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ABSTRACT Inspired by the fact that the neural network, as the mainstream method for machine learning,
has brought successes in many application areas, here we propose to use this approach for decoding hidden
correlation among pseudo-random data and predicting events accordingly. With a simple neural network
structure and a typical training procedure, we demonstrate the learning and prediction power of the neural
network in pseudo-random environments. Finally, we postulate that the high sensitivity and efficiency of the
neural network may allow learning on a low-dimensional manifold in a high-dimensional space of pseudo-
random events and critically test, if there could be any fundamental difference between quantum randomness
and pseudo randomness, which is equivalent to the classic question: Does God play dice? (Note that this
analogy was first made by Einstein in his famous quotation ‘‘God does not play dice with the universe’’.
He believed in laws of nature, and hence, the meaning of God in this context was some mechanism
responsible for the ways by which the universe evolves.)

INDEX TERMS Pseudo-random number, artificial neural network (ANN), prediction, quantum mechanics.

I. INTRODUCTION
In the field of machine learning, neural networks, espe-
cially convolutional neural networks (CNNs) have recently
delivered surprising outcomes in many types of applications
such as classification, prediction [1], [2], analysis [3], [4],
and image reconstruction [5], [6]. Encouraged by the huge
potential of neural networks, great efforts are being made to
improve the network performance [7] and [8] and find new
applications.

Machine learning can be performed in different modes.
Supervised learning with a neural network involves the
followed two steps: given a label y to every input
sample x, forming a training dataset in the format of pairs
(x1, y1), (x2, y2) . . . (xm, ym); and then the neural network is
trained using the backpropagation algorithm [9] to optimize
the network function from inputs to outputs. Usually, the
labels assigned to the inputs are well defined, which means
that the output is unique to reflect a deterministic input-output
relationship. However, this view is invalid in probabilistic
scenarios. Statistical learning can also be performed using
the neural network approach [10]; for example, to find high

likelihood solutions while filtering out random noise. In this
paper, we focus on how much a neural network could learn
from pseudo-random noise, which is an extreme case of
statistical learning.

As an initial investigation along this direction, we will
use a popular multilayer neural network to predict the
‘‘next number’’ in a 0-1 pseudo-random number sequence.
Pseudo-random numbers are closely related to mathemat-
ical chaotic behaviors [11], [12]. Although chaotic time
series prediction was investigated using machine learn-
ing methods [13]–[16], few peer-reviewed studies [17]
were reported on pseudo-random number prediction,
which were neither systematically designed nor rigorously
tested.

In this paper, we provide a representative (0-1 random
numbers), systematic (big datasets) and definitive (in the
sense of 5σ ) analysis on this topic. In the next section, we
describe our experimental designs and key results. In the
third, we discuss improvements and implications of our find-
ings, especially how to test if quantum noise is really ran-
dom or just pseudo-random.
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FIGURE 1. Learning from the pseudo-randomness of π . After the
sequence π is binarized into the black-white sequence π ′ , a typical
feedforward neural network was trained to predict the next digit based
on the latest six digits, and tested for statistical significance.

II. NUMERICAL STUDIES AND RESULTS
A. LEARNING FROM A SINGLE PSEUDO-RANDOM
SEQUENCE
π is one of the most famous transcendental numbers, widely
used in almost every discipline. However, there remain inter-
esting questions on this number. For example, is an infi-
nite sequence of its digits a realization of a perfect random
mechanism or not? In other words, could the presence of a
given digit be, to some definite degree, predicted based on a
sufficiently large number of digits in a neighborhood around
the digit of interest?

In our study, we cast this exemplary question into a binary
version, which is even more challenging. Specifically, we
binarized the sequence of π with the threshold 5 to obtain a
0-1 sequence π ′, as shown in Figure 1. Then, we used an arti-
ficial neural network with the configuration of 6-30-20-1 to
predict the seventh digit from its precedent consecutive six
numbers. The training dataset consisted of 40,000 instances
made from the 1st to 40,007th digits of π ′. Then, the trained
network was evaluated by the two testing datasets: T1 with
900,000 instances from the 100,000th to 1,000,006th digits,
and T2 with 9,000,000 instances from the 999,000th to
9,999,006th digits. Furthermore, each testing dataset was
divided into 9 subsets for repeated tests.

In the learning processing, the Levenberg-Marquart back-
propagation algorithm was utilized. The weights and biases
of the neural network were randomly initialized using the
‘‘initnw’’ function of Matlab. The learning parameters were
empirically set to momentum factor = 0.95, learning
rate = 0.05, and maximum epoch = 40. The performance
was defined by the number of successful predictions divided
by the total number of instances.

