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ABSTRACT Vehicles forming connected communication networks are routinely challenged with the
complex decision problem of either staying with the same wireless channel or moving to a different
wireless channel when experiencing highly variable channel quality conditions. In order to obtain a practical
solution to this problem, we refer to bumblebee behavioral models, which possess evolved decision-making
mechanisms to adaptively solve similar problems while foraging in environments containing multiple floral
resources (channels). In order to enable vehicles to adapt to these time-varying channel conditions, we pro-
pose in this paper a bumblebee-inspired decision-making algorithm in which channel quality information is
stored and updated in vehicle memory. This information is used to estimate qualities of channel options and
then weighed against switch costs to determine optimal channel selection. We incorporated our algorithm
into a VDSA-based VANETmodel, while the GEMV2 Vehicle-to-Vehicle (V2V) propagation simulator was
used to test its performance under differentmemory parameters and against existingmodels. Our results show
that a memory system based on the averaging of stored channel information dramatically increased channel
selection performance over a memoryless system in both urban and highway scenarios by 52% and 20%,
respectively.

INDEX TERMS Connected vehicles, bumblebees, dynamic spectrum access (DSA), foraging theory.

I. CONNECTED VEHICLES MEET SPECTRUM SCARCITY
The United States Federal Communication Commis-
sion (FCC) allocated six channels in the 5.9 GHz band for
vehicular communications [1]. However, it is anticipated that
these dedicated channels will not be sufficient for handling
all connected vehicle communications in the future due to
the increasing number of connected vehicles operating in
densely populated cities [2]. One potential solution to this
spectrum scarcity issue is to leverage underutilized wireless
spectrum elsewhere, such as in the digital television spectrum
band, using an approach called Vehicular Dynamic Spectrum
Access (VDSA) [3], [4]. The fundamental idea behind DSA
is to use unoccupied channels without interfering with the
licensed users, i.e., primary users (PUs), of the frequency
bands. This result can be achieved via spectrum sensing
techniques [4]. However, such channel sensing approaches
possess two significant technical challenges that need to be
accounted for in connected vehicles environments, namely:

• In a highway scenario, there exists a highly dynamic
vehicular environment caused by varying network topol-
ogy whereas in an urban scenario channel conditions
change rapidly, which significantly impacts network
reliability and efficiency. In particular, the time-varying
propagation characteristics of the connected vehicles
environment, such as Doppler Effect, multipath fading
channels, and transmission errors on the control messag-
ing need to be considered [5], [6].

• The limited capability for information sharing, i.e.,
latency caused due to processing operations in the radio
and, as well as limited spectrum availability makes net-
work organization challenging. These constraints may
potentially affect the adaptation process to the current
network conditions although information sharing may
increase environmental awareness [7].

Therefore, the technical challenges resulting from
severe dynamic characteristics of the vehicular networking
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environment makes it difficult to employ DSA via con-
ventional approaches such as spectrum pooling, CORVUS,
DIMSUMnet [8]–[11]. This is especially true when channel
sensing parameters such as the noise floor, propagation fad-
ing, and interference are time-varying [8].

In this paper, we explore how a VDSA framework for
distributed Vehicle-to-Vehicle (V2V) networks can be based
on adaptive behavioral responses of animals that must survive
under similar complex and highly varying resource condi-
tions in their natural habitat [12]. In V2V networks, we have
a similar environment where the channel energy changes
in a highly time-varying manner, and the vehicles need to
find better channels for packet transmission. In particular,
we focus on bumblebee foragers since they have evolved
cognitive abilities that enable them to make adaptive behav-
ioral decisions under such conditions based on individually
acquired information [13]–[15]. Using the bumblebee model,
an efficient channel sensing and selection system has been
developed that can rapidly and adaptively respond to changes
in multichannel environments of a vehicular communication
band. The key components of this system are: i) channel
memory, which enables more accurate estimates of available
channel quality to determine the optimum point to switch to
better quality channel, and ii) the mapping of stored informa-
tion on channel quality using ‘Mean’ strategy (i.e. past infor-
mation on each channel gained through sampling is averaged
and then used to make the decision on the channel with the
best quality).

