
nodes are equipped to mobile robots in the sensor network.

Due to the mobility ability of robotic sensor network, it has
also received significant attention for its wide applications,
such as exploring an unknown environment [7], data col-
lection [8], [9], coverage control [3], leak detection in the
dangerous field [10], and others [11], [12].

Robotic sensor network has the limitations of its short
communication range, limited coverage, and limited compu-
tational power, so by cooperating with other agents as a group
it can perform more complex tasks, ranging from search
and rescue to environmental monitoring and surveillance.
In order to perform sensing, navigate reliably, or coordination
using robotic sensor networks, the position obtaining of the
mobile robots is important for event detection, auxiliary local-
ization and coverage control [13]–[15]. In sensor networks,
it is often that a few anchor nodes with known positions
are used to determine the remaining target nodes whose
positions are unknown and required to be localized [16].
By using the ranging information extracted from the sig-
naling between the nodes, the positions of target nodes are
derived. The ranging approaches locate the target nodes by
measuring the Euclidean distances between the nodes with
certain range techniques. Many ranging methods use tech-
niques such as, time of arrival (TOA) [17], time difference
of arrival (TDOA) [18], [19], angle of arrival (AOA) [20],
received signal strength (RSS) [21], [22], and acoustic energy
strength [23], [24]. Due to the influence of reflection, antenna
direction and multipath fading, it is difficult to accurately
describe the RSS with mathematical models, so the ranging
errors is possible to be too large. Since the range of sound
propagation is limited, the application of acoustic energy
method is relatively small. Among the different rangingmeth-
ods, the TOA ranging method has gained an increasing atten-
tion for its easy hardware implementation and high-definition
ranging accuracy.

To accurately estimate the positions of the target
nodes, a lot of positioning algorithms are proposed for
stationary sensor networks. Maximum likelihood (ML)
estimator [25], [26] is asymptotically optimal, but the per-
formance of the ML estimator highly relies on the initial
solution provided for the iterative solver. To overcome the
shortcoming ofML estimator, the linear estimator is proposed
by converting the optimization problem of the ML estimator
into a linear model. The linear estimator represents the posi-
tion estimates as closed-form solutions which do not require
the initialization [27]–[29]. However, the linear estimator is
not applicable for the cooperative localization which provides
better accuracy performance compared to the noncooperative
localization [30], [31].

To improve the performance of the linear estimator, convex
optimization methods are also proposed by relaxing the cost
function of ML estimator into the convex optimization prob-
lem and efficiently solved by using existing algorithms such
as interior point methods which also do not require any initial
solutions [32], [33]. The convex optimization algorithms can
be realized by the cooperative approach in which not only
the measurements between anchor nodes and target nodes but
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also the measurements between target nodes are employed
into the optimization model. However, only the measure-
ments between anchor node and target node are exploited
in the noncooperative approach. Compared with the non-
cooperative approach, the cooperative convex optimization
methods provide better accuracy performance [34], [35]. Due
to the convex relaxation and the equivalent approximation,
the solution of the convex optimization is sub-optimal and
cannot achieve the best possible performance in the presence
of noise. On the other hand, the computational complexity of
convex optimization is high for a large number of variables
and equality constraints produced in the relaxation of convex
optimization.

The convex optimization can be realized by semidefinite
programming (SDP) [36]–[38], second order cone program-
ming (SOCP) [39], [40], or mixed second order cone semidef-
inite programming (SOCSDP) algorithm for the position
estimates in sensor networks. The SDP algorithm provides
a tighter relaxation and hence results in a better localization
accuracy compared with the SOCP. However, the SDP algo-
rithm runs slower than the SOCP for a number of variables
and equality constraints produced in the process of convex
relaxation. The lower complexity of SOCP is because for a
given problem, the number and size of variables and con-
straints required for solving SOCP are smaller than those
required for solving SDP. The mixed SOCSDP algorithm
trades off the positioning accuracy and computational com-
plexity.

In robotic sensor networks, the current positions of the
mobile targets are also calculated by using the ranging
measurements of the anchor nodes to the mobile targets.
Moreover, the future positions of the mobile targets can
also be predicted accurately by using some methods such
as, dead-reckoning [41], simultaneous localization and map-
ping (SLAM) [42], and filtering methods [43]–[45]. In the
dead-reckoning methods, the positions of the mobile targets
are calculated by using the wheel rotation measurements
when assuming the start positions to be known. However,
the dead-reckoning methods require extra motion sensor and
would be limited due to the accumulating errors especially
when the wheels would skid under the unsteadily working
conditions. The accumulating errors would be largen over
time, so the dead-reckoning methods are not suitable for the
exploring of far mobile distances.

The SLAM method has been extensively proposed to
explore the environment map by availing of the mobility
ability in robotic sensor networks. In [46], multitarget SLAM
technique is designed to estimate the positions of the sensors
in a sensor network. In [47] and [48], multipath propagation
is used to explore the environment map, which would be
served by the simultaneously navigating system. However,
the main disadvantage of most SLAM methods is the high
computational complexity, which makes them less efficient
specially in larger multirobot networks.

When all kinds of ranging data are noisy, there
are some position prediction methods which include

Kalman filter (KF) [49], [50], extended Kalman filter (EKF),
and particle filter (PF) [51]. KF filter updates the estimates of
the mobile targets with continuous prediction and correction
to improve the tracking accuracy of the mobile targets, only
when the uncertainties are gaussian and the system dynamics
are linear. To extend the prediction model to nonlinear model,
EKF filter is proposed by linearizing the nonlinear measure-
ments. However, KF and EKF can only be applicable for the
processing of gaussian noise. So the PF filter is proposed to
predict and update the mobile target positions by constantly
resampling when there are non-gaussian noises.

Most of above proposed methods provide the accurate
position estimates of the mobile targets based on their motion
and sensor data. Moreover, to improve the performance of
the position estimates, [52] introduced the linear estimator to
estimate the relative node positions by given pair-wise range
measurement and relative speed measurement between com-
municating nodes. In [38], the mobility-aided SDP algorithm
is proposed by considering the velocity measurement to be
available. As is known that the velocity measurement or the
obtaining of the motion data requires extra hardware devices.
Furthermore, the velocity measurements are subject to mea-
surement errors, so the velocity estimate is not enough accu-
rate especially when there are larger measurement errors.

III. PROBLEM SPECIFICATION
In a deployed region of robotic sensor network, there are
M anchor nodes with known position coordinates which are
denoted by ai = [ai bi]T ∈ R2, i = 1, 2, . . . ,M . In the
same region, N mobile targets equipped with sensor nodes
start from the initial positions xj,0 = [xj,0 yj,0]T ∈ R2 with
constant velocity vj = [vj,x vj,y]T ∈ R2, j = M + 1,M +
2, . . . ,M + N . As Fig. 1 shows that there are N (N = 3)
mobile targets in the region surrounded by four anchor nodes
(M = 4). At the same time, the TOAs are measured between
anchor nodes and mobile targets at sampling period T . So at
the kth interval, the TOA measurement ti,j,k between anchor
node i and mobile target j can be obtained that

ti,j,k =
‖ ai − xj,k ‖

c
+ εi,j,k (1)

where i = 1, 2, . . . ,M , j = M + 1,M + 2, . . . ,M + N ,
k = 1, 2, . . . ,K . K is the total number of samples. It is noted
not of all links between anchor node i and mobile target j
are measurable due to the limitation of communication range.
εi,j,k is noise which is modeled as uncorrelated zero-mean
Gaussian variable with variance δ2i,j,k . c is propagation speed
of electromagnetic wave. ‖ ai − xj,k ‖ denotes the distance
between anchor node i and mobile target j at the kth interval
period. On the other hand, the TOAs between the mobile
targets each other are also measured and given by

ti,j,k =
‖ xi,k − xj,k ‖

c
+ εi,j,k (2)

where i = M + 1,M + 2, . . . ,M + N , j = M + 1,M +
2, . . . ,M +N , k = 1, 2, . . . ,K . ‖ xi,k − xj,k ‖ represents the
distance between mobile target i and j at the kth sampling

