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ABSTRACT Fingerprint crowdsourcing has recently been promoted as a promising solution for
fingerprinting-based indoor localization systems to relieve the burden of site survey. When constructing
an indoor localization map from crowd-sourced samples, the following challenges should be addressed:
inaccurate sample annotation, unequal sample dimensionality, measurement device diversity, and nonuni-
form spatial distribution. In this paper, we propose the radio map construction from crowd-sourced sample
(RMapCS) scheme to handle these challenges. The RMapCS consists of four main modules: outlier
detection, source selection, fingerprint interpolation, and device calibration. For each device in each grid,
we first propose an improved clustering algorithm to remove outliers and use a threshold-based approach
to select only those important signal sources. For a grid without enough samples, we propose a fingerprint
interpolation algorithm to construct its device-specific fingerprints. Then, we propose a device calibration
algorithm to fuse samples from different devices to obtain grid fingerprints. We also propose a two-step
online positioning algorithm consisting of both set comparison and similarity computation. We conduct field
measurements and experiments to examine the localization performance. Results show that the proposed
RMapCS can achieve significant improvements over the peer schemes and the average localization error can
achieve around 1.5 m by using only the received signal strength-based fingerprints.

INDEX TERMS Indoor localization map construction, sample crowdsoucing, outlier detection and removal,
source selection, fingerprint interpolation, device calibration.

I. INTRODUCTION
Location information plays a very important role in
numerous industrial and commercial applications, such as
mobile robots [1], construction industry [2], pedestrian
tracking [3], [4], and etc. Due to the poor performance
of Global Positioning System (GPS) in indoor environ-
ments, many research efforts have been devoted to design
indoor positioning systems (IPSs) based on received signal
strength (RSS) from the access points (APs) in wireless local
area networks (WLANs) [5]–[7].
In the last decade, the fingerprinting technique has been

extensively researched for most RSS-based IPSs [8]–[10].
The basic idea is based on the assumption that each indoor
spatial location possesses an unique signal feature, dubbed as
fingerprint. The location of a test fingerprint can be estimated
to a known location with the minimal signal space distance.
To support the signal distance comparison, an indoor radio
map should be first constructed, which consists of the training
fingerprints each for one reference point (RP) with known

location. To construct a radio map, site survey can be used to
collect RSS samples each measured at an RP by some profes-
sional surveyor. However, site survey is too time-consuming,
labor-intensive and cost-prohibitive to be implemented for
large environments.

To help reducing or even eliminating the burdensome site
survey, the crowdsourcing approach has been recently pro-
moted to construct a radio map from crowdsourced sam-
ples, i.e., the samples casually collected at non-specified
locations from crowd [6], [11]–[14]. Compared with the site
survey, crowdsourcing distributes the tedious work of sample
measurement to common users rather than only professional
surveyors, by which labor cost and time can be reduced.
However, some new challenges arise when constructing radio
maps from crowdsourced samples:
• Inaccurate sample annotation: Crowdsourced samples
are generally not collected at specified locations, yet
each still needs to be annotated with some location infor-
mation for radio map construction. Such annotations are
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FIGURE 1. The proposed system diagram. The offline radio map M consists of the grid fingerprints in each subarea. For each grid, we first decide whether
it is a sufficiency or deficiency one according to the size of its support set S. For a sufficiency grid, we perform the outlier detection and source selection
and then compose its device-specific fingerprints f. For a deficiency grid, we apply the fingerprint interpolation technique to obtain its device-specific
fingerprints f. We then perform the device calibration to compose the grid fingerprint F for all grids. In the online positioning phase, we first select a
subset of candidate grids according to the number of mutually hearable APs by the test fingerprint Ft and a grid fingerprint Fg. We then apply the
proposed fingerprint transformation for both Ft and Fg and compute their signal distance. Finally, the center of a grid with the smallest signal distance is
output as the estimated location.

often inaccurate, which could lead to inaccurate radio
maps.

• Unequal sample dimensionality: For casual collections,
it may happen that different samples may contain dif-
ferent hearable sources due to the variations of radio
transmission and/or the differences of body direction,
even if they are actually collected at the same location.

• Measurement device diversity: As common users nor-
mally possess various brands and types of smartphones,
different radio chips and antenna designs may lead to
different measurement values of the samples collected
the same source even at the same location and time.

• Nonuniform spatial distribution: As the crowdsourcing
process is often not with some standard normandate pro-
cedure, it may happen that the crowdsourced samples are
not uniformly distributed in the whole indoor environ-
ment, some areas are with many samples; While some
others contain few or even no crowdsourced samples.

In this paper, we propose a radio map construction scheme
based on crowdsourced samples to solve the above four
problems. We first divide an indoor environment into several
distinct subareas, each of which is further divided into non-
overlapping grid cells with almost equal sizes. The objective
is to compose a grid fingerprint for each grid and then con-
struct the radio map for each subarea. For each grid, we pro-
pose to maintain a support set containing its crowdsourced
samples, which can be represented as a data cube. Fig. 1
presents the proposed system diagram, and Fig. 2 illustrates
the data processing flow. The proposed offline system con-
sists of the following modules: (i) outlier detection (OD);
(ii) source selection (SS); (iii) fingerprint interpolation (FI)
and (iv) device calibration (DC). For each module, we pro-
pose a corresponding data processing algorithm, by which we
process the raw data cube and compose each grid fingerprint.
In the online phase, we propose a fingerprint transformation

algorithm and a two-step positioning algorithm to obtain the
estimated location for an online test fingerprint.We have con-
ducted extensive experiments based on practical field mea-
surements for five different smartphone types. Experiment
results validate the proposed system in terms of improved
localization accuracies in most practical scenarios.