First, we trained the network to predict T1, with the
trained network being referred to as ‘‘Net 1’’. For the train-
ing set, 51.28% of the total instances were successfully
predicted. For the 9 subgroups in T1, the correct predic-
tion rates were found to be 0.50120, 0.50063, 0.50194,
0.50141, 0.49987, 0.50083, 0.50128, 0.50138, and 0.50189

FIGURE 2. Pseudo-randomness of π ′ suppressed via machine learning.
Our data demonstrate that the neural network learned from the training
dataset performed well in 18 subgroups from two testing datasets
respectively. Statistically, the mean of the correct prediction rates goes
over the theoretical mean 0.5 with the confidence of 99.9% and 99% for
the first and second testing datasets respectively.

respectively. Then, we independently retrained the network
to predict T2, with the new network ‘‘Net 2’’. In the
run, the training performance was the correct prediction
rate 51.03%. For the 9 subgroups in T2, the correct pre-
diction rates were 0.500344, 0.500465, 0.499750, 0.500118,
0.500465, 0.500239, 0.500326, 0.500692, and 0.500167
respectively. These results are summarized in Fig. 2 as a
demonstration. The data are encouraging, since our network
is rather simplistic, and the probability of having 0 is theoret-
ically equal to that of having 1 [18].

In the viewpoint of probability, the binary prediction
of 0 or 1 in the sequence π ′ will be totally random if

Probability(NextDigit = 1|OtherDigits)

= Probability(NextDigit = 0|OtherDigits) = 0.5 (1)

Eq. (1) means that any prediction of the next digit will have
equal chance of being correct or incorrect. However, if Eq. (1)
does not hold, thenwhat the next digit will be somehow corre-
lated to other digits in the sequence π ′. Our above-described
data shows that the latter is the case for the sequence π ′.

For the correct overall prediction rates of 51.28% and
51.03% for the two training datasets respectively, what is the
chance that the network achieved the positive performance by
randomly guessing? According to the central limit theorem,
the random fluctuation in the prediction performance should
obey the Gaussian distribution with mean 0.5 and deviation
σ = 0.025. Since 0.5128 > 0.5 + 5σ , 0.5103 > 0.5 + 3σ ,
we can reject the hypothesis of randomly guessing with the
confidence levels of 5σ and 3σ for the two testing datasets
respectively. Furthermore, according to the student distri-
bution, the one-sided lower confidence limit (LCL) can be
calculated by

LCL = X − tα,n−1
Sn
√
n
, (2)
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This means that there is a 100(1 − α)% chance for the
true mean being over LCL. For the two testing datasets,
the confidence probabilities 99.9% and 99% respectively.
These arguments show that Eq. (1) is invalid in the case of
the sequence π ′. The occurrences of 0 and 1 influence each
other in a subtle but definite way.

At the same time, the results from the testing datasets
T1 and T2 suggest that the correlation between the knowledge
learned by the network from the training dataset is slightly
weaker in predicting digits in T2 than T1. We consider this
discrepancy reasonable because the distance from the training
dataset is longer to T2 than T1 in terms of the number of digits
between the training and testing datasets.

To make sure that the ability of learning from pseudo-
randomness with such a simplistic network is real,
we repeated our analysis on two other constants e and

√
2.

The protocols were made consistent to that for the investi-
gation on π . The training and testing datasets were made
by grabbing the 1st to 40007th and 100000th to 1000006th
digits respectively from each of the digital series. As far as
the learning results are concerned, In the case of e, the correct
prediction rates for 9 subgroups were 0.50079, 0.50075,
0.50003, 0.50130, 0.50164, 0.50255, 0.50163, 0.50098 and
0.50086 respectively; and in the case of

√
2, the measures

were 0.50016, 0.50097, 0.50096, 0.49996, 0.49938, 0.50102,
0.50163, 0.50162 and 0.50194 respectively. With confidence
probability 99%, the true means of both are over LCL (>0.5).
Furthermore, the performance in the training datasets of e and√
2 are 0.5092 (> 0.5+3σ ), 0.5132 (> 0.5+5σ ) respectively.

B. DEALING WITH MULTIPLE PSEUDO-RANDOM
SEQUENCES
The pseudo-random number generator (PRNG) generates
random numbers that are practically indistinguishable from
ideal random numbers, and widely used in various Monte
Carlo simulation studies. Usually, a sequence of pseudo-
random numbers is initiated by a ‘‘seed’’ inside the PRNG.
Once the seed is reset, the number sequence is thoroughly
altered. After we have revealed correlative patterns in a sin-
gle pseudo-random sequence such as the sequence π ′, we
are motivated to evaluate the potential of the neural net-
work in suppressing pseudo-randomness of the Mersenne
Twister (MT) associatedwithmultiple initial seeds [19], since
MT is a most reliable and widely used PRNG.