VOLUME 6, 2018 24377



X. Wu et al.: Motion Parameter Capturing of Multiple Mobile Targets in Robotic Sensor Networks

FIGURE 1. Mobile targets and anchor nodes.

period (i 6= j). The mobile targets start from the initial
positions xj,0 = [xj,0 yj,0]T with a constant velocity vj =
[vj,x vj,y]T ∈ R2, so at the kth sampling period the position
equations of mobile target i and j are obtained with{

xi,k = xi,0 + kTvi
xj,k = xj,0 + kTvj

(3)

where i = M + 1,M + 2, . . . ,M + N , j = M + 1,M +
2, . . . ,M + N , k = 1, 2, . . . ,K . In above proposed model,
the goal of motion parameter capturing is to estimate the
initial position xj,0 and the velocity vj of mobile target j by
using the TOAmeasurements, j = M+1,M+2, . . . ,M+N .
Then the paths of these mobile targets are traced according to
the position equations of mobile targets. Let ek = [1 kT ]T

andUj = [xj,0 vj]T , the measurement equations can also be
rewritten as

ti,j,k =
‖ ai − eTk Uj ‖

c
+ εi,j,k i = 1, 2, . . . ,M

ti,j,k =
‖ eTk (Ui − Uj) ‖

c
+ εi,j,k

i = M + 1,M + 2, . . . ,M + N

(4)

where j = M+1,M+2, . . . ,M+N , k = 1, 2, . . . ,K . Based
on whether the TOAs between the mobile targets each other
are exploited or not, the parameter capturing is also divided
into noncooperative or cooperative approach. Only the TOA
measurements between the anchor nodes and the mobile tar-
gets are employed into the estimation problem, but the TOAs
between the mobile targets each other are not considered in
the noncooperative approach. However, in the cooperative
approach, the TOAs between the mobile targets are used to
improve the estimation performance. For the convenience
of description, S = {j|j = M + 1,M + 2, . . . ,M + N }
represents the set of indices of the mobile targets. Let Aj
be the set of the indices of the anchor nodes connected to
mobile target j and Bj be the set of indices of the mobile
targets connected to mobile target j. So Ej = Aj ∪ Bj repre-
sents the set of the indices of all links connected to mobile
target j. In this section, these defined notations are listed
in Tab. 1.

TABLE 1. Notation descriptions used in this paper.

IV. NONCOOPERATIVE APPROACH
When mobile target j starts from the initial positions xj,0 with
a constant velocity vj, the TOAs between the anchor nodes
and the mobile targets are also measured. All TOA measure-
ments are sent to the central computing unit for parameter
estimation. In the noncooperative approach, only the TOAs
between anchor node and mobile target are employed into
the parameter estimation. Considering a single mobile target
j, the ML estimator of the parameter capturing problem is
obtained by the following optimization

argmin
Uj

∑
i∈Aj

K∑
k=1

1

δ2i,j,k
(ti,j,k −

‖ ai − eTk Uj ‖

c
)2 (5)

where j = M + 1,M + 2, . . . ,M + N . By using the
optimization method of (5), the unknown parameter Uj is
derived one by one. The solution of ML estimator should be
approximately solved by numerical techniques which require
an initial solution. When the initial solution is not enough
close to the true solution, local convergence may occur and
convergence is not guaranteed. To avoid the selecting prob-
lems of initial solution, the linear estimator and convex algo-
rithm are introduced to uniquely derive themotion parameters
including the initial positions and velocities of the mobile
targets.

A. LINEAR ESTIMATOR
To capture the motion parameters of mobile targets, the linear
estimator is firstly proposed by converting the optimization
problem of (5) into unconstrained linear least squares (ULLS)
estimation. Then the constrained linear least squares (CLLS)
method is designed by availing of the constrained condition.
The ULLS estimator represents the estimation value as an
analytical closed-form solution by using all TOA measure-
ments between anchor nodes and mobile targets. To obtain
the closed-form solution to the parameter capturing problem,
the first expression of (4) is equivalently transformed into

‖ ai − eTk Uj ‖= c(ti,j,k − εi,j,k ) (6)
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where i ∈ Aj. Squaring both sides of (6) and neglecting
the second order high term, we can obtain that

−2aieTk Uj + UT
j eke

T
k Uj = c2t2i,j,k − aTi ai − 2c2ti,j,kεi,j,k

(7)

where i ∈ Aj, j = M + 1,M + 2, . . . ,M + N ,
k = 1, 2, . . . ,K . We define a new unknown vector ηj =
[UT

j UT
j Uj xTj,0vj]

T
∈ R7. By stacking all TOA measure-

ments of mobile target j in an ascending of i and k , the matrix
form of (7) is written as

Ajηj = bj + εj (8)

where the row vector ofAj is equal to [−2aieTk eTk ek 2kT ],
the row elements of bj and εj are equal to [c2t2i,j,k −aTi ai] and
[−2c2ti,j,kεi,j,k ], respectively. The covariance of noise εj, 6j
is obtained with

6j = diag
{
4c4t2i,j,kδ

2
i,j,k
}

i ∈ Aj (9)

So the weighting least square (WLS) solution to (9) is
obtained by

ηj = (AT
j 6
−1
j Aj)−1AT

j 6
−1
j bj (10)

When the mobile target j is fully connected to all anchor
nodes, Aj ∈ RML×7, bj ∈ RKM , εj ∈ RKM and 6j ∈

RKM×KM .
The estimation error of ηj is denoted by1ηj, which is given

by

1ηj = (AT
j 6
−1
j Aj)−1AT

j 6
−1
j εj (11)

So the covariance of estimation error 1ηj, cov(1ηj) is
obtained with

cov(1ηj) = (AT
j 6
−1
j Aj)−1 (12)

Extracting from the estimated ηj, we can obtain the esti-
mation parameters of the initial position and the velocity of
mobile target j, j = M + 1,M + 2, . . . ,M + N . Above
calculation does not consider the constraint relationship of
the elements in the vector ηj each other. So it is called as
unconstrained linear least square (ULLS) method for motion
parameter capturing problem. Since the variable relaxation
is performed in the ULLS method, the estimation error is
large. To reduce the estimation error of motion parameters,
the constrained linear least square (CLLS) is designed by
considering the constraint relationship of the elements in ηj,
j = M + 1,M + 2, . . . ,M + N .
The true initial position and velocity of mobile target j

are denoted by x̂j,0 = [x̂j,0 ŷj,0]T and v̂j = [v̂j,x v̂j,y]T ,
respectively. Considering the error between the estimated and
the true, we can obtain that

x̂2j,0 = [ηj(1)+1ηj(1)]2 ≈ ηj(1)2 + 2ηj(1)1ηj(1)

ŷ2j,0 = [ηj(2)+1ηj(2)]2 ≈ ηj(2)2 + 2ηj(2)1ηj(2)

v̂2j,x = [ηj(3)+1ηj(3)]2 ≈ ηj(3)2 + 2ηj(3)1ηj(3)

v̂2j,y = [ηj(4)+1ηj(4)]2 ≈ ηj(4)2 + 2ηj(4)1ηj(4)

x̂2j,0 + ŷ
2
j,0 = ηj(5)+1ηj(5)

v̂2j,x + v̂
2
j,y = ηj(6)+1ηj(6)

(13)

where ηj(l) or 1ηj(l) represents the lth element of the vector
ηj or 1ηj, l = 1, 2, . . . , 6. So the matrix form of the expres-
sion (13) is written as

Gjθj = hj + γj (14)

where θj = [x̂2j,0 ŷ2j,0 v̂2j,x v̂2j,y]
T denotes the unknown

vector of mobile target j which is required to be estimated,
j = M+1,M+2, . . . ,M+N . The others in (14) are defined
as

Gj =


1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 1


T

hj =
[
ηj(1)2 ηj(2)2 ηj(3)2 ηj(4)2 ηj(5) ηj(6)

]T
Lj = diag

{
2ηj(1) 2ηj(2) 2ηj(3) 2ηj(4) 1 1

}
γj = Lj1ηj

(15)

So the WLS solution to (14) is

θj = (GT
j 6
−1
γ,jGj)−1GT

j 6
−1
γ,jhj (16)

where 6γ,j is given by

6γ,j = E(γ Tj γj) (17)

Since γj = Lj1ηj, 6γ,j is also obtained by

6γ,j = LTj cov(1ηj)Lj = LTj (A
T
j 6
−1
j Aj)−1Lj (18)

By using the definition of the vector Uj, the more accurate
motion parameter estimates of mobile target j can be repre-
sented by{

x̂j,0 = sign
{
diag{ηj(1 : 2)}

}√
θj(1 : 2)

v̂j = sign
{
diag{ηj(3 : 4)}

}√
θj(3 : 4)

(19)

j = M + 1,M + 2, . . . ,M + N . The initial position and
velocity of each mobile target are estimated by (19) which
obtainsmore accurate estimates by availing of the constrained
conditions. So it is called as constrained linear least square
(CLLS) method of motion parameter capturing problem.