We briefly summarize our contributions as follow:
• Propose a new system diagram to construct a radio map
from crowdsourced samples;

• Design four algorithms to address the four challenges of
sample crowdsourcing;

• Propose a fingerprint transformation and two-step online
positioning algorithm;

• Conduct field experiments to examine the performance
of our proposed scheme.

The remainder of the paper is organized as follows.
Section II reviews the related work. Our proposed solution
is presented in Section III and IV, and evaluated via field
experiments in Section V. Section VI concludes the paper.

II. RELATED WORK
Some previous schemes have been proposed to construct
radio map based on the crowdsourced samples obtained from
pedestrian trajectories [15]–[18]. Kim et al. [15] propose to
use trajectory samples to enhance a radio map based on the
lightweight site survey, i.e., using only a few of RP finger-
prints. Zhou et al. [16] apply a semi-supervised manifold
alignment approach to construct a radio from crowdsourced
movement trajectories together with some specially cali-
brated fingerprints. Besides using crowdsourced trajectory
samples, some have also proposed to exploit some landmarks,
like the cross points of corridors, detected in trajectories to
calibrate a radiomap [17], [18]. However, these schemes have
not considered the four challenges discussed in the previous
section.
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FIGURE 2. Illustration of the data processing procedure of the proposed system. Each grid maintains a support set S as illustrated by a colored cube.
Each slice of the cube represents the samples from a particular device, and each row in a slice represents a sample, viz., a RSS vector. Each colored unit in
a row represents the RSS value from an AP, yet a white unit indicates that the corresponding AP is not hearable in this sample. The data cube is processed
as follows: After the per-device outlier detection, the sample s4 is removed for device D1; After the per-device source selection, the AP AP6 is removed
for device D1; The device-specific fingerprints f are composed for each device; For a deficiency grid, the device-specific fingerprints are obtained via the
fingerprint interpolation; After the device calibration, the grid fingerprint F is composed for each grid and the radio map M is constructed for a subarea.

Some previous work have studied one or two of the four
challenges, such as addressing the inaccurate sample anno-
tation [8], nonuniform spatial distribution [19] and unequal
sample dimensionality [20]–[22]. In [8], a bottom-up hierar-
chical clustering approach has been used to distinguish the
correctly labeled samples from all the samples in a trajectory.
However, the hierarchical clustering suffers from the random
initial sample selection, which may render a cluster mainly
containing mislabeled samples. In [19], the log-distance path
loss (LDPL) model is adopted to reconstruct a fingerprint
for such a grid without samples. However, the estimation
based on the LDPL model is often not accurate in complex
indoor environments due to the non-line-of-sight (NLOS)
problem. Laitinen and Lohan [21] have examined several AP
selection strategies, including the KL-based, dissimilarities-
based, maxRSS-based and entropy-based selection. They
report that the maxRSS-based one seems to offer the best
localization performance among others. However, only utiliz-
ing the maxRSS AP could decrease discrimination capability
of crowdsourced samples.

Several approaches have been proposed to solve the
device diversity problem recently, which can be generally
classified into two categories: inter-device calibration [19],
[23]–[26] and intra-device transformation [6], [27]–[35].
In inter-device calibration, the basic idea is based on the
assumption that some linear relation exists in between the
reception gains of any two transceivers. For example, in [19],
the gain offset has been proposed to calibrate the signal space
distance between any pair of fingerprints between different
devices. However, this approach generally demands huge
efforts for offline sample collection and computation. In intra-
device transformation, the basic idea is to transform the orig-
inal RSS value vector into a device-independent fingerprint.
For example, in [28]–[30], the difference or ratio in between

two elements in a RSS vector has been used as the trans-
formed fingerprint, which, however, significantly increases
the RSS vector dimensionality. To solve the dimension expan-
sion problem, some researchers have proposed to only use the
RSS offset to a particular AP [31] or to use the RSS offset
to the mean RSS value [32], and some researchers have pro-
posed to compare absolute RSS values at nearby positions to
build a gradient-based fingerprint map [35]. However, these
schemes have not considered the fusion of crowdsourced
samples from different devices.

In this paper, we design a novel diagram for radio map
construction from crowdsourced samples and solve the four
challenges through our algorithms of outlier detection, source
selection, fingerprint interpolation and device calibration.

III. MapCS: RADIO MAP CONSTRUCTION FROM
CROWDSOURCED SAMPLES
A. THE MapCS OVERVIEW
We first divide an indoor environment into several distinct
subareas, such as rooms, corridors and etc, according to their
functional layouts by inherent obstructions and partitions like
concrete walls. For each subarea, we create a lattice structure
consisting of non-overlapping grid cells. For site survey,
samples are collected on each grid center via surveyors to
compose the grid fingerprint, and all grid fingerprints consist
of an indoor radio map. For crowdsourcing, we define a
support set for one grid which contains the crowdsourced
samples each with its annotated location within the grid.
The objective is to compose each grid a fingerprint for con-
structing the indoor radio map M for each subarea. Table 1
presents the main symbols and their meanings in the paper
hereafter.

The proposed MapCS scheme first constructs a grid fin-
gerprint from its support set. Let S and F denote the support
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TABLE 1. Key symbols and their notations.

set of a grid and its fingerprint, respectively. We note that
S can be represented by a data cube. Each slice in a cube
contains the samples collected by a particular smartphone
brand and type (or called a device hereafter); While each row
vector in a slice indicates a sample with each element the
RSS value from a particular AP. The grid fingerprint F is a
vector with each element the RSS from a particular AP. The
first step is to compose F from S for each grid, if S contains
enough samples. For a grid without enough crowdsourced
samples, we create its fingerprint via the interpolation from
its neighboring grids’ fingerprints.