In MatLab, the range of MT is [0,1]. We used a thresh-
old 0.5 to generate a random 0-1 sequence. Consistent to our
first study, the same network structure and training protocol
were used to predict the seventh number from its precedent
consecutive six numbers, with the following training param-
eters: momentum factor = 0.95, learning rate = 0.05,
maximum epoch = 100, and minimum gradient =
1e − 10. We arbitrarily generated 9 random sequences and
binarized them. For each sequence, the training dataset con-
sisted of 10,000 instances from the 1st to 10,006th num-
bers. The testing dataset consisted of only one instance from
the 10,001-10,007 numbers in the corresponding sequence.

FIGURE 3. Performance fluctuation in predicting random members
from MT. (a) For 10 random sequences, the number of successful
predictions are 82, 21, 58, 66, 87, 53, 27, 58 and 39 out of 100 respectively,
and (b) and (c) the percentages of correct predictions are 95 and 77 out
of 100 for the first two sequences respectively.

In this way, the trained network will be applied to the
closest possible location for a maximized correlation. Then,
we repeated such a process by 100 times and counted the total
number of successful predictions for each of the 9 sequences.
As shown in Figure 3, the number of correct predictions
were found to be 82, 21, 58, 66, 87, 53, 27, 58, and 39 out
of 100 respectively.

Why do the prediction rates differ significantly? We inves-
tigated into the underlying reason in terms of the network
performance for the training dataset in 100 independent trials
(initialized by fresh randomization) of the first two sequences
respectively. During each training session, we recorded the
prediction performance as shown in Figure 3(b) and 3(c)
for the two sequences respectively. Since 95 and 77 of
100 exceeded the 51.5% for the two sequences respec-
tively, we infer that the training did enable the network to
detect a correlation in each training dataset. Then, why did
the prediction results for the testing dataset were polarized
(82 and 21 out of 100 for the two sequences respectively)?

Let us assume that the input pattern consisting of 6 con-
secutive random numbers ‘‘abcdef’’ and the output is the next
binary number 0 or 1. If Probability (1 | abcdef) 6= Probability
(0 | abcdef) 6= 0.5, then a well-trained network should favor
the number with higher probability, implied when the loss
function was minimized to reflect the statistical bias. In the
first sequence, the number of occurrences of the combined
7-number pattern ‘‘011000-1’’ was counted as 88, while
the number of occurrences of the complementary pattern
‘‘011000-0’’ was counted as 78. Whenever the instance in
a testing dataset is 011000-1, it should not be surprising to
achieve a successful prediction, as was the case for the first
sequence and reaching 82 out of 100 trials (again, in each of
which the network was independently trained). In the second
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random sequence, there were 78 7-number patterns
‘‘111111-0’’ and 65 complementary patterns ‘‘111111-1’’.
Unfortunately, the instance in the corresponding testing
dataset was ‘‘111111-1’’ (happens to be against the favorable
pattern of the network, which is ‘‘111111-0’’), which explains
such a low rate of successful predictions. Note that these
results, either higher or lower than 50 of 100, are still in
agreement with our explanation. Now, assuming both training
and testing datasets are huge. According to the law of large
numbers, the proportion of any string in both sets will be
close to the corresponding conditional probability distri-
bution. Therefore, the optimization of the neural network
ensures not only an effective learning of whatsoever statistical
relationships in training data but also a successful generalized
into testing data as long as the former and latter are from the
same distributions.

The above analysis supports the intrinsic capability of the
neural network in learning probabilistic knowledge and infer-
ring statistically. The neural network can effectively learn
whatsoever probabilistic associations in a training dataset.
Then, the neural network can use the knowledge or rules
learned from the training data in predicting outcomes in
testing data. If the testing data share the same statistical
properties with less than the maximum entropy, then the
neural network will be able to do prediction or association
as effectively as the information content of the training data
allows. Even in rather challenging cases such as pseudo-
random number sequences from transcendental numbers and
best random number generators, very simplistic feedforward
neural networks can do a quite impressive job as exemplified
above.