B. SDP ALGORITHM
To avoid the problem of divergence, an another approach
is SDP algorithm which can be efficiently solved by using
existing algorithms such as interior point methods. Similar
to the proposed linear estimator, each mobile target is to
be estimated for its motion parameters including the initial
position and the velocity. Considering the mobile target j and
its connected anchor nodes i ∈ Aj, the ML estimator is firstly
rewritten by the equivalent transformation. Let di,j,k =‖ ai−
xj,k ‖ which denotes the distance between anchor node i and
mobile target j, so (1) is rewritten as

di,j,k = c(ti,j,k − εi,j,k ) (20)
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By squaring both sides of (20) and neglecting the second
order term, (20) is rewritten as

d2i,j,k = c2t2i,j,k − 2c2ti,j,kεi,j,k (21)

where i ∈ Aj, j = M+1,M+2, . . . ,M+N , k = 1, 2, . . . ,K .
So the ML estimator is expressed by

argmin
Uj

∑
i∈Aj

K∑
k=1

1

t2i,j,kδ
2
i,j,k

(d2i,j,k − c
2t2i,j,k )

2

s.t. di,j,k =‖ ai − xj,k ‖ (22)

To obtain the convex optimization form, a new matrix Zj is
defined as

Zj =

[
I2 UT

j
Uj UjUT

j

]
(23)

where j = M + 1,M + 2, . . . ,M + N . It is found that

d2i,j,k =
[

ai
−ek

]T
Zj

[
ai
−ek

]
i ∈ Aj (24)

So the optimization problem of (22) can also be rewritten as

min
Zj,{αi,j,k },{di,j,k }

∑
i∈Aj

K∑
k=1

αi,j,k

s.t.
1

t2i,j,kδ
2
i,j,k

(d2i,j,k − c
2t2i,j,k )

2
≤ αi,j,k

d2i,j,k =
[

ai
−ek

]T
Zj

[
ai
−ek

]
i ∈ Aj (25)

where j = M + 1,M + 2, . . . ,M + N . By relaxing Zj � 04,
the nonconvex optimization problem of (25) is relaxed into
convex SDP form

min
Zj,{αi,j,k },{di,j,k }

∑
i∈Aj

L∑
l=K

αi,j,k

s.t.


αi,j,k

d2i,j − c
2t2i,j,k

ti,j,kδi,j,k
d2i,j − c

2t2i,j,k
ti,j,kδi,j,k

1

 � 02

d2i,j,k =
[

ai
−ek

]T
Zj

[
ai
−ek

]
i ∈ Aj

Z � 04 (26)

The proposed SDP algorithm provides a convex optimization
solution. However, the SDP algorithm runs slower due to a
larger of variables and equality constraints. The set of all
possible solutions obtained from SDP relaxation is a subset of
all possible solutions that can be obtained by SOCP. In other
words, SDP provides a tighter relaxation than SOCP solution
since the SOCP solution set includes the SDP. To reduce the
computational complexity, here the robust SOCP algorithm

is provided for the SDP optimization model. To obtain the
SOCP form, a new variable λi,j,k is defined and written as

λi,j,k =
d2i,j − c

2t2i,j,k
ti,j,kδi,j,k

(27)

Then the inequality constraint of (25) is transformed as
‖ λj ‖≤ φj (28)

where λj = [λi,j,k |i ∈ Aj, k = 1, 2 . . . ,K ], the new variable
φj is also defined by

φj =
∑
i∈Aj

K∑
k=1

αi,j,k (29)

So the SDP optimization problem of (15) can be equivalently
written as its epigraph form

min
Zj,λj,{di,j},φj

φj

s.t. ‖ λj ‖≤ φj
d2i,j,k − c

2t2i,j,k
ti,j,kδi,j,k

= λi,j,k

d2i,j,k =
[

ai
−ek

]T
Zj

[
ai
−ek

]
i ∈ Aj

Z � 04 (30)

where the SOCP and SDP constraints are mixed by only
using the TOA measurements between the anchor nodes and
the mobile targets, so the solution to (30) is also called the
noncooperative SOCSDP algorithm. Due to the using of the
similar optimization function, the solution to noncooperative
SOCSDP algorithm is very close to that of the noncooperative
SDP algorithm.

V. COOPERATIVE APPROACH
To improve the performance of the motion parameter captur-
ing, the TOA measurements between the mobile targets each
other are also employed in the cooperative approach. In the
noncooperative approach, the motion parameters may be
difficult to be estimated for less measurements. Compared
with the noncooperative approach, the cooperative approach
provides robust solutions for the parameter capturing since
the TOAs between the mobile targets are also employed into
the optimization model. In the following, the cooperative
approach is designed for the motion parameter capturing by
using not only the measurements between the anchor nodes
and the mobile targets (i ∈ Aj) but also the measurements
between the mobile targets each other (i ∈ Bj).
When the motion parameters of multiple mobile targets are

defined as U = [UT
M+1 UT

M+2 . . . UT
M+N ]

T , the ML
estimator for cooperative approach can be expressed as the
following optimization problem

argmin
U

∑
i∈Aj

M+N∑
j=M+1

K∑
k=1

1

δ2i,j,k
(ti,j,k −

‖ ai − eTk Uj ‖

c
)2

+

∑
i∈Bj

M+N∑
j=M+1

K∑
k=1

1

δ2i,j,k
(ti,j,k −

‖ eTk (Ui − Uj) ‖

c
)2 (31)
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Similarly, the solution of ML estimator is not available and
should be approximately solved by numerical techniques
which require the initialization. When some approximations
are used to linearize the nonlinear measurement equation,
the linear estimator obtains an analytical closed-form solu-
tion to the unknown parameter estimates. The exploiting of
linear estimator is difficult in the cooperative approach, since
the TOA measurement equations can not to be linearized.
So semidefinite programming algorithm is proposed for the
cooperative approach by using the additional TOA measure-
ments between the mobile targets each other.

Considering not only the measurements between the
anchor nodes and the mobile targets (i ∈ Aj) but also the
measurements between the mobile targets (i ∈ Bj), we obtain
the ML estimator for the cooperative approach with

argmin
U

∑
i∈Ej

M+N∑
j=M+1

K∑
k=1

1

t2i,j,kδ
2
i,j,k

(d2i,j,k − c
2t2i,j,k )

2

s.t. di,j,k =‖ ai − xj,k ‖ i ∈ Aj

di,j,k =‖ xi,k − xj,k ‖ i ∈ Bj (32)

To design the convex form for the cooperative approach,
we also should convert the nonconvex optimization model
into convex problem. Firstly, we also define an unknown
matrix Z, which is given by

Z =
[
I2 UT

U UUT

]
(33)

Similarly, it is not difficultly found that
d2i,j,k =

[
ai
−sj,k

]T
Z

[
ai
−sj,k

]
i ∈ Aj

d2i,j,k =

[
02

si,k − sj,k

]T
Z

[
02

si,k − sj,k

]
i ∈ Bj

(34)

where i = M + 1,M + 2, . . . ,M + N , j = M + 1,M +
2, . . . ,M + N ,si,k and sj,k are obtained with

si,k = [ 02︸︷︷︸
1

. . . ek︸︷︷︸
i−M

. . . 02︸︷︷︸
N

]T

sj,k = [ 02︸︷︷︸
1

. . . ek︸︷︷︸
j−M

. . . 02︸︷︷︸
N

]T
(35)

Then the optimization problem of (32) is equivalent to

min
Z,{αi,j,k },{di,j,k }

∑
i∈Ej

M+N∑
j=M+1

K∑
k=1

αi,j,k

s.t.
1

t2i,j,kδ
2
i,j,k

(d2i,j,k − c
2t2i,j,k )

2
≤ αi,j,k

d2i,j,k =
[

ai
−sj,k

]T
Z
[

ai
−sj,k

]
i ∈ Aj

d2i,j,k =
[

02
si,k − sj,k

]T
Z
[

02
si,k − sj,k

]
i ∈ Bj

(36)

When relaxingZ � 02N+2, (36) is converted into convex SDP
form

min
Z,{αi,j,k },{di,j,k }

∑
i∈Ej

M+N∑
j=M+1

K∑
k=1

αi,j,k

s.t.