The proposed MapCS consists of the following four mod-
ules: (1) outlier detection, (2) source selection, (3) finger-
print interpolation and (4) device calibration. We first divide
all grids into two categories: sufficiency and deficiency.

A sufficiency grid contains enough samples for at least
one device type; Yet a deficiency grid does not contain
enough samples even for one device type. For a crowdsourced
grid, we first detect and remove outliers from S, if they
exist. Among all hearable APs, we then select a subset of
them to compose device-specific fingerprints, denoted by f.
Next, we calibrate diverse devices by fusing multiple device-
specific fingerprints into a single device-independent grid
fingerprint. Last, we interpolate a fingerprint for each defi-
ciency grid. Furthermore, we improve the online positioning
algorithm by including a source selection and fingerprint
transformation algorithm before fingerprint matching.

Fig. 1 illustrates the system architecture and proposed
modules for both offline radio map construction and online
fingerprinting localization; While Fig. 2 illustrates the data
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processing flow of the proposed scheme. Some discussions
are also provided in the two figures.

B. OUTLIER DETECTION
This module is, for each sufficiency grid, to detect and
remove those erroneously annotated samples. In this paper,
a sample is called normal, if it is measured at the location
within its annotated grid; Otherwise, it is an outlier. When
composing a grid fingerprint, the hearable AP set is com-
posed by those APs appearing once or more times in its
samples. Furthermore, the averaging technique or distribution
estimation is normally performed over the samples for each
hearable AP. Therefore, including outliers has at least two
negative impacts: changing the set of hearable APs of a grid
and deviating the averaged RSS values from their respective
ground truth values.

Since we do not have the ground truth labels for crowd-
sourced samples, an unsupervised machine learning algo-
rithm like clustering is an appropriate choice for outlier
detection. Among many clustering algorithms, we choose
the density-based one recently proposed by Rodriguez
and Laio [36], which clusters samples according to their
similarity-based local density. For our problem, we argue that
the similarity in between normal samples would be higher
than that in between normal samples and outliers, and also
higher than that in between outliers. Notice that the outlier
detection is device-specific, that is, it is done for each slice in
the data cube.

Let Sd = {s1, . . . , sN } denote the set of samples measured
by a particular device d , where each sample si is a RSS
vector and N the total available samples. Let Ai denote the
set of hearable APs in si. Let M = |

⋃
Ai| denote the

total number of all hearable APs in Sd . Note that M and N
may be different across different devices and different girds.
We construct a N × M RSS matrix R(0) for each device,
in which an element rnm is the RSS value received from the
mth AP by the nth sample. The signal distance between two
samples is computed by dnn′ =

√∑
m∈Aint

nn′
(rnm − rn′m)2,

where Aint
nn′ = An

⋂
An′ is the set of hearable APs by both

samples. The smaller the signal distance dnn′ , themore similar
of the two samples.

We also define two thresholds, namely, the cutoff distance
dc and the density threshold ρth according to [36]. Since
the number of samples and their pairwise distances of Sd
may be much different in different grid for different devices,
we set ρth = η × N and set dc as the β percentile distance
of all the N × N pairwise distances sorted in an ascending
order. A sample sn is called a neighbor of another sample
sn′ , if dnn′ < dc. Let Bn = {n′|dnn′ < dc} denote the set of
neighbors for the nth sample. The local density of the sample
is defined as the number of neighbors, ρn = |Bn|. Based on
the clustering algorithm [36], a sample sn is detected as an
outlier, if ρn < ρth; Otherwise, it is a normal sample.

In this paper, we extend the above onetime outlier detec-
tion into an iterative one. The pseudo-codes of the proposed

Algorithm 1 Iterative Outlier Detection Based on Clustering
Require: The set of samples Sd
Ensure: The normal set Snd
1: Compute dnn′ between all sample pairs in Sd
2: Sort the N × N distances dnn′ into d
3: Compute dc as the β percentile distance of d
4: Compute Bn and ρn for each sn ∈ Sd
5: Set Snd = Sd , Sod = ∅
6: Cluster each sn ∈ Sd into Snd (Sod ) based on ρn ≥ ρth

(ρn < ρth)
7: while Sod 6= ∅ do
8: Pop a sample s′ from Sod
9: for each sample si ∈ Snd do
10: if s′ ∈ Bi then Bi = Bi\{s′}
11: if |Bi| ≤ ρth then Snd = Snd\{si}, S

o
d = Sod

⋃
{si}

12: end for
13: end while
14: Return Snd

algorithm are presented in Algorithm 1. At first, we classify
each sample into either the normal set Snd or the outlier set
Sod based on its local density. While there exists an outlier
in Sod , we pop an outlier s′ and update the neighbors of each
normal sample si ∈ Snd . Notice that after this update, the local
density of si may become smaller than the density threshold
ρth. In this case, this sample si is also detected as an outlier
and is pushed into Sod . The iteration terminates until Sod = ∅.
For each grid, since we do not have the priori knowl-

edge about how many outliers could exist, we usually set a
moderate density threshold ρth according to the number of
available samples, like 0.3N . If a sample si is detected as an
outlier, its neighbor sj might also be outlier if their distance
are small. On the other hand, it is also possible that sj is still
be detected as normal due to its local density ρj > ρth in the
first iteration, which, however, has included an outlier si into
the density computation. This issue could be addressed if we
recompute the local density in each iteration after removing a
detected outlier. We note that in our problem the false positive
is considered as more serious than the false negative. That is,
we would rather remove a normal being detected as an outlier,
than include an outlier being detected as normal.

After completing the outlier detection, we use Snd to denote
the set of normal samples and construct a new N (1)

× M (1)

RSS matrix R(1) for each device in a grid.