The rest of this paper is organized as follows: In Section II,
we explain why the bumblebee is an ideal model for channel
access optimization in vehicular communication networks.
In Section III, we explain the similarities between deci-
sion problems in vehicular and bumblebee resource envi-
ronments. In Section IV, we outline the the bumblebee
decision-making process. In Section V, we describe our
bumblebee-inspired algorithm for channel access in a mem-
oryless system, which is then expanded to include memory
in Section VI. In Section VII, we discuss the results of
simulation employing the algorithm, followed by concluding
remarks in Section VIII.

II. WHY BUMBLEBEES?
There have been several practical approaches proposed in the
open literature that leverage distributed optimization tech-
niques employed by natural model systems, such as ant
colonies, honeybees, and other insects, which perform swarm
optimization of available resources [16]. However, these tech-
niques require that each node within the network is dependent
on the social interaction with all other nodes within the net-
work, which is not the case in applications such as connected
vehicle networks.

We propose the bumblebee as a more suitable social
insectmodel for studying distribution optimization of channel
resources. Unlike ants and honeybees, individual bumble-
bee foragers acquire information on their own and indepen-
dently solve optimization problems within the distributed

network [12], [17]. Thus, bumblebees do not depend on a
centralized information system, which can be highly inef-
fective and unreliable in environments that rapidly change
over time and space. For vehicular networks, this description
corresponds to rapidly changing environments, where cen-
tralized information may be inaccurate or too slow to reflect
local changing conditions. Furthermore, vehicles may lose
connectivity to a centralized database or other neighboring
vehicles under some conditions (e.g. highway, rural area).
In such a scenario, any optimization mechanism relying on
this form of communication is highly inefficient and poses a
major safety concern.

In contrast to the individual-based bumblebee system, hon-
eybees rely on the ‘scout-recruit’ method where one indi-
vidual (scout) communicates resource quality information to
many individuals (recruits) [18]. If the quality of the resource
decreases, then the recruits are informed of a better food
source by the scout when they return to the hive. The scouting
process and the need for worker bees to return to the hive in
order to be informed about a better food source is associated
with time costs not present in the bumblebee system (where
individuals sample resource alternatives and then specialize
on the best one).

Thus, the honeybee system is not an efficient resource
exploitation mechanism when resources vary rapidly and
are unpredictable over time and space. Similarly, ant colony
behavior is based on tracking pheromones deposited by
‘primer’ ants [19]. Although ant colonies are very efficient
for routing scheduling and organization, this mechanism also
cannot deal with the highly time-varying vehicular network-
ing environment [20].

As an alternative to colony behavior, reinforcement learn-
ing [21], [22] mechanisms have been presented in the existing
literature. Genetic algorithms provide a reliable optimization
technique but at the expense of a large computational latency
with respect to converging to the optimum value [23]. Particle
swarm optimization is a computationally efficient optimiza-
tion technique since it jointly solves the fitness function based
on a multi-objective formulation [24]. However, it is highly
dependent on the initial information about the swarm struc-
ture, which is not realistic for connected vehicle networks.

Bumblebee foraging behavior utilizes individual decision
mechanisms, which can include information about the behav-
ior of others (e.g., scent marks) but does not depend on it.
Since there is no need to access any centralized system or wait
for information from others, the decision and adaptation to
change can occur as rapidly as their highly efficient neural
processing system allows.

III. TRANSLATION BETWEEN TWO WORLDS
Matching the terminology between bumblebee foraging and
vehicular communications is the first step in transiting bum-
blebee behavior to the vehicular optimization problem (see
Table 1). In-band interference is an unwanted phenomenon in
the channel bandwidth. The equivalent of this phenomenon
for bees is the presence of other bees as competitors on a
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TABLE 1. Several definitions in connected vehicular communications and their equivalent definitions in bumblebees.

particular species of flower. Out-of-band interference is a
form of interference produced by co-channels that is similar
to the bee competitor’s effects on nectar level estimations of
alternative floral species.

Channel energy levels is a key feature with respect to
channel access and is similar to nectar levels of the flowers for
the foraging bees. However, there is an inverse relationship
between these two features. In vehicular communications,
it is desired to access the channel with as low an energy
level as possible since a low energy level means there is
no other user in the channel, which also means low noise
levels and interference effects. On the other hand, bumblebees
desire to access the flower with the highest nectar (energy)
levels possible since it means there are only a few other bees
competing for the same floral species, thereby increasing
their rate of nectar return to the colony.

Computation/process time of the algorithms used by con-
nected vehicles corresponds to the flower handling and search
time of bees. Many algorithms have been proposed for
connected vehicles that provide the perfect channel access
scheme [25], [26].