C. TESTING FOR NUMBER NORMALITY
A normal number refers to a number S whose sequence of
consecutive digits satisfying the limit [20]:

lim
n→oo

Ns(w, n)
n

=
1
b|w|

(3)

where w is any finite string of digits, Ns(w, n) is the total
number of times that w occurs in the first n digits of the
number, and b is the base of S. The definition of the normality
reflects the nature of randomness [11]. Nevertheless, how to
determine if a number is normal is still an open problem.
In particular, it is not known if π , or π ′ (in a binary disguise),
is normal or not [21], [22], although the first 30 million
digits of π are quite uniform [18]. With S = π ′, if π ′ is a
normal number, then any string w with 7 digits will satisfy
lim
n→oo

Ns(ω,n)
n =

1
27
. In particular, lim

n→oo
Ns(0011001,n)

n =
1
27

and

lim
n→oo

Ns(0011000,n)
n =

1
27
, which means whether the seventh

digit takes 0 or not is statistically independent with the first
six digits ‘‘001100’’, and anymachine learning attempt would
fail.

We would like to present an alternative definition to char-
acterize the normality. As we know, there are in total b|τ |

possible strings of a finite length τ . For prediction of the next
digit, we define a ‘‘a group ofmutually-exclusive strings’’Gτ ′

FIGURE 4. In the 0-1 sequence of π and
√

2, with |τ | = 7 and b = 2 the
evaluation of Eqs. (3) and (4) indicate that the two 0-1 sequences seem
not perfectly normal.

as {τ ′−0, τ ′−1, τ ′−2, τ ′−3 . . . . . . τ ′−(b−1)}, where τ ′ is a
finite string with |τ |−1 digits. Then, there are b|τ |−1 mutually
exclusive groups. Given the first n digits of S, we can record
the number of occurrences of each element inGτ ′ , and denote
that occurs the most often as Ns(τ, n)

(τ ′)
max. We propose to use

the following formula∑
τ ′

Ns(τ, n)(τ
′)

max ≤
1
b
+

5
√
b− 1
b
√
n

(4)

to test the normality.
Clearly, Eq. (3) can be deduced from Eq. (4). In the

perspective of prediction, with a given τ ′ the predictor can
only have one output, and the best performance for the ideal

predictor must be

∑
ω′
Ns(ω,n)

(w′)
max

n . We define Y =

n∑
k=1

Xk

n , where
the random variable Xk = 1 when the prediction is correct,
and otherwise Xk = 0. If the prediction by the predictor
is completely by guessing, then Y has the mean of 1

b and

deviation of
√
b−1
b
√
n . If Eq. (4) does not hold, we have a 5σ level

confidence to claim that the predictor does not work purely
by chance. In this way, Eq. (4) establishes a more straightfor-
ward connection between normality and pseudo-randomness
than Eq. (3).

Motivated by Eq. (4), we binarized the sequences of π and√
2 respectively. Then, with |τ | = 7 and b = 2 we calculated∑

τ ′
Ns(τ, n)

(τ ′)
max in each case for n= 104, 105, 106 and 0.9∗107

respectively, as shown in Figure 4(a). The black broken line
represents the 5σ bound. In addition, for n = 9, 000, 000
we individually counted Ns(τ, n) and calculated Ns(τ,n)

n for
every finite string and made the bar charts. It is observed
in Figure 4(b) and (c) that the frequencies of these strings
are pretty much at the level of 1

128 . Moreover, the frequencies
of 1 or 0 in the binarized π and

√
2 sequences tend to

converge to 0.5 when n increases. These facts suggest that
the 0-1 sequences of π and

√
2 are in agreement with the

current definition of normality. However, the data from π

and
√
2 in Figure 4(a) are yet beyond the black broken line,

violating Eq. (4). Therefore, we argue that the first 107 digits
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of either binary sequence are not perfect normal by our 5σ
ruler Eq. (4). By the way, the imperfect normality of π and√
2 are not un-imaginable, since either can be put into a quite

regular series expansion. Basically, the imperfect normality
of π ′ not only accounts for the 5σ performance in our first
numerical experiment but also sets an upper limit of the
network performance.

III. DISCUSSIONS AND CONCLUSION
Assuming that A is a presetting and B is an emerged event,
P(B|A) = 1 denotes a definite association between A and
B, while P(B|A) = P(A) means a statically independence
of B from A. Our study has highlighted a key utility of the
neural network in the cases of P(B|A) ' P(B) to detect
any nuance of correlation among data and realize any hidden
information for a purpose such as prediction. While the com-
plexity of neural network is more than conventional statistical
testing in terms of detecting any difference between P(B|A)
and P(B), the asymptotical tight bound of both methods
are 2(n), which means their computational complexities are
comparable.Moreover, a trained well-designed network itself
is an explicit low-dimensional expression of the underlying
relationship from inputs to outputs. It is surprising that the
neural network, even just a simplistic feed forward one, could
perform this task quite meaningfully, as evidenced above.