C. SOURCE SELECTION
This module is, for each sufficiency grid, to select a subset of
APs to compose device-specific fingerprints. The number of
hearable APs in Snd could be very large in many typical indoor
environments. For example, in a campus lecture building,
a sample can hear more than 100 different APs according
to our field measurements. On the one hand, not all APs are
hearable by every sample even by the same device due to the
variations of radio propagation and/or obstructions of body
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direction. On the other hand, it may still exist unremoved out-
liers in Snd , which may introduce undesirable APs, weakening
the fingerprint discrimination capability. We next propose a
source selection algorithm to select only a subset of hearable
APs to compose a device-specific fingerprint.

The source selection is based on the AP acceptance ratio as
follows. Let Nm denote the number of non-empty elements in
the mth column in R(1), which indicates the mth AP heard by
Nm samples. The acceptance ratio of themth AP is defined as
Pm = Nm/N (1). We also define an acceptance ratio threshold
Pth. If Pm < Pth, then the mth AP is not included into
the device-specific fingerprint composition. That is, the mth
column of R(1) is removed.

After the source selection, we construct a new N (2)
×M (2)

RSS matrix R(2), where an element rnm is the crowdsourced
RSS from the mth AP in the nth sample. In this paper,
we adopt the commonly used RSS averaging approach to
compose device-specific fingerprints f for each grid. That
is, we compute the averaged RSS for the mth AP by rm =
1
|r·m|

∑N (2)

n=1 rnm, where r·m is the mth column vector of R(2).
The device-specific fingerprint is then construct as f =
(r1, . . . , rM (2) ).

D. FINGERPRINT INTERPOLATION
This module is to, for each deficiency grid, interpolate its
device-specific fingerprints from its surrounding sufficiency
grids within the same subarea. Due to the casual collec-
tion nature, some grids contain only a few or even none
crowdsourced samples. For example, the center pathway of
a corridor is with higher likelihood to collect many samples
compared with the corridor edges. We next present a fin-
gerprint interpolation algorithm based on the surface fitting
technique.

The pseudo-codes are presented in Algorithm 2. Let G
denote the set of all grids in one subarea. For one deficiency
grid in the subarea, we construct an interpolation support set
Giss from its surrounding grids as follows: Starting from an
empty set of Giss, we first include one of its direct neighbor-
ing grids into Giss. The function includeOneSurrounding-
Grid(Giss, g) is to include a surrounding grid g ∈ G\Giss into
Giss, while the grid g is a directly neighboring grid of either the
deficiency grid or any grid inGiss. LetDg andD =

⋃
g∈Giss Dg

denote the set of supported devices in one grid g ∈ Giss
and that in Giss, respectively. Note that each device d ∈ Dg
has a device-specific fingerprint fdg in the grid g. We use
the function countSupportFingerprint(D, d) to return the
number of grid-distinct device-d fingerprints in the interpo-
lation support set, denoted by K d . We define an interpolation
support threshold γ as a small integer. If G\Giss 6= ∅ or none
of device d ∈ D contains more than γ grid-distinct device-d
fingerprints, the construction process continues by including
another surrounding grid. Otherwise, the Giss construction
terminates.

After the construction process, for each device d ∈ D,
if K d > γ , we perform the fingerprint interpolation as

Algorithm 2 Fingerprint Interpolation for a Deficiency Grid
1: Set finished=FALSE, Giss = ∅
2: while not finished and G\Giss 6= ∅ do
3: Update Giss=includeOneSurroundingGrid(Giss, g)

4: Update the set of devices D
5: for each d ∈ D do
6: Compute K d

=countSupportFingerprint(D, d)
7: if K d > γ then finished=TRUE, break
8: end for
9: end while
10: for each d ∈ D with K d > γ do
11: Compute Ad

=
⋂

g∈Giss A
d
g

12: for each m ∈ Ad do
13: Construct φm(·) according to Eq. (1) and (2)
14: Compute r̂dm = φm(·)
15: end for
16: Compose an interpolated fingerprint fdg = (r̂dm)m∈Ad

17: end for

follows: LetAd
g denote the set of hearable APs by the device

d in grid g ∈ Giss. Let Ad
=

⋂
g∈Giss A

d
g be the set of

APs to perform the fingerprint interpolation for the deficiency
grid. For each AP m ∈ Ad , we first construct a RSS surface
φm(xg, yg) to minimize the following sum of squared error
based on the least square principle:

minimize θ ≡
∑

g∈Giss,m∈Ad

(φm(xg, yg)− rdgm)
2, (1)

where (xg, yg) are the coordinates of the gth grid center and
rdgm is the RSS value in the grid g device-specific fingerprint
fdg by the device d from the mth AP. We adopt a binary
polynomial function to construct the surface fitting function
φm as follows:

φm(x, y) =
p∑

c=1

q∑
d=1

ωcdxc−1yd−1, (2)

where ωcd s are the polynomial coefficients and let (p, q) =
(2, 2) avoid over-fitting and to reduce computation complex-
ity. Notice that the input of φm is a location and output is a
RSS value. Therefore, the interpolated RSS r̂dm from the AP
m by the device d is interpolated as the output of φm for
the deficiency grid. Accordingly, we can interpolate all the
RSS values for other APs inAd and compose the interpolated
device-specific fingerprint(s) for the deficiency grid.

Some discussions are as follows: The interpolation is done
in a per-device and per-AP manner for each deficiency grid.
In the construction of Giss, we do not try to include as many
as possible of surrounding grids for fingerprint interpolation.
Instead, we just find enough grid-distinct fingerprints for the
interpolation of at least one device. We argue that using too
many surrounding grids, especially farther away from the
deficiency grid, could introduce larger RSS deviations seen
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FIGURE 3. Field measurements of RSS values from nine APs by different
devices at the same measurement location.

by the deficiency grid, since radio propagation variations gen-
erally increase with the increase of the transmission distance.
Notice that it is possible that after the construction, no device
in Giss satisfies K d > γ , that is, no device contains enough
fingerprints for interpolation. In this case, we simply do not
create interpolated fingerprints for the deficiency grid.