αi,j,k

d2i,j − c
2t2i,j,k

ti,j,kδi,j,k
d2i,j − c

2t2i,j,k
ti,j,kδi,j,k

1

 � 02

d2i,j,k =
[

ai
−sj,k

]T
Z
[

ai
−sj,k

]
i ∈ Aj

d2i,j,k =
[

02
si,k − sj,k

]T
Z
[

02
si,k − sj,k

]
i ∈ Bj

Z � 02N+2 (37)

To reduce the computational complexity and obtain the con-
vex SOCP form, we use the same definition of (27). Then the
inequality constraints in (36) is rewritten as

‖ λ ‖≤ φ (38)

where λ = [λi,j,k |i ∈ Ej, j = M + 1,M + 2 . . . ,M + N , k =
1, 2 . . . ,K ], φ is defined by

φ =
∑
i∈Ej

M+N∑
j=M+1

K∑
k=1

αi,j,k (39)

Similar to the noncooperative approach, (37) is also rewritten
as its convex SOCSDP form

min
Z,λ,{di,j,k },φ

φ

s.t. ‖ λ ‖≤ φ
d2i,j,k − c

2t2i,j,k
ti,j,kδi,j,k

= λi,j,k

d2i,j,k =
[

ai
−sj,k

]T
Z
[

ai
−sj,k

]
i ∈ Aj

d2i,j,k =
[

02
si,k − sj,k

]T
Z
[

02
si,k − sj,k

]
i ∈ Bj

Z � 02N+2 (40)

The cost function of the convex problem is linear. So it
ensures that there is only one minimum point. The convex
optimization problem requires no initialization from the user.
It can be solved with well known algorithms such as interior
point methods which are self initialized and avoid the solution
to the initialization. Extracting from Z we can obtain the
motion parameters of the multiple mobile targets.

VI. COMPLEXITY ANALYSIS
When considering the full measurements between the mobile
targets and the anchor nodes, each mobile target has a
total of M connected anchor nodes. In the noncooperative
ULLS of (10), Aj ∈ RKM×7, 6j ∈ RKM×KM , bj ∈
RKM . The solution of the noncooperative ULLS estimator
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TABLE 2. Parameters in computing the computational complexity.

includes fivematrix multiplications and onematrix inversion.
Referred by [53] the computational complexity of (10) is
upper bounded by O(14K 2M2) when assuming MK � 7.
Since a total of N mobile targets is required to be estimated
in the network, the computational complexity of noncoopera-
tive ULLS estimator is O(14NK 2M2). In the noncooperative
CLLS depicted as (16), Gj ∈ R6×4, 6γ,j ∈ R4×4, hj ∈ R6.
So the computational complexity ofN mobile targets is upper
bounded by O(488N ).

To illustrate the proposed convex algorithm, the number
of the SOCP and SDP constraints are denoted as Nsocp and
Nsdp, respectively. The number of equality constraints is
denoted as m in the designed convex optimization model.
The corresponding dimension of the ith SOCP and SDP cone
are denoted as nsocpi and nsdpi , respectively. Tab. 2 lists the
number of variables, equality constraints, SOCP constraints,
SDP constraints and dimension of SOCP and SDP cone for
these proposed algorithms. The computational complexity of
these proposed algorithms is calculated as a function of K ,
the number of samples, M , the number of anchor nodes, N ,
the number of mobile targets, and L, the total number of
connections. For a network with full connectivity, we can
obtain that L = N

(
M + (N − 1)/2

)
.

As can be seen from Tab. 2, the noncooperative SDP
algorithm has 4KM + 16 variables, while the proposed non-
cooperative SOCSDP has only KM + 17 variables. More-
over, the number of equality constraints for noncooperative
SOCSDP is KM + 3, which is always smaller than 2KM +
3, the number of the noncooperative SDP. Two different
cooperative approaches including SDP and SOCSDP are also
proposed to estimate the unknown parameters of the mobile
targets. The number of variables for the cooperative SDP is
4KL + (2N + 2)2, which is greatly larger than KL + (2N +
2)2 + 1, the number of the cooperative SOCSDP. Similarly,
the number of the cooperative SOCSDP is always smaller
than that of the cooperative SDP algorithm.

A convex optimization problem can be solved by iter-
ative optimization techniques, e.g., interior-point methods.
As is known, the worst-case complexity of solving the
mixed SOCP and SDP algorithm is O

(
(m2∑Nsocp

i=1 nsocpi +

m2∑Nsdp
i=1 n

sdp2

i + m
∑Nsdp

i=1 n
sdp3

i + m3)
√
N log(1/ε)

)
, where

√
N log(1/ε) is the required least iterations, ε is the accuracy

of the convex optimization solution. The complexity of solv-
ing the mixed SOCSDP is linear with nsocpi , while that of
solving the SDP is quadratic in nsdpi . Using the parameters

listed in Tab. 2 and assuming KM � 17, we further calculate
the computational complexity for N mobile targets.
Noncooperative SDP ' O

(
16NK 3M3

√
N log(1/ε)

)
Noncooperative SOCSDP ' O

(
2NK 3M3

√
N log(1/ε)

)
Cooperative SDP ' O

(
24K 3L3

√
N log(1/ε)

)
Cooperative SOCSDP ' O

(
2K 3L3

√
N log(1/ε)

)
(41)

As can be seen that the computational complexity of the
SOCSDP is always less than that of the SDP, whether it is a
cooperative approach or not.

VII. EVALUATION
The ULLS, CLLS, SDP and SOCSDP algorithms for the
noncooperative or cooperative approach are proposed to esti-
mate the motion parameters of the multiple mobile targets,
when the mobile targets start from the initial positions at the
constant velocities. To evaluate the performance of these pro-
posed algorithms, two different scenarios were examined in
the simulations. In the first scenario, four anchor nodes were
placed regularly on the corners of a square 100 m × 100 m.
In the square region, five mobile targets started from the
initial positions which were randomly determined. Fig. 2(a)
shows the geographical coordinates of the deployed anchor
nodes, the initial positions and moving velocities of mobile
targets. However, four anchor nodes were placed irregularly
in the second scenario. The geography of four anchor nodes is
plotted in the Fig. 2(b), where the initial positions andmoving
velocities of the mobile targets are the same as in Fig. 2(a).
The moving velocities of five mobile targets are denoted in
the circle brackets. Full connectivity is initially assumed,
meaning that each mobile target can be connected to all
anchor nodes and also to all other mobile targets, unless
otherwise noted. The propagation speed c is set to 3 × 108

m/s. Each standard deviation δi,j,k of the TOA measurement
noise is equal to δ. The proposed convex SDP or SOCSDP
algorithm is implemented by the CVX toolbox using SeDuMi
as the solver.