However, if the algorithm gives the result across a longer
time interval than the coherence time, the environment con-
ditions change and the output of the algorithm is no longer
appropriate. Latency for safety-related applications is set
at 100 ms [27], with higher computation/processing times
potentially leading to larger delays in the vehicular com-
munication. Similarly, if bumblebees sample the available
species across a varying floral environment too infrequently,
they may be delayed in switching to a more rewarding floral
species should it become available. In other words, the trade-
off between latency and reliability is mirrored with respect to
the bumblebees in terms of sampling frequency and choice
accuracy.

Switching cost/time between channels should be consid-
ered although switching operations provide the access to the
channel with higher quality. Similarly, bumblebees switch to
the floral species with the highest nectar returns in order to
gain more energy. However, they can also incur a significant
time cost when switching from one floral species to another.

Channel activity over time helps to understand channel
behavior as well as the design of a prediction mechanism.
Similarly, bees alter foraging decisions based on the number
of bees within and across floral species, often showing an
Ideal Free Distribution [28]. We detail specific components

of the bumblebee system leveraged model to create a vehicu-
lar channel selection algorithm below.

IV. FORAGING THEORY
Bumblebees provide a robust biological framework for build-
ing and implementing cognitive algorithms for DSA in
vehicular networks. Bumblebees are social insects that form
colonies comprised of a single queen and up to several
hundred workers [17]. A small subset of these workers are
called ‘‘foragers’’, and they have the sole task of finding
and collecting food for the colony in the form of floral
nectar and pollen rewards. Foragers routinely encounter a
wide array of flowers with reward levels that rapidly change
over time and space (see Figure 1). Foragers are not pre-
programmed with information on the reward level associated
with different flowers. Rather, they learn and remember the
reward level and sensory cues (color, odor, shape) associated
with each flower species and then decide which ones to visit.
Importantly, bumblebee foragers do not depend on ‘‘scout’’
bees, such as honeybees or pheromone trails left by others
such as ants. Consequently, each individual has the capacity
to learn, remember, and track changes in floral rewards on
its own. This system has evolved to enable maximal reward
intake to the colony across complex and highly variable floral
conditions.

FIGURE 1. Example of artificial mixed floral environment used to
investigate memory-based decision-making in bumblebees [14]. Each
color represents a species (channel).

While searching for flowers containing the greatest
reward, foragers implement a number of adaptive behavioral
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FIGURE 2. The memory-based channel selection algorithm from bee (top) and vehicle (bottom) perspectives. Similar to each bumblebee, each vehicle is
equipped with memory to store channel (floral) reward information, which is then used to select the channel (floral species) with the highest reward
quality out of those available in sampling interval. During the transmission interval, the vehicles (bumblebees) use their current channels for
communication (forage on current species) while simultaneously tracking the change in the reward level. The vehicles switch to a better channel (floral
species) based on their memory if the current channel level drops to a lower value. Vehicles alternate between sampling (TSample) and transmission
(TTransmit ) periods to track changes in a time-varying noisy resource environment.

processes [29], [30] that are comparable to those processes
needed for vehicles to function independently and effec-
tively in a connected network environment(see Figure 2).
First, foragers (vehicles) evaluate the available flower species
(channels) and then select the type (channel) that yields
the greatest reward (channel quality) [31]. Second, foragers
(vehicles) track and respond to changes in floral reward lev-
els (channel quality) in a flexible manner. Finally, foragers

(vehicles) make floral (channel) decisions that maximize the
rate of nectar delivery to the colony (constant utilization of
a high quality channel by the vehicle) [32]. For example,
the decision on whether or not to switch to a new flower
species (channel) is based on a trade-off between the rewards
gained by visiting a new type types (channel quality) and the
time costs incurred when switching to that type (channel; also
referred to as a ‘‘switch cost’’).
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Although bumblebees primarily use their personal expe-
riences to make floral decisions, they can also enhance
their knowledge of floral environments by gaining infor-
mation from other foragers. For example, individuals can
passively acquire information about reward quality from
cuticular hydrocarbon ‘‘footprints’’ left on flowers by previ-
ous foragers: low hydrocarbon levels signal high likelihood of
reward and high hydrocarbon levels signal low likelihood of
reward [33]. In this way, individual bumblebee foragers can
use the experiences of others (use memory of other vehicles)
in order to increase their efficiency of flower (channel) selec-
tion by minimizing the amount of time spent (cost) on empty
flowers (low quality channels). By incorporating this agent-
based approach in our empirical studies of forager behav-
ior, we greatly accelerate the subsequent development and
implementation of cognitive algorithms for optimal channel
selection by vehicles in connected network environments.