E. DEVICE CALIBRATION
This module is, for each grid, to calibrate different device-
specific fingerprints and fuse them into a single grid fin-
gerprint. As crowdsourced samples could be contributed by
many different smartphone brands and types in practice,
it could cost lots of computation and storage resource to
establish multiple grid fingerprints each for one particular
device. Event worse, it could happen that an online testing
fingerprint is issued by a smartphone that had not been seen
in the offline database. We next propose a new inter-device
calibration algorithm based on the receiver pattern analysis.

At the same measurement location, the RSS rm from the
mth AP might be different across different devices due to
that they have different receiver implementations of antennas
and circuits, viz., different receiver gains. For example, for
two devices rdm − rd

′

m = δ with δ the difference of their
receiver gains. On the other hand, as the receiver gain takes
effect on each hearable APs, so a receiver pattern can be
observed. That is, if rdm − rd

′

m = δ, it might be most likely
that rdm′ − r

d ′
m′ ' δ for another AP also. Fig. 3 plots the field

RSS measurements at the same location by using different
devices. It can observe that the RSS values for two devices
exhibit a similar difference across different APs, though with
some small variation possibly due to measurement noises.

In this paper, we propose to exploit the receiver pattern
from two aspects: calibrating missing values in the offline
phase and transforming positioning fingerprints in the online
phase. For one grid, let F = {f1, . . . , fd , . . . , fNd } denote the
set of device-specific fingerprints. Again, let Ad denote the
set of hearable APs by the d th device, which may be different
across different devices. Let Auni

=
⋃Nd

d=1A
d and Aint

=⋂Nd
d=1A

d be the union set and intersection set of hearable

APs, respectively, from all available Nd device types. Let
Ad = Auni

− Ad denote the complement set of unhearable
APs by the d th device. LetM (3)

= |Auni
| denote the number

of total hearable APs from different devices. We note that
each device-specific fingerprint fd = (rd1 , . . . , r

d
m, . . . , r

d
M (3) )

is supposed to be with M (3) RSS values, which, however,
is often not the case due to the device diversity problem. Some
rdm in fd might be missing, if the mth AP is not hearable by
the d th device.

In the offline phase, we propose to calibrate the missing
values as follows. Let r̄m = 1

Nd

∑Nd
d=1 r

d
m, m ∈ Aint , denote

the averaged RSS value from all devices that can hear themth
AP. For each device, we define a calibration factor 1d by

1d
=

1
|Aint |

∑
m∈Aint

(rdm − r̄m), d = 1, . . . ,Nd . (3)

The inter-device fingerprint calibration is done for each AP
m ∈ Auni − Aint . Let Dm denote the set of devices each of
whose the corresponding rdm is missing, and letDm denote its
complement set, i.e., each device d ∈ Dm has the correspond-
ing rdm value. The fingerprint calibration for such an AP m is
to compute the calibrated value of r̃dm for all d ∈ Dm from the
following linear equations:

r̃dm −
1
Nd

∑
d∈Dm

rdm +
∑
d∈Dm

r̃dm

 = 1d , d ∈ Dm. (4)

Note that if |Dm| = L, then we have in total L such linear
equations and each equation contains L unknowns. Further-
more, |Dm| < Nd and |Dm| ≥ 1. Therefore, we can always
compute a unique r̃dm for each device d ∈ Dm. That is,
amissing value rdm is filled by the inter-device calibrated value
of r̃dm. We propose device calibration to calibrate the missing
value(s) when composing a device-specific fingerprint. The
following is the proof of the existence and uniqueness of a
solution r̃dm:

1) THE EXISTENCE OF THE SOLUTION
Based on the radio propagation model, the RSS from the mth
AP received by a smartphone type d can be written as:

rdm = Pactm + 10 logGdr + Z
d
m, (5)

where Pactm = Pt+10 log
Gtλ2

(4π )2
−10α log(dm/d0) is the actual

signal strength without considering the effect of reception
gain Gr and random noise, and Zdm is the value of random
noise. Pt is the signal transmission power in dBm. The aver-
age RSS of the intersection set r̄m can be further written as
follows:

r̄m =
1
Nd

Nd∑
d=1

rdm = Pactm +
10
Nd

log Ḡr + Z̄m, (6)

where Ḡr =
∏Nd

d=1 G
d
r and Z̄m = 1

Nd

∑Nd
d=1 Z

d
m. Theoreti-

cally, the RSS not received by the d th device from the mth
AP is:

r̃dm = Pactm + 10 logGdr + Z
d
m. (7)
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Based on Eq. (5) and (6), Eq. (3) in the paper can be written
as:

1d
=

1∣∣Aint
∣∣ ∑
m∈Aint

(rdm − r̄m)

=
1∣∣Aint
∣∣ ∑
m∈Aint

(10 logGdr −
10
Nd

log Ḡr + Zdm − Z̄m)

= 10 logGdr −
10
Nd

log Ḡr +
1
|Aint |

∑
m∈Aint

(Zdm − Z̄m).

Suppose Eq. (7) is the solution of linear equations (4) in the
paper, the left of Eq. (4) is equal to (10 logGdr −

10
Nd

log Ḡr +
Zdm − Z̄m). Because the random noise is uncontrolled, if we
do not consider the effect of random noise, the left of Eq. (4)
is equal to the right 1d . Therefore, Eq. (7) is the solution
of linear equations (4) and can better complement the RSS
values for each device that does not hear the mth AP.