In theoretical machine learning, the Rademacher com-
plexity is used to measure the ability of a learning method
to fit entirely random data. The neural network with the
Rademacher complexity measure close to 1 is a richly expres-
sive model, which has a utility in decoding a pseudo-random
pattern. As the size of random data increases, the implicit
pseudo-random pattern becomes clearer, being different from
an entirely random pattern. Then, the neural network should
be capable of detecting such a pseudo random pattern and
predicting numbers according to the recognized pattern.

A major point we want to make is that the use of a
neural network in extremely uncertain environments such as
with pseudo-randomness can be interesting and promising.
Our numerical simulation suggests a non-trivial extension of
what machine learning can do. More powerful architectures
of neural networks, such as GAN and RNN, could bring
more insight into pseudo-randomness. It is worthwhile fur-
ther investigating the potential of the neural network in learn-
ing on a low-dimensional manifold, not only in statistical
terms but also beyond (such as identifying the structure of a
PRNG). The practical implication of research along this line
is enormous, such as for detection of rather weak signals in a
strong noisy environment or cope with chaotic dynamics to a
certain degree (making money in the stock market).

Modern theories with fundamentally uncertain properties
play a pivotal role in depicting and transforming the world,
such as the unpredictability of particles on a quantum scale
and chaotic behaviors due to classic nonlinearities. Initially,
Schrödinger formulated the electron’s wave function as the
charge density across the field, and then Born reinterpreted
it as the electron’s probability density. Up to now, the

FIGURE 5. Conceptual design of a physical 0-1random number
generator. This design should be significantly refined for accuracy and
efficiency.

probabilistic viewpoint remains the mainstream in the field of
quantummechanism. Throughmost intensive debates against
strongest opponents such as Einstein, one of his famous quote
is ‘‘God does not play dice with the universe’’, the probabilis-
tic theory of quantum mechanism has been well established
as rigorously tested, self-consistent and complete. A ques-
tion we would like to ask is if the randomness exhibited in
quantum mechanics is genuinely random or pseudo-random?
The question can be answered with a statistical hypothesis
test, which can be designed in various ways and seems now
addressable physically and computationally using the neural
network approach.

Most trustable random numbers are generated according
to quantum mechanics, which have applications espe-
cially in cryptography. Randomness is in principle pseudo-
randomness from the perspective of classical physics. The
generation of quantum randomness is impossible with clas-
sical means. Quantum random number generators (QRNGs)
are believed to give genuine randomness, and currently cat-
egorized into three classes [23]: QRNGs built on trusted
and calibrated devices, QRNGs with verifiable randomness
without trusting the implementation, and those between the
first two classes. Given the application-oriented motiva-
tion, all these QRNGs were designed to seek a balance
between efficiency and randomness eventually optimizing
cost-effectiveness. On the other hand, it is intellectually inter-
esting to test for any hint that quantum randomness might
be a kind of pseudo-randomness. A QRNG is needed for
such a test, which should be both statistically rigorous and
technically manageable.

Figure 5 is a new QRNG design (to our knowledge),
in which a laser experiment for double-slit diffraction is
utilized so that there is no any classic component (such as
a beam splitter) between a coming photon and its detector).
After the wave interference, any variations in the laser light
source and double-slit screen details are ‘‘averaged’’ out.
Then, both the valleys around the main interference lobe
offer ideal separating zone defining two symmetric parts (this
partition can be made even more distinct if we only detect the
so-called ‘‘pile-up’’ effect). Then, hits on the top detecting
region are interpreted as ‘‘1’’s, while hits on the bottom
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detecting regions are recorded as ‘‘0’’s in the photon-counting
mode. A coincidence detection circuit similar to that used
for positron emission tomography can reject simultaneous
arrivals of photons. Furthermore, the detecting regions can
be pixelated to increase statistical power. This experimental
design is based on mature technologies, keeping the quantum
nature as perfectly as feasible. With this QRNG or alike,
we can critically examine any difference between inherent
and pseudo random numbers using the above-described neu-
ral network approach; in other words, we can make sure if the
realization of a wave function is ideally random without any
subtle bias (maximum entropy) or there is a definite deviation
(even very tiny) from symmetry. If the latter case could be
validated up to a 5σ confidence level, then we know that what
God is playing is a pseudo-dice.
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