V. BUMBLEBEE-BASED CHANNEL SELECTION
To leverage the potential of bumblebee foraging behav-
ior [34] in connected vehicle environments, we translated the
evolutionarily optimized [35] memory-mediated bumblebee
foraging strategies to a VDSA decision-making algorithm for
connected vehicle networks [36]. One of themajor challenges
faced by vehicles in a connected network environment is that
they must accurately estimate channel quality from power
levels that significantly vary over both time and space. The
incorporation of an individual memory component into the
algorithm design overcomes this challenge by enabling indi-
vidual vehicles to derive estimates of local channel quality,
which could then be shared throughout the vehicular net-
work. Equipping vehicles with an unlimitedmemory capacity
would provide the most accurate estimate of channel quality.
However, unlimited memory would also generate additional
costs, e.g., information processing speed, time lag in reacting
to environmental changes. Thus, determination of an optimal
decision-making strategy requires consideration of memory
capacity, dynamics, and associated costs in terms of sensing
and channel switching time. Bumblebees face identical con-
straints in choosing the optimal foraging strategy in variable
floral environments.

Figure 2 illustrates the proposed bumblebee-based algo-
rithm employing distributed memory for efficient channel
selection. We initialize the algorithm by defining the number
of channels in the dedicated memory of the vehicle. During
the sampling interval, the vehicles sample the channels and
collect the spectrum sensing data. The energy values collected
are then converted into the channel rewards and stored in the
memory. In the transmission interval, the vehicle selects the
channel with the best reward gain and starts the transmission.
During the transmission interval, the vehicle simultaneously
keeps monitoring the channel reward level and performs
packet transmission. If the current channel reward level drops
below the channel reward values in the memory, it switches to
another channel provided the switching cost is not too high.
The algorithm is explained in detail in Section VI. After the

FIGURE 3. Fixed time snapshot of power spectral density of PCS band
shows the vacant and occupied channels in that band [39].

FIGURE 4. Fixed time snapshot of power spectral density of GSM band
shows the vacant and occupied channels in that band [39].

FIGURE 5. Fixed time snapshot of power spectral density of lower LTE
band shows the vacant channels in the band [39].

transmission interval, the vehicle initiates another sampling
interval where new sampling values are stored in the memory,
and if a better channel is available the vehicle switches to the
new channel.

In Figures 3, 4 and 5, we see the channel spectral map
for different frequency bands. The channel characteristics
change with the interference from incumbent or other sec-
ondary users stochastically. In order to determine whether
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our memory-based bumblebee algorithm can help to improve
the channel selection performance, we performed a chan-
nel characterization study. Our bumblebee algorithm lever-
ages past channel energy samples from memory in order to
decide whether to stay on the current channel or switch to a
different channel. We used broadband Personal Communica-
tion Service (PCS), Global System for Mobile Communica-
tions (GSM) and lower Long Term Evolution (LTE) bands
ranging respectively from 1850–1990 MHz, 825–895 MHz,
and 600–700MHz using a USRPN210 [37] software-defined
radio in an indoor laboratory environment. We monitored
these frequency bands in order to get the real-time channel
sensing data for comparimg against our traffic simulator gen-
erated data. Figures 3, 4 and 5 show the time-varying behavior
of the channels and the energy values are approximately
similar to the ones generated in GEMV2 [38], which is used
in this work to test our bumblebee algorithm. The bands are
divided into 10 MHz bins which is bandwidth allocated to
DSRC channels around 5.9 GHz center frequency by FCC.

Figure 6 shows the occupancy of the PCS band across a
30 minute period. The bands from 1950 – 1980 MHz possess
relatively high occupancy around 100%, where the other
bands are underutilized or completely vacant. These bands
could potentially be used for the vehicular communication
using DSA and their occupancy can be stored in memory in
order to help avoid the occupied channels during the busy
intervals (when channels are being used).

FIGURE 6. Percentage occupancy of the PCS band during 30 minutes
period from 1850–1990 MHz bandwidth [39].