2) THE UNIQUENESS OF THE SOLUTION
We learn that the first L (L < Nd and L ≥ 1) devices
do not hear the mth AP, so we have in total L linear equa-
tions from Eq. (4) and each equation contains L unknowns
(r̃1m, r̃

2
m, · · · r̃

L
m). It can be written as:

(1−
1
Nd

)r̃ lm−
1
Nd

L∑
l′=1,l′ 6=l

r̃ l
′

m=Q+1
l, l=1, . . . ,L. (8)

where Q = 1
Nd

∑
d∈Dm

rdm. Convert Eq. (8) into the form of

matrix:

AX = Y , (9)

where

A =


1− 1

Nd
−

1
Nd

· · · −
1
Nd

−
1
Nd

1− 1
Nd

· · · −
1
Nd

...
...

...
...

−
1
Nd

−
1
Nd

· · · 1− 1
Nd

,
X =

[
r̃1m r̃2m · · · r̃Lm

]T
,

Y =
[
Q+11 Q+12

· · · Q+1L
]T
,

Since A is a full rank matrix,Eq. (9) has the unique solution.
Combined the proof of the existence of solution, Eq. (7) is
the unique solution of linear equations (4) and can better
complement the RSS values for each device that does not hear
the mth AP.

After filling the missing RSS values, we obtain Nd ×
M (3) RSS matrix R(3) with each element rdm either the orig-
inal or calibrated RSS value of the d th from the mth AP.
Note that M (3) and Nd may be different across different
grids. By column-wise averaging of R(3), we obtain the grid
fingerprint Fg = (rg1, . . . , rgm, . . . , rgM (3) ), where rgm =
1
Nd

∑Nd
d=1 r

d
m, r

d
m ∈ R(3). In the next section, we will further

propose a fingerprint transformation algorithm for device
calibration in the online phase.

IV. ONLINE POSITIONING ALGORITHM
We propose an improved nearest neighbor (NN) online posi-
tioning algorithm, which consists of two parts: candidate grid
selection based on the number of mutual sources and target
grid determination based on the comparison of distances
between transformed fingerprints.

Let Ft = (rt1, . . . , rtm) and Fg = (rg1, . . . , rgm) denote
the online testing fingerprint and the offline fingerprint of the
gth grid, respectively. Note that both rtm and rgm take non-
zero values. Let At and Ag denote the set of hearable APs
by Ft and Fg, respectively. Let Aint

= At⋂Ag denote the
AP intersection set of the two fingerprints. We first select
candidate grids for distance computation as follows: Among
all available grids, we select a candidate grid according to the
number of mutual hearable APs, Ktg ≡ |Aint

|. In particular,
we sort all available grids accordingKtg in a decreasing order,
and select the top ρ percentile grids as the candidate grids.

We first perform an online fingerprint transformation as
follows: We continue using Fg to denote a candidate grid
fingerprint. Let Fintt = (rtm)m∈Aint and Fintg = (rgm)m∈Aint ,
respectively, denote the test and grid fingerprint consisting
of RSS values only from those mutually hearable APs in the
intersection set Aint . The mean value of Fintt and Fintg are
computed by

r̄t =
1
|Aint |

∑
m∈Aint

rtm and r̄g =
1
|Aint |

∑
m∈Aint

rgm. (10)

The transformed fingerprints for distance computation are
computed by

F̃t = Fintt − r̄t = (rtm − r̄t )m∈Aint , (11)

and

F̃g = Fintg − r̄g = (rgm − r̄g)m∈Aint . (12)

We compute the signal distance as the mean Euclidean dis-
tance between the two fingerprints:

D(̃Ft , F̃g) =
1
|Aint |

√ ∑
m∈Aint

((rtm−r̄t )−(rgm − r̄g))2. (13)

The target grid is determined by the one with the smallest
signal distance and its grid center is selected as the estimated
location for the test fingerprint.

Some discussions are as follows: Candidate grid selec-
tion, on the one hand, can reduce the online computation
time, as only a subset of grids are needed to perform fin-
gerprint transformation and comparison that are considered
as requiring more computation effort than a simple operation
of set intersection. On the other hand, we argue that select-
ing candidate grids with more mutually hearable APs could
improve the confidence of distance comparison in between
different grids. According to Eq. (13), the fingerprint dis-
tance is averaged over the number of mutually hearable APs.
For example, if two grids g1 and g2 are with the same D
to the test fingerprint, however, |Aint

g1 | = 1 and |Aint
g2 | =

10. We would put more trust to grid g2, as sharing more
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FIGURE 4. The layout of experiment environment. The total area is 592 m2 and there are five subareas including four classrooms and one corridor. Each
grid cell is with 0.6× 0.6 m2 area which is used to perform the site survey. In addition, we create deficiency grids according to the practical situations.
There are five situations as follow: (E1) (46.9%): The middle of corridor and sides of four rooms illustrated as subarea LP; (E2a) (34.4%) The corridor and
sides of room 213 and 216 illustrated as subarea LP+LG; (E2b) (34.4%) The corridor and sides of room 214 and 215 illustrated as subarea LP+G;
(E3) (25%) The corridor and sides of four rooms illustrated as subarea LP+LB; (E4) (21.9%) The middle of corridor and full four rooms illustrated as
subarea LP+LG+G.

FIGURE 5. Comparison of ALE based on surveyed samples.

mutually hearable APs normally implies that the radio envi-
ronment of grid g2 is more like that of the test fingerprint,
hence the higher likelihood of the true location for the test
fingerprint.