A. IMPACTS OF THE NOISES
To demonstrate the performance of the proposed noncooper-
ative ULLS, CLLS, SDP, SOCSDP, the cooperative SDP and
SOCSDP algorithms, we performMonte Carlo (MC) simula-
tions with 500 ensemble runs to evaluate the root mean square
error (RMSE) of the estimated parameters. The RMSEs of
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FIGURE 2. The geography and parameter setting of four anchor nodes and five mobile targets. (a) The first scenario. (b) The second scenario.

these proposed algorithms are calculated by averaging over
the motion parameters of five mobile targets. The number
of samples K and sampling period T are set to 5 and 1 s,
respectively, when the noise standard deviation δ is varied
from 1 ns to 10 ns.

When the anchor nodes are placed regularly as Fig. 2(a),
the RMSE performance of these proposed algorithms is plot-
ted in Fig. 3(a) where the CRLB of estimated parameters is
derived in appendix. It is shown that the RMSE performance
of each algorithm degrades as the noise standard deviation
increases. When the noise standard deviation is small, these
proposed algorithms perform well. The RMSE difference
between the CRLB and each proposed algorithm becomes
larger with the increasing of noise standard deviation. Com-
pared to the noncooperative ULLS estimator, the RMSE of
the CLLS is less due to the exploiting of the constraint
conditions. Since the same optimization function is used,
the RMSE of the SOCSDP is very close to that of the
SDP. Furthermore, the cooperative approaches including the
SOCSDP and the SDP perform significantly better than the
noncooperative approaches since the TOA measurements
between the mobile targets are additionally employed into the
optimization model.

The velocities of all mobile targets are estimated along
with the initial positions when the noise standard devia-
tion is also varied from 1 ns to 10 ns. Fig. 3(b) shows the
RMSE performance of these proposed algorithms when the
anchor nodes are deployed in the first scenario. It can also
be seen from Fig. 3(b) that the RMSE of each proposed
algorithms becomes larger with the increasing of noise stan-
dard deviation. When the noise standard deviation is set to
1 ns, the RMSEs of noncooperative ULLS and cooperative
SOCSDP are 0.11m and 0.08m, respectively. However, when

the noise standard deviation is increased to 10 ns, the RMSEs
of noncooperative ULLS and cooperative SOCSDP achieve
1.08 m and 0.75 m, respectively. Compared with the RMSE
performance of initial positions plotted in Fig. 3(a), the dif-
ference between the RMSE of cooperative approach and its
CRLB becomes larger in Fig. 3(b).

The deployment of the anchor nodes is irregular and shown
as Fig. 2(b). When the noise standard deviation is varied from
1 ns to 10 ns, Fig. 3(c) and Fig. 3(d) plot the RMSEs of
estimated initial positions and velocities, respectively. As can
be seen that the cooperative SOCSDP and SDP algorithms
provide better accuracy performance than the noncoopera-
tive approaches. In comparison with the previous scenario,
the RMSE difference between the ULLS and the CLLS is
much larger. So the ULLS performs worse when the anchor
nodes are placed as irregularly. It is also shown that the RMSE
of SOCSDP is very close to that of the SDPwhen the standard
deviation is increased from 1 ns to 10 ns.

B. NUMBER OF SAMPLES
More number of samples means the increasing of the mea-
surement information, so the CRLB of estimated unknown
parameters should be reduced. The noise standard deviation
and the sampling period are set to 1 ns and 1 s, respec-
tively. By using the regular placement of the anchor nodes,
the RMSEs of ULLS, CLLS, noncooperative SOCSDP and
cooperative SOCSDP are plotted in Fig. 4(a) when the num-
ber of samples is increased from 3 to 10. The RMSE of
the SDP is very close to that of the SOCSDP for the same
network configuration, so the RMSE of the noncoopera-
tive or the cooperative SDP is not shown here. As can be seen
from Fig. 4(a) that the RMSE of estimated initial position
is reduced with the increasing of the number of samples.
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FIGURE 3. Impacts of the noises in the different scenarios, K=5, T =1 s. (a) RMSE of estimated initial position in the first scenario. (b) RMSE of
estimated velocity in the first scenario. (c) RMSE of estimated initial position in the second scenario. (d) RMSE of estimated velocity in the second
scenario.

The cooperative SOCSDP performs best among four algo-
rithms since the measurements between the mobile targets
are employed into the optimization model in the cooperative
approach. When the number of samples is set to 3, the RMSE
of the cooperative SOCSDP is 0.38 m. However, the RMSE
of the cooperative SOCSDP is reduced to 0.17 m, when the
number of samples is set to 10.

Fig. 4(b) also plots the RMSE of estimated velocity with
four proposed algorithms, when the number of samples is
increased from 3 to 10. As also can be seen that the RMSE
of estimated velocity is less at a larger number of samples.
The RMSE of estimated velocity is reduced from 0.18 m/s

to 0.03 m/s with the cooperative SOCSDP algorithm, when
the number of samples is increased from 3 to 10. However,
a larger number of samples leads to increasing of the compu-
tational complexity of the proposed algorithms. The RMSE of
the cooperative SOCSDP is also least among four algorithms.
Compared with the estimated initial position, the RMSE of
the estimated velocity is farther from its corresponding CRLB
with the cooperative SOCSDP algorithm.

C. COMPARISON WITH THE STATIC METHOD
In [35], a static SOCSDP method is proposed when mobile
targets are not assumed. Due to the extra unknown parameter
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FIGURE 4. Impacts of number of samples, δ=1 ns, T =1 s. (a) RMSE of estimated initial positions in the first scenario. (b) RMSE of estimated velocities in
the first scenario.

FIGURE 5. RMSE of estimated initial position under different number of samples, T =1 s. (a) The first scenario. (b) The second scenario.

of the velocity, the RMSE performance of our proposed
method is worse than the static SOCSDP method proposed
in [35], when the number of samples is less. However,
the larger number of samples leads to the increasing of mea-
surement information and would improve the RMSE perfor-
mance of our proposed algorithms.When the sampling period
is set to 1 s and the noise standard deviation is varied from
1 ns to 10 ns, the RMSEs of different methods are plotted by
considering different number of samples in Fig. 5.

As can be seen that the RMSE of estimated initial position
is larger with a smaller number of samples. When the number

of samples and the noise standard deviation are respectively
set to 3 and 10 ns, the RMSE of estimated initial position is
3.88mwith the cooperative SOCSDP. TheRMSE of the static
SOCSDP method is 2.54 m. However, When the number of
samples is increased to 10, the RMSE of estimated initial
position is reduced to 2.08 m with the cooperative SOCSDP.
So it is shown that our cooperative SOCSDP performs bet-
ter than the static SOCSDP method at a larger number of
samples.

When the anchor nodes are placed irregularly, the RMSE of
estimated initial position is also plotted in Fig. 5(b) with these
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FIGURE 6. RMSE performance with different sampling period, K=5, δ=1 ns. (a) RMSE of estimated initial position in the second scenario. (b) RMSE of
estimated velocity in the second scenario.

different methods. It is also shown the proposed algorithms
perform worse as the noise standard deviation increases.
When the anchor nodes are placed regularly in the first
scenario, the RMSE difference between each algorithm and
its corresponding CRLB is small. However, in the irregu-
lar deployment of the anchor nodes, the RMSE difference
between each algorithm and its CRLB is increased. When
the number of samples and the noise standard deviation are
respectively set to 7 and 10 ns, the RMSE of the cooperative
SOCSDP and its CRLB are 2.12 m and 2.04 m in the first
scenario. In the second scenario, the RMSE of the coopera-
tive SOCSDP and its CRLB are 2.78 m and 2.16 m, when
the number of samples and the noise standard deviation are
also set to 7 and 10 ns, respectively. The RMSE difference
between the cooperative SOCSDP algorithm and its CRLB is
increased from 0.08 m to 0.62 m, when the anchor nodes are
placed as the second scenario.

D. SAMPLING PERIOD
Smaller sampling period can shorten the moving distance
of the mobile targets when keeping the moving velocities
invariable. So it ensure that the mobile targets are in the
communication range of the anchor nodes. Then the motion
parameters would be possible to be instantaneously captured.
In this subsection, we examine the impacts of sampling period
on the RMSE performance of estimated motion parameters.
The number of samples and the noise standard deviation are
set to 5 and 1 ns, respectively. When the sampling period is
increased from 0.1 s to 1 s, the RMSE is plotted in Fig. 6 for
the irregular deployment of the anchor nodes.