Without loss of generality, we will employ digital televi-
sion (DTV) spectrum for this VDSA-based vehicular archi-
tecture, since the primary users of this band are relatively
stable when compared to other wireless frequency bands.
The primary users of the DTV band have a more uniform
and steady usage of frequency bands [4]. The vehicles within
the vicinity are designed to individually detect the available
channels for unlicensed users.

Wireless spectrum is sensed based on a mechanism that
detects energy levels for each channel [40]. The channel
model considers all entities specific to a vehicular environ-
ment such as multipath fading, Doppler shift, and scattering,

which can be mathematically expressed as [41]:

h(τ, t) =
P−1∑
k=0

hk (t)e−j2π fcτk (t)δ[τ − τk (t)], (1)

where τ is the path delay, t is time variable, hk (t) is channel
envelope, δ is the channel impulse response, and fc is the car-
rier frequency. Using the channel impulse response, the detec-
tion problems can be formulated as M -ary hypothesis test.
In this case, the spectrum sensing performs the following a
binary hypothesis test:{

H0 : y(t) = nr ,
H1 : y(t) =

∫
∞

−∞
h(τ, t)x(t − τ )dx + nr

(2)

where y(t) is the received signal and nr is the noise. Once the
vehicles occupy a channel that is available, such as H0, they
need to periodically check to see whether they can potentially
switch to a better channel.

The key parameter associated with a channel switching
decision is the switching cost, which determines whether the
vehicles should continue to use the same channel or search
for another. For example, if vehicle switches from channel A
to channel B for better reward and it does not take into consid-
eration the switching cost, the vehicle will actually have less
throughput due to the switching lag time. Also, the channel
that the vehicle switched to might only be slightly better than
the previous channel. To remedy this issue, we take switching
cost into consideration for maximizing the channel reward
of the vehicles. Note that we cannot use a fixed value for
switching cost since a fixed switch cost does not work for a
highly dynamic connected vehicle environment. For example,
the noise level may be low while the vehicle drives across a
highway during a time step, and then suddenly it drives into an
urban area possessing a high noise floor during the next time
step. In this example, switching to another channel may not
be the best decision since all of the channels could potentially
be affected.

This issue can be resolved by employing our bumblebee–
based algorithm, which is suitable for highly time-variant
channel environments. For the bumblebee algorithm, we first
derive the channel reward function r(t) using the energy
values of the channels. The channel reward function r(t) is
given by:

r(t) = |min(Ê)| − |Ê| (3)

where |min(Ê)| is the noise floor of the vehicular radio and
|Ê| is the energy value of the channels used in DSA. Thus,
the higher the channel reward, the better the channel quality.
The channel reward function can be made more sophisti-
cated in order to depend on the radio characteristics and the
environment. Eq. (4) describes the memoryless bumblebee
algorithm:

Switching
Decision

=

{
rc ≤ (rn − sn), ‘‘Switch’’
otherwise, ‘‘Stay’’

(4)
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Algorithm 1Memory Based Bumblebee Algorithm
1: procedure BUMBLEBEEALGORITHM(M , r , T , C , V ,s)
2: Initialize:

vi ∈ rand{C}
M = l

3: for t = 1 to T do
4: Sampling Interval :
5: Compute Energy values E ∈ {C}
6: Map to reward r ∈ {C}
7: Select best {C} at t for vi
8: Transmission Interval :
9: Start the packet transmission

10: Monitor vi ∈ {C} for vi ∈ V
11: if ri < (rnew − s) then
12: Switch to the new Channel
13: else
14: Stay on the same channel
15: end if
16: end for
17: end procedure

18: procedure CHANNELREWARD(E , C , T , V )
19: for t = 1 to T do
20: while c = 1 to C do
21: r(t, c) = |min(Ê)| − |Ê|
22: end while
23: V ← r(t)
24: end for
25: end procedure

where rc is the current channel reward, rn is the new channel
reward, and sn is the switch cost for the new channel. The
switching cost s in this work is assumed in terms of channel
reward (% of reward value rc) in order to reduce the simula-
tion complexity. The switching cost will vary depending on
the cognitive radio characteristics and channel environment.

VI. MEMORY BASED SWITCHING DECISION
Our proposed mechanism includes an individual memory
structure to store the energy levels of the channel during each
energy detection period. In this paper, we have assumed that
energy detection scheme employed is ideal to simplify the
simulation process. In a system without memory, individuals
would always respond instantaneously to changing channel
conditions [36]. However, instantaneous responses may not
always be the most beneficial behavior due to the associated
switching costs and potential inaccuracies in the estimation of
the channel energy levels. With the help of memory, we can
reduce the computation load and eliminate inefficiencies of
instantaneous switching which causes low packet-delivery
ratio (PDR) and large latency in the vehicular communication
system. Algorithm 1 describes the memory based bumblebee
algorithm in detail.