We adopt both offline calibration and online transfor-
mation to solve the device diversity. Our arguments are
as follows: For one grid, Ft = (rt1, . . . , rtm) and Fg =
(rg1, . . . , rgm) are the online test fingerprint and the grid
fingerprint at the gth grid, respectively, where

rtm = Pacttm + 10 logGr + Ztm, (14)

and the average RSS from the mth AP by different devices
can be computed by:

rgm =
1
Nd

Nd∑
d=1

rdgm = Pactgm +
10
Nd

log ¯̄Gr + ¯̄Zgm. (15)

FIGURE 6. Comparison of CDF based on surveyed samples.

Due to offline calibration making each AP heard from mul-
tiple identical devices, the average receiver gain on the RSS
of different devices as shown in Eq. (16) is the same for other
APs in the same grid.

10
Nd

log ¯̄Gr =
10
Nd

log(
Nd∏
d=1

Gdr ). (16)

The random noise of different device is:

¯̄Zgm =
1
Nd

Nd∑
d=1

Zdm. (17)

During the online transformation, the mean value of Fintt
and Fintg are computed by

r̄t =
1
|Aint |

∑
m∈Aint

Pacttm + 10 logGr +
1
|Aint |

∑
m∈Aint

Ztm

(18)
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FIGURE 7. Comparison of the performance of outlier detection for different devices based on crowdsourced samples. (a) Outlier detection
performance of device HW3C. (b) Outlier detection performance of device HW4C. (c) Outlier detection performance of device Op9. (d) Outlier
detection performance of device Mi6

and

r̄g =
1
|Aint |

∑
m∈Aint

Pactgm +
10
Nd

log ¯̄Gr+
1
|Aint |

∑
m∈Aint

¯̄Zgm.

(19)

If not considering the effect of random noise, the transformed
fingerprints F̃t and F̃g can be written as:

F̃t = Fintt − r̄t = (Pacttm −
1
|Aint |

∑
m∈Aint

Pacttm )m∈Aint (20)

and

F̃g = Fintg − r̄g = (Pactgm −
1
|Aint |

∑
m∈Aint

Pactgm )m∈Aint . (21)

The transformed fingerprints F̃t and F̃g are uncorrelated
with receiver gains of different devices. Thus, the offline
calibration and online transformation can solve the device
diversity.

V. EXPERIMENT RESULTS
A. EXPERIMENT SETUP
We conducted field measurements in a typical office envi-
ronment, as illustrated by Fig. 4. We used a lattice structure
to obtain 1480 grids each about 0.6 × 0.6 m2. Five different
Android smartphones were used to obtain RSSmeasurements
from existingWLANAPs, includingHuaweiHol T00 (Hw3),
Huawei CHM-TL00 (Hw4), Xiaomi MI6 (Mi6), Oppo R9sk
(Op9) and Meizu MX5 (Mx5). We used the first four devices
to obtain 10 samples in each grid and obtain in total 59, 200
training samples. For each device, we obtain 650 testing
fingerprints that are evenly distributed within the experiment
environment, and hence we obtain in total 3,250 testing fin-
gerprints. The data collection continued for one week.

For each grid, we can construct two types of sample sup-
port sets: The surveyed one contains all the training samples
measured within the grid; While the crowdsourced one con-
tains both normal samples and outliers: The normal samples
are the training samples in those grids whose centers are
not more than 1m away from the given grid center. The
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FIGURE 8. Comparison of the localization performance of RMapCS for different situations based on crowdsourced samples. (a) Localization error vs.
outlier ratio for different devices. (b) Localization error CDF vs. outlier ratio. (c) Localization error vs. vacancy ratio for different devices. (d) Localization
error CDF vs. vacancy ratio

FIGURE 9. Comparison of ALE based on crowdsourced samples.

outliers are selected from the training samples in those grids
whose centers are from 1m to 5m away from the given grid
center. Different radio maps can be constructed based on the
choices of grid sample support set. Furthermore, the testing
fingerprints can be constructed either for each device or for all

FIGURE 10. Comparison of CDF based on crowdsourced samples.

devices. In the former case, we construct four device-specific
testing datasets. In the latter case, we construct a single
device-mixed testing dataset that still contains 650 testing
fingerprints, yet each one-quarter being randomly selected
from per-device fingerprints.

24234 VOLUME 6, 2018



Y. Ye, B. Wang: RMapCS for Indoor Localization

FIGURE 11. Comparison of ALE for the device-mixed testing dataset based on crowdsourced samples with four situations including (E1), (E2a), (E3)
and (E4) when some of its modules are disabled. (a) Localization error vs. vacancy ratio for different schemes (60% outlier case). (b) Localization error
vs. vacancy ratio for different schemes (120% outlier case)

FIGURE 12. Comparison of CDF of Mx5 based on surveyed samples.

B. EXPERIMENT RESULTS
1) PERFORMANCE COMPARISON BASED ON SURVEYED
SAMPLES
We note that our proposed scheme can also be applied to
the site survey approach to construct a radio map, denoted
as RMapSS. Since each grid contains only surveyed samples
yet from different devices, we mainly examine its capability
to deal with the device diversity challenge. For compari-
son, we also construct radio maps for each device based on
its own surveyed samples, called RMapHw3, RMapHw4,
RMapOp9 andRMapMi6. Furthermore, we construct a radio
map based on a simple device fusion algorithm that obtain the
averaged RSS values over the surveyed samples from all the
four devices, denoted by RMapDFusion.

Fig. 5 plots the average localization error (ALE) of these
radio maps for the four device-specific testing datasets, and
Fig. 6 plots the cumulative distribution function (CDF) of
localization errors for the device-mixed testing dataset. It can

FIGURE 13. Comparison of CDF of Mx5 based on crowdsourced samples.

be observed that our RMapSS achieves the best localization
performance in both types of testing datasets. In particular,
its improvements over those of RMapDFusion are 30.1%,
19.3%, 39.6% and 48.7%, respectively, in the four device-
specific testing dataset. In the construction of RMapSS, since
each training sample is obtained within a specific grid and
all grids contain enough training samples, we only execute
the device calibration module to deal with the issue of train-
ing samples from different devices. The results validate the
effectiveness of our device calibration algorithm.