Firstly, the RMSE of estimated initial positions is evaluated
and plotted in Fig. 6(a). As can be seen that the RMSE
of the estimated initial position is essentially unchanged as

the sampling period increases. When the sampling period is
increased from 0.1 s to 1 s, the RMSE of the cooperative
SOCSDP is fluctuated from 0.32 m to 0.35 m. The fluctuated
range of each algorithm is very small with the increasing of
sampling period.

Similarly, the RMSE of estimated velocity is plotted
in Fig. 6(a), when the sampling period is increased from
0.1 s to 1 s. The shown result in Fig. 6(b) is different from
Fig. 6(a). The RMSE of estimated velocity is reduced as the
sampling period increases with each algorithm. When the
sampling period is varied from 0.1 s to 1 s, the RMSE of the
cooperative SOCSDP is reduced from 0.93 m/s to 0.09 m/s.
Each algorithm performs better at a larger sampling period,
but it prolongs the moving distances of the mobile targets and
would lead that themobile targets is out of the communication
range of the anchor nodes.

E. REAL EXPERIMENT
To compare the performance of these different algorithms,
we also conduct a real experiment by using ultra wide
band (UWB) module of DWM1000. The UWB module
DWM1000 directly provides the ranging between sensor
nodes by using the TOA measurement. So we should modify
our model by setting the propagation speed c to 1. The initial
positions of the mobile targets and anchor nodes are manually
set and measured. Motion sensor module are equipped to the
sensor nodes for obtaining the ground truth of the velocities.
In the real experiment, four anchor nodes are placed on the
corners of a square 12 m× 12 m. Three mobile targets started
from the initial positions (3, 3), (6, 7.5), and (1.5, 8) with the
velocities of (0.1,−0.2), (−0.3, 0.1), and (0.1,−0.3) in an
indoor environment shown as Fig. 7(a).When considering the
velocities of three mobile targets to be unknown, we perform
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FIGURE 7. The setting and performance in real experiment. (a) The scene of real experiment. (b) position error CDF with different algorithms, T =1 s,
K=5. (c) position error CDF with the cooperative SOCSDP under different number of samples, T =1 s. (d) velocity error CDF with the cooperative SOCSDP
under different sampling period, K=5.

500 samples and estimate the motion parameters of three
mobile targets. The cumulative distribution function (CDF)
of positioning error is plotted in Fig. 7(b) with the noncoop-
erative ULLS, CLLS, SOCSDP, and cooperative SOCSDP,
when the sampling period and number of samples are set
to 1 s and 5, respectively. As can be seen that 10% of the
positioning error is larger than 0.081 m by using the nonco-
operative ULLS. However, only about 6% of the positioning
error is larger than 0.081 m with the noncooperative CLLS.
Compared with the noncooperative ULLS, the positioning
error of noncooperative CLLS is less due to the exploit-
ing of the constrained condition. It is also interesting to
see that the cooperative SOCSDP provides the best accu-
racy performance among the four algorithms. The average

positioning errors are 0.048m, 0.054m, 0.054m, and 0.057m
with the cooperative SOCSDP, the noncooperative SOCSDP,
the CLLS and the ULLS, respectively.

We also investigate the performance of the cooperative
SOCSDP with different number of samples in the real exper-
iment since the accuracy performance of the cooperative
SOCSDP is best among four different algorithms. When
the sampling period is set to 1 s, the position error CDF
of the cooperative SOCSDP is plotted in Fig. 7(c) with
different number of samples. When the number of sam-
ples is set to 5, 7, and 9, 10% of the position error is
larger than 0.079 m, 0.057 m, and 0.048 m, respectively.
So the position error is reduced as the number of samples
increases.
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The velocities of the mobile targets are also estimated
along with the initial positions. The performance of the
velocity error is also investigated, when the number of
samples is invariably set to 5. The velocity error CDF is
plotted in Fig. 7(d) with the cooperative SOCSDP, when
the sampling period is set to 1 s, 2 s, and 3 s, respec-
tively. As can be seen that 10% of the velocity error is
more than 0.022 m/s when the sampling period is set to
1 s. However, the largest velocity error is only 0.012 m/s
when the sample period is increased to 3 s. The estimated
velocity error is also greatly reduced as the sampling period
increases.

VIII. CONCLUSIONS
By using time of arrival (TOA) measurements between
mobile targets and anchor nodes, the noncooperative
approaches including the unconstrained linear least
square (ULLS), constrained linear least square (CLLS),
semidefinite programming (SDP) and mixed second order
cone semidefinite programming (SOCSDP) are proposed to
estimate the initial positions and the velocities of the mobile
targets. Then the noncooperative convex approaches are
extended to the cooperative SDP and SOCSDP by employ-
ing the TOA measurements between the mobile targets
each other. The linear estimators including the ULLS and
CLLS provide a closed-form fast solution to the unknown
parameters of the mobile targets. Compared with the ULLS,
the CLLS provides better accuracy performance due to the
exploiting of the constraint condition. The RMSE of the
cooperative approach is less than that of the noncooperative
approach, since the TOA measurements between the mobile
targets each other are additionally exploited as well as the
TOA measurements between the mobile targets and the
anchor nodes. The convex SOCSDP algorithm provides the
approximately identical accuracy performance with the SDP,
but the computational complexity of the SOCSDP is less than
that of the SDP.

APPENDIX
CRLB FOR MOTION PARAMETER CAPTURING
When there are gaussian measurement noises in the proposed
model, CRLB defines the a lower bound on the variance
which provides a benchmark for evaluating the accuracy
performance of estimation algorithm. The CRLB of unknown
parameters is the diagonal elements of the inverse of the
Fisher information matrix (FIM). When the TOA measure-
ments are designed to estimate the motion parameters of
multiple mobile targets, we derive the CRLB for cooperative
approaches which include noncooperative case as a special
case (N = 1).

In the proposed model, both the initial positions and
the velocities of the mobile targets are required to be
estimated and considered as unknown parameters. A new
vector is defined and denoted as ϕ = [xT0 vT ]T ∈

R4N , x0 = [xTM+1,0 xTM+2,0 . . . xTM+N ,0]
T , v =

[vTM+1 vTM+2 . . . vTM+N ]
T .

The probability density function of all TOAmeasurements
is given by

p(t;ϕ) =
∏
i∈E|

M+N∏
j=M+1

K∏
k=1

{ 1
√
2πδi,j,k

exp{−
( di,j,kc − ti,j,k )

2

2δ2i,j,k
}
}

(42)

where di,j,k is obtained with{
di,j,k = ‖ ai − xj,0 − kTvj ‖ i ∈ Aj

di,j,k = ‖ xi,0 − xj,0 + kT (vi − vj) ‖ i ∈ Bj
(43)

So the FIM of the parameter capturing problem is obtained
with

F = −
∂2 ln p(t;ϕ)
∂ϕT ∂ϕ

(44)

So (44) can also be rewritten as

F = (
∂r(ϕ)
∂ϕ

)T6
∂r(ϕ)
∂ϕ

(45)

where 6 = diag{δ2i,j,k}, r(ϕ) = [ri,j,k ], i ∈ Ej, j = M +

1,M + 2 . . . ,M + N , k = 1, 2 . . . ,K . ri,j,k =
di,j,k
c − ti,j,k ,

∂r(ϕ)
∂ϕ
= [rϕi,j,k ], r

ϕ
i,j,k = [rx0i,j,k rvi,j,k ], r

x0
i,j,k and r

v
i,j,k are given

by

rx0i,j,k = [02(j−M−1)
xj,0 + kTvj − ai

di,j,k
02(N+M−j)],

i ∈ Aj

rvi,j,k = [02(j−M−1)
kT (xj,0 + kTvj − ai)

di,j,k
02(N+M−j)],

i ∈ Aj

rx0i,j,k = [02(i−M−1)
xi,0 − xj,0 + kT (vi − vj)

di,j,k
02(j−i−1)

xj,0 − xi,0 + kT (vj − vi)
di,j,k

02(N+M−j)](i < j), i ∈ Bj

rvi,j,k = [02(i−M−1)
kT [xi,0−xj,0+kT (vi−vj)]

di,j,k
02(j−i−1)

kT [xj,0 − xi,0 + kT (vj − vi)]
di,j,k

02(N+M−j)](i < j),

i ∈ Bj
(46)

So the CRLB of unknownmotion parameters is obtained with

CRLB([ϕ]l) = [F−1(ϕ)]l,l (47)

where l = 1, 2, . . . , 4N .