The parameterM defines thememory length and it depends
on the sampling rate of the cognitive radio, and N is the total

FIGURE 7. Normalized squared magnitude of the channel impulse
response Eq. (1): t refers to the time variation on a channel. Three
representative channels are visualized to indicate the environment
changes over time.

FIGURE 8. Mean channel reward ¯r (t) comparison for bumblebee model
and random channel selection in urban and highway scenario. Vehicles
employing the bumblebee algorithm tend to choose the channel with
best reward and hence maximize the overall channel reward.

number of samples collected in sampling interval ts. In this
work, we have kept the sampling time ts = 200ms fixed in all
scenarios. It will be an interesting problem to see how varying
the sampling and transmission times will affect the channel
rewards of our bumblebee algorithm, but this is outside the
scope of this paper. For the network simulation, we have set
the memory length M to 5N , 10N , 15N and 20N , where
N is the sample size. T is the total simulation time, r is the
reward values of the channel, C is the set consisting of all
channels used in the simulation, s gives the switching cost,
and finally V is the total number of vehicles. We initialize
our bumblebee model by assigning random channels to the
vehicles and setting the memory length to l. We then perform
the computation for each time-step, the discrete time-steps
simulates the real-time variation where the channel energies
vary with time. As we explained earlier in Section V there
are two modes in the algorithm: sampling and transmission.
We start the iteration with a sampling interval and then we
compute the energy values, map it to reward r , and select best
channel for each vehicle vi.
In the transmission interval, we start using the channel and

simultaneously monitor our current channel reward values.
If the current channel reward value drops lower than the chan-
nel values in the memory, we switch to the new channel if the
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FIGURE 9. Mean channel reward for memoryless bumblebee model for different values of switching cost. The switching cost is computed in terms of
channel reward to make it more generalize and independent of cognitive radio characteristics. We start with a switching cost of 5% of the channel reward
and then we gradually increase it by 5% for each of the subplots. We can see a gradual decrease in the channel reward for higher switching cost.

switching cost is lower or else we stay on the same channel.
With the parameter rnew being the reward value for the new
channel, we consider all the channels in the memory when
making the switching decision. For each time-step iteration,
we have a sampling and transmission interval. During the
sampling interval, we sample all the channels again and add
new values to the memory. Depending on the memory length,
we flush out the old values and keep inserting the new values
in a First-in-First-Out (FIFO) manner.

VII. EXPERIMENT RESULTS
We have analyzed the performance of a DSA-based VANET
using the adaptive behavioral response mechanism in the
GEMV2 Vehicle-to-Vehicle (V2V) propagation simulator via
MATLAB. GEMV2 is a computationally efficient propa-
gation model for V2V communications, which accounts
for the surrounding objects in the environment. The model
considers different V2V link types (e.g., LOS, non-LOS
due to static objects, non-LOS due to vehicles) depend-
ing on the LOS conditions between the transmitter and the
receiver in order to deterministically calculate large-scale
signal variations [42], [43]. Additionally, GEMV2 deter-
mines small-scale signal variations stochastically using a
simple geometry-based model that takes into account the

surrounding static and mobile objects (specifically, their
number and size). We use Simulation of Urban Mobility
(SUMO) [44] to generate the car traffic data on the roads since
it allows generation of different scenarios such as different
environments (e.g., urban, suburban, highway) and traffic
densities (e.g., high-density, low-density, changing density).
The experimental traffic data is created in SUMO around the
city of Worcester, MA, USA and used as an input to GEMV2.
The examples of traffic simulator figures generated by
GEMV2 for downtown Porto, Portugal and Pittsburgh, PA,
USA are available in [38]. The channel sensing algo-
rithm is performed across the DTV frequency band at
700 MHz.