2) RMapCS PERFORMANCE BASED ON CROWDSOURCED
SAMPLES
We first compare the performance of the iterative with one-
time outlier detection. Fig. 7 plots the main classification
results where the deficiency ratio is set as 46.9%. We first
observe that, no matter the iterative or onetime outlier detec-
tion in all devices, the more outliers, the worse of the
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FIGURE 14. Comparison of ALE of Mx5 based on crowdsourced samples with four situations including (E1), (E2a), (E3) and (E4) when some of its
modules are disabled. (a) Mx5 localization error vs. vacancy ratio for different schemes (60% outlier case). (b) Mx5 localization error vs. vacancy ratio
for different schemes (120% outlier case)

classification performance of Accuracy and Precision. This
is because, within a given range, as the number of outliers
increases, the local density of outliers will increase, which
results in more outliers being divided into normal samples.
Furthermore, it can be seen that the iterative one can achieve
a higher precision yet with a lower recall. In our problem,
wewould rather remove a normal being detected as an outlier,
than including an outlier being detected as normal. The results
suggest that, comparing with the onetime outlier detection,
the iterative one removes some normal samples, but more
outliers are removed, which meets our design objective.

We next examine the localization performance of RMapCS
for different situations of obtaining crowdsourced samples.
We mainly consider two practical cases: The ratio of out-
liers in sufficiency grids and the ratio of deficiency grids.
To this end, we include different numbers of outliers into each
sufficiency grid. Furthermore, we create deficiency grids
according to the practical situations. As illustrated in Fig. 4,
we consider the following five situations. (E1) (46.9%): The
middle of corridor and sides of four rooms; (E2a) (34.4%)
The corridor and sides of room 213 and 216 and full rooms
214 and 215; (E2b) (34.4%) The corridor and sides of room
214 and 215 and full rooms 213 and 216; (E3) (25%) The
corridor and sides of four rooms; (E4) (21.9%) The middle
of corridor and full four rooms. The number in the bracket
indicates the radio of deficiency grids.

Fig. 8 (a) and (b) plot the localization performance when
the outlier ratio increases in each sufficiency grid, where
the deficiency ratio is set as 46.9%. Fig. 8 (c) and (d) plot
the localization performance for different ratios of deficiency
grids, where the outlier ratio is set as 60%. It is not unexpected
to observe that the localization performance degradeswith the
increase of outlier ratio and deficiency grids.When the outlier
ratio increases, it becomes harder to detect and remove all
outliers from the support set. The localization hence would
suffer from those unremoved outliers, as they also take part

in the radio map construction. When observing Fig. 8 (c) and
(d), the performance of (E4) is slightly better than the other
situations, as it contains the fewest deficiency grids requiring
fingerprint interpolation. On the other hand, we can observe
that the performance degradation is not significant from the
CDF results in the four device-specific testing dataset in these
practical scenarios. The results could validate the robustness
of our proposed scheme.

Then we examine the RMapCS performance when some
of its modules are disabled for a typical situation of 60%
outlier ratio and 46.9% deficiency grids. Fig 9 plots the
average localization error for the four device-specific testing
datasets, and Fig. 10 plots the CDF of localization errors for
the device-mixed testing dataset. Furthermore, we compare
the performance for the device-mixed testing dataset based
on crowdsourced samples for four situations including (E1),
(E2a), (E3) and (E4) when some of its modules are disabled.
Fig 11(a) and Fig 11(b) plot the average localization error
with 60% and 120% outliers per sufficiency grid, respec-
tively. It can be observed that the localization performance
suffers with the removal of one or more modules from the
proposed RMapCS. On the other hand, it is interesting to
see that the proposed scheme with the crowdsourced samples
achieves a similar localization performance compared with
the surveyed samples, i.e., RMapCS vs. RMapSS, in both
testing datasets. The results validate the effectiveness of not
only each proposed module but also the whole scheme for
radio map construction.

3) PERFORMANCE COMPARISON FOR THE NEW DEVICE
DATASET
In many practical cases, it could happen that an online testing
fingerprint is from a new device that has not been used in
the offline radio map construction. We next use the testing
fingerprints from the another smartphone Mx5 to examine
the applicabilitiness of a radio map. Fig. 12 and Fig. 13,
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respectively, compares the localization error CDF for dif-
ferent radio maps by using the surveyed samples for the
proposed scheme by using crowdsourced samples. It can
be observed that the proposed scheme RMapSS outper-
forms all the others in terms of lower localization errors.
In particular, the ALE improvements of RMapSS are
29.3%, 19.9%, 22.2%, 22.5% over the device-specific radio
map of RMapHw3, RMapHw4, RMapOp6, RMapMi6,
respectively, and 43.1% over the device fusion scheme
RMapDFusion. Furthermore, we compare the performance
of Mx5 based on crowdsourced samples for four situations
including (E1), (E2a), (E3) and (E4) when some of its
modules are disabled. Fig 11(a) and Fig 11(b) plot the average
localization error with 60% and 120% outliers per sufficiency
grid, respectively. The results validate the applicableness of
the proposed scheme.

VI. CONCLUSION
In this paper, we have proposed a RMapCS scheme which
contains four offline modules and one improved online
positioning algorithm to deal with the four challenges when
constructing a radio map from crowdsourced samples. Field
measurements and experiments have validated the effective-
ness, robustness and applicableness of the proposed scheme.
In our future work, we shall further study the update strategy
for grid support set and indoor radio map when receiving
newly crowdsourced samples.
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