REFERENCES
[1] S. Shu and J. M. Conrad, ‘‘A survey of robotic applications in wireless

sensor networks,’’ in Proc. IEEE Southeastcon, Jacksonville, FL, USA,
Apr. 2013, pp. 1–5.

[2] J. Suh, S. You, S. Choi, and S. Oh, ‘‘Vision-based coordinated localization
for mobile sensor networks,’’ IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2,
pp. 611–620, Apr. 2016.

[3] M. Schwager, M. P. Vitus, S. Powers, D. Rus, and C. J. Tomlin, ‘‘Robust
adaptive coverage control for robotic sensor networks,’’ IEEE Trans. Con-
trol Netw. Syst., vol. 4, no. 3, pp. 462–476, Sep. 2017.

24388 VOLUME 6, 2018



X. Wu et al.: Motion Parameter Capturing of Multiple Mobile Targets in Robotic Sensor Networks

[4] I. Guvenc and C.-C. Chong, ‘‘A survey on TOA based wireless localization
and NLOS mitigation techniques,’’ IEEE Commun. Surveys Tuts., vol. 11,
no. 3, pp. 107–124, Aug. 2009.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘A survey
on sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[6] M. Amjad, M. Sharif, M. K. Afzal, and S. W. Kim, ‘‘TinyOS-new trends,
comparative views, and supported sensing applications: A review,’’ IEEE
Sensors J., vol. 16, no. 9, pp. 2865–2889, May 2016.

[7] Y.Wang, R. Tan, G. Xing, J.Wang, andX. Tan, ‘‘Profiling aquatic diffusion
process using robotic sensor networks,’’ IEEE Trans. Mobile Comput.,
vol. 13, no. 4, pp. 880–893, Apr. 2014.

[8] G. A. Hollinger et al., ‘‘Underwater data collection using robotic sensor
networks,’’ IEEE J. Sel. Areas Commun., vol. 30, no. 5, pp. 899–911,
Jun. 2012.

[9] R. Graham and J. Cortes, ‘‘Adaptive information collection by robotic
sensor networks for spatial estimation,’’ IEEE Trans. Autom. Control,
vol. 57, no. 6, pp. 1404–1419, Jun. 2012.

[10] D. Wu, D. M. Chatzigeorgiou, K. Youcef-Toumi, and R. Ben-Mansour,
‘‘Node localization in robotic sensor networks for pipeline inspection,’’
IEEE Trans. Ind. Inform., vol. 12, no. 2, pp. 809–819, Apr. 2016.

[11] G. A. Hollinger, C. Choudhuri, U. Mitra, and G. S. Sukhatme, ‘‘Squared
error distortion metrics for motion planning in robotic sensor networks,’’
in Proc. IEEE Globecom Workshop, Atlanta, GA, USA, Dec. 2013,
pp. 1426–1431.

[12] L. He, P. Cheng, Y. Gu, J. Pan, T. Zhu, and C. Liu, ‘‘Mobile-to-mobile
energy replenishment in mission-critical robotic sensor networks,’’ in
Proc. IEEE Conf. Comput. Commun., Toronto, ON, Canada, May 2014,
pp. 1195–1203.

[13] D. Herrero and H. Martínez, ‘‘Range-only fuzzy Voronoi-enhanced local-
ization of mobile robots in wireless sensor networks,’’ Robotica, vol. 30,
no. 7, pp. 1063–1077, 2012.

[14] X. Li, G. Fletcher, A. Nayak, and I. Stojmenovic, ‘‘Randomized carrier-
based sensor relocation in wireless sensor and robot networks,’’ Ad Hoc
Netw., vol. 11, no. 7, pp. 1951–1962, 2013.

[15] L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake,
‘‘Information-driven adaptive sampling strategy for mobile robotic wire-
less sensor network,’’ IEEE Trans. Control Syst. Technol., vol. 24, no. 1,
pp. 372–379, Jan. 2016.

[16] J. Zhao et al., ‘‘Localization of wireless sensor networks in the wild:
Pursuit of ranging quality,’’ IEEE/ACM Trans. Netw., vol. 21, no. 1,
pp. 311–323, Feb. 2013.

[17] J. Shen, A. F. Molisch, and J. Salmi, ‘‘Accurate passive location estimation
using TOAmeasurements,’’ IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 2182–2192, Jun. 2012.

[18] M. D. Gillette and H. F. Silverman, ‘‘A linear closed-form algorithm for
source localization from time-differences of arrival,’’ IEEE Signal Process.
Lett., vol. 15, no. 1, pp. 1–4, Jan. 2008.

[19] L. Yang and K. C. Ho, ‘‘An approximately efficient TDOA localization
algorithm in closed-form for locating multiple disjoint sources with erro-
neous sensor positions,’’ IEEE Trans. Signal Process., vol. 57, no. 12,
pp. 4598–4615, Dec. 2009.

[20] H.-J. Shao, X.-P. Zhang, and Z. Wang, ‘‘Efficient closed-form algorithms
for AOA based self-localization of sensor nodes using auxiliary variables,’’
IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2580–2594, May 2014.

[21] L. Lin, H. C. So, and Y. T. Chan, ‘‘Received signal strength based position-
ing for multiple nodes in wireless sensor networks,’’Digit. Signal Process.,
vol. 25, pp. 41–50, Feb. 2014.

[22] S. Tomic, M. Beko, and R. Dinis, ‘‘Distributed RSS-based localization
in wireless sensor networks based on second-order cone programming,’’
Sensors, vol. 14, no. 10, pp. 18410–18432, Oct. 2014.

[23] W. Meng, W. Xiao, and L. Xie, ‘‘An efficient EM algorithm for energy-
based multisource localization in wireless sensor networks,’’ IEEE Trans.
Instrum. Meas., vol. 60, no. 3, pp. 1017–1027, Mar. 2011.

[24] X. Wu, G. Wang, D. Dai, and M. Tong, ‘‘Accurate acoustic energy-based
localization with beacon position uncertainty in wireless sensor networks,’’
J. Netw. Comput. Appl., vol. 43, pp. 76–83, Aug. 2014.

[25] X. Sheng and Y.-H. Hu, ‘‘Maximum likelihood multiple-source localiza-
tion using acoustic energy measurements with wireless sensor networks,’’
IEEE Trans. Signal Process., vol. 53, no. 1, pp. 44–53, Jan. 2005.

[26] A. Simonetto and G. Leus, ‘‘Distributed maximum likelihood sensor
network localization,’’ IEEE Trans. Signal Process., vol. 62, no. 6,
pp. 1424–1437, Mar. 2014.

[27] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan, ‘‘A constrained
least squares approach to mobile positioning: Algorithms and optimal-
ity,’’ EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–23,
Jan. 2006.

[28] M. Sun, L. Yang, and K. Ho, ‘‘Accurate sequential self-localization of
sensor nodes in closed-form,’’ Signal Process., vol. 92, pp. 2940–2951,
Dec. 2012.

[29] X. Qu and L. Xie, ‘‘An efficient convex constrained weighted least squares
source localization algorithm based on TDOA measurements,’’ Signal
Process., vol. 119, pp. 142–152, Feb. 2016.

[30] R. W. Ouyang, A. K.-S. Wong, and C.-T. Lea, ‘‘Received signal strength-
basedwireless localization via semidefinite programming: Noncooperative
and cooperative schemes,’’ IEEE Trans. Veh. Technol., vol. 59, no. 3,
pp. 1307–1318, Mar. 2010.

[31] B. Zhou and Q. Chen, ‘‘On the particle-assisted stochastic search mech-
anism in wireless cooperative localization,’’ IEEE Trans. Wireless Com-
mun., vol. 15, no. 7, pp. 4765–4777, Jul. 2016.

[32] P. Oguz-Ekim, J. P. Gomes, J. Xavier, M. Stosic, and P. Oliveira, ‘‘An angu-
lar approach for range-based approximate maximum likelihood source
localization through convex relaxation,’’ IEEE Trans. Wireless Commun.,
vol. 13, no. 7, pp. 3951–3964, Jul. 2014.

[33] P. M. Ghari, R. Shahbazian, and S. A. Ghorashi, ‘‘Wireless sensor network
localization in harsh environments using SDP relaxation,’’ IEEE Commun.
Lett., vol. 20, no. 1, pp. 137–140, Jan. 2016.

[34] R. M. Vaghefi, M. R. Gholami, R. M. Buehrer, and E. G. Ström,
‘‘Cooperative received signal strength-based sensor localization with
unknown transmit powers,’’ IEEE Trans. Signal Process., vol. 61, no. 6,
pp. 1389–1403, Mar. 2013.

[35] J. Zheng and X. Wu, ‘‘Convex optimization algorithms for coopera-
tive RSS-based sensor localization,’’ Pervas. Mobile Comput., vol. 37,
pp. 78–93, Jun. 2017.

[36] K. W. K. Lui, W.-K. Ma, H. C. So, and F. K. W. Chan, ‘‘Semi-definite
programming algorithms for sensor network node localization with uncer-
tainties in anchor positions and/or propagation speed,’’ IEEE Trans. Signal
Process., vol. 57, no. 2, pp. 752–763, Feb. 2009.

[37] C. Soares, J. Xavier, and J. Gomes, ‘‘Simple and fast convex relaxation
method for cooperative localization in sensor networks using range mea-
surements,’’ IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4532–4543,
Sep. 2015.

[38] S. Salari, S. ShahbazPanahi, and K. Ozdemir, ‘‘Mobility-aided wireless
sensor network localization via semidefinite programming,’’ IEEE Trans.
Wireless Commun., vol. 12, no. 12, pp. 5966–5978, Dec. 2013.

[39] G.Wang, S. Cai, Y. Li, andM. Jin, ‘‘Second-order cone relaxation for TOA-
based source localization with unknown start transmission time,’’ IEEE
Trans. Veh. Technol., vol. 63, no. 6, pp. 2973–2977, Jul. 2014.

[40] G. Naddafzadeh-Shirazi, M. B. Shenouda, and L. Lampe, ‘‘Second order
cone programming for sensor network localization with anchor position
uncertainty,’’ IEEE Trans. Wirelss Commun., vol. 13, no. 2, pp. 749–763,
Feb. 2014.

[41] B.-S. Cho, W.-S. Moon, W.-J. Seo, and K.-R. Baek, ‘‘A dead reck-
oning localization system for mobile robots using inertial sensors and
wheel revolution encoding,’’ J. Mech. Sci. Technol., vol. 25, no. 11,
pp. 2907–2917, 2011.

[42] T. Dumont and S. L. Corff, ‘‘Simultaneous localization and mapping
in wireless sensor networks,’’ Signal Process., vol. 101, pp. 192–203,
Aug. 2014.

[43] O. Demigha, W.-K. Hidouci, and T. Ahmed, ‘‘On energy efficiency in
collaborative target tracking in wireless sensor network: A review,’’ IEEE
Commun. Survey Tuts., vol. 15, no. 3, pp. 1210–1222, 3rd Quart., 2013

[44] É. L. Souza, E. F. Nakamura, and R. W. Pazzi, ‘‘Target tracking for sensor
networks: A survey,’’ ACM Comput. Surv., vol. 49, no. 2, pp. 1–35, 2016.

[45] K. Zheng et al., ‘‘Energy-efficient localization and tracking of mobile
devices in wireless sensor networks,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 3, pp. 2714–2726, Mar. 2017.

[46] A. F. Garcia-Fernandez, M. R. Morelande, and J. Grajal, ‘‘Multitarget
simultaneous localization and mapping of a sensor network,’’ IEEE Trans.
Signal Process., vol. 59, no. 10, pp. 4544–4558, Oct. 2011.

[47] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U.-C. Fiebig,
‘‘Multipath assisted positioning with simultaneous localization and map-
ping,’’ IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6104–6117,
Sep. 2016.

[48] H. Naseri and V. Koivunen, ‘‘Cooperative simultaneous localization and
mapping by exploiting multipath propagation,’’ IEEE Trans. Signal Pro-
cess., vol. 65, no. 1, pp. 200–211, Jan. 2017.

VOLUME 6, 2018 24389



X. Wu et al.: Motion Parameter Capturing of Multiple Mobile Targets in Robotic Sensor Networks

[49] E. Xu, Z. Ding, and S. Dasgupta, ‘‘Target tracking and mobile sensor
navigation in wireless sensor networks,’’ IEEE Trans. Mobile Comput.,
vol. 12, no. 1, pp. 177–186, Jan. 2013.

[50] Y. Yu, ‘‘Consensus-based distributed mixture Kalman filter for maneu-
vering target tracking in wireless sensor networks,’’ IEEE Trans. Veh.
Technol., vol. 65, no. 10, pp. 8669–8681, Oct. 2016.

[51] Q. Gao, J. Wang, M. Jin, H. Chen, and H. Wang, ‘‘Target tracking by
lightweight blind particle filter in wireless sensor networks,’’ Wireless
Commun. Mobile Comput., vol. 14, no. 2, pp. 210–220, 2014.

[52] L. Dong, ‘‘Cooperative network localization via node velocity estima-
tion,’’ in Proc. IEEE Wireless Commun. Netw. Conf., Budapest, Hungary,
Apr. 2009, pp. 2231–2236.

[53] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge U.K.: Cambridge Univ. Press, 2009.

XIAOPING WU received the Ph.D. degree from
Shanghai University in 2013. Since 2004, he has
been with Zhejiang A & F University, where he is
currently an Associate Professor with the School
of Information Engineering. His research inter-
ests include mathematical modeling, optimization
method, numerical computing, and its application
in wireless sensor networks and ad hoc networks.

SHENGHUI WANG received the B.E. degree
from Zhejiang A& F University in 2012, where he
is currently pursuing the M.Eng. degree. His main
interests include ubiquitous computing, communi-
cation technology, and the applications of wireless
networks.

HAILING FENG received the Ph.D. degree in
computer science from the University of Science
and Technology of China in 2007. Since 2007,
he has been with Zhejiang A & F University,
where he is currently a Professor with the School
of Information Engineering. His main interests
include nondestructive testing, wireless networks,
and computer vision.

JUNGUO HU received the Ph.D. degree from
Beijing Forestry University in 2016. Since 2001,
he has beenwith ZhejiangA&FUniversity, where
he is currently a Professor with the School of Infor-
mation Engineering. His research interests include
embedded systems, forest carbon sink monitor-
ing and measurements, intelligent computing, and
wireless sensor networks.

GUOYING WANG received the master’s degree
from Guangxi University in 2004. Since 2004, he
has beenwith ZhejiangA&FUniversity, where he
is currently an Associate Professor with the School
of Information Engineering. His research interests
include topology optimization, adaptive sampling,
and the applications of sensor networks and IoT.

24390 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	PROBLEM SPECIFICATION
	NONCOOPERATIVE APPROACH
	LINEAR ESTIMATOR
	SDP ALGORITHM

	COOPERATIVE APPROACH
	COMPLEXITY ANALYSIS
	EVALUATION
	IMPACTS OF THE NOISES
	NUMBER OF SAMPLES
	COMPARISON WITH THE STATIC METHOD
	SAMPLING PERIOD
	REAL EXPERIMENT

	CONCLUSIONS
	REFERENCES
	Biographies
	XIAOPING WU
	SHENGHUI WANG
	HAILING FENG
	JUNGUO HU
	GUOYING WANG