The resulting channel characteristic is shown in Figure 7.
Vehicles switch between channels in order to find the channel
with maximum reward of a given time instant. The adap-
tive behavioral response mechanism is needed in order to
decide whether the channel is worth switching to despite the
switching cost. The individual memory will provide a solid
decision on the channel switching. For example, a vehicle
chooses to be on Channel 42 (641 MHz), given the absence
of incumbent users by accessing the past channel values
stored in the memory since Channel 42 has consistent reward
based on the past channel values. Therefore, the unwanted
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FIGURE 10. Mean channel reward for highway and urban scenario for
different memory size with 95% Confidence Intervals. The channel reward
increases by using higher memory size for both urban and highway
scenarios for the ‘‘Mean’’ strategy. Using the ‘‘Max’’ method the
performance increase is only significant for the urban scenario.
In comparison to memoryless system we see an increase of about 52% in
M = 20N memory size for urban scenario for ‘‘Mean’’ strategy. The
Memory length parameter N is discussed in detail in Section VI.

switching cost, which is caused by instantaneous decisions,
will be avoided.

In Figure 8, we compare the memoryless bumblebee
algorithm with random channel selection. In random chan-
nel selection, vehicles select the random channels on each
time-step and stay on the channel until the connection is
lost, whereas with the bumblebee algorithm we compare
the current channel reward with other channels and switch
if it is beneficial after taking into account the switching
cost. For a highway scenario, with sparse traffic conditions,
12 vehicles/km2 is simulated, whereas for urban traffic condi-
tions we consider 150 vehicles/km2. The number of randomly
moving vehicles increase at each time step from 0 to 800
vehicles for the urban scenario, whereas for the highway sce-
nario the vehicles increases from 0 to 180. The mean distance
between the vehicles is around 100 m, with a minimum and
maximum velocities of 8 km/h and 110 km/h respectively
for both urban and highway scenarios. We see a significant
increase in the mean channel reward for both urban and
highway scenarios at each timestep. For highly time-varying
channel environments, the energy will vary instantaneously,
and without memory to store past reward values, the vehicles
cannot efficiently make a switching decision.

For a memoryless model, any channel switching is
based on the current time-step data, and for highly time-
variant channel environment it does not perform efficiently.
In Figure 9, we compare the channel reward for various
switching costs using the memoryless Bumblebee model. It is
evident from the plots as the penalty increases the channel
rewards start to decrease. As discussed earlier, the switch-
ing cost depend on the environment and the cognitive radio
characteristics, and the channel reward will vary with the
switching costs. For example, a better cognitive radio will be
able to switch to new channel faster and hence it will have
low switching cost.

In Figure 10, we compare our memory-based bumblebee
algorithm using two different memory strategies applied to
both urban and highway scenarios. In the ‘‘Max’’ mem-
ory strategy, we select the best channel reward from the
past samples (depending on the memory length N ) in the
memory and compare it with the current channel reward to
make our switching decision. If the new channel has a better
reward after taking switching costs into consideration, then
we switch to the new channel. Using the ‘‘Max’’ strategy
we see a 40% improvement in urban environment as we
increase the memory length from M = 0 (memoryless) to
M = 20N . For the highway scenario, the overall increase
is small. In ‘‘Mean’’ strategy, we take the average of all the
channel rewards in memory and compare our current channel
reward with the mean values. If the reward is larger after
subtracting the switching cost s, then we switch to the channel
otherwise we stay on the current channel. By averaging out
the channel rewards, we can better estimate the channel qual-
ity over time and the ‘‘Mean’’ strategy outperforms ‘‘Max’’
strategy (by approximately 50% for highway scenario and 9%
for urban). If we increase the memory length from M = 0
to M = 20N using the ‘‘Mean’’ scheme, we see an overall
increase of 52% for urban and 37% for highway scenario.
These results show by utilizing memory we can improve
the channel selection performance drastically and use the
channels efficiently.

VIII. SUMMARY AND FUTURE RESEARCH DIRECTIONS
In this work, we explore the potential utility of a bumblebee-
inspired memory-based decision mechanism within a VDSA
framework. Channel reward levels stored in memory are
weighed against switch costs to decide whether to stay on
the current channel or move to a different channel. Channel
reward information is frequently updated in memory through
periodic sampling, which provide vehicles with a more accu-
rate estimate of the degree to which channels differ in their
quality for a given vehicular environment.

Our results show that a large increase in channel selection
performance was obtained for sparse highway and urban
traffic by utilizing our bumblebee-based algorithm enabled
with memory. In this work, two simple memory structures
using block sampling of the environment and than averaging
energy values or selecting the maximum value were designed
for channel selection. For futurework,more nuancedmemory
structures will be provided in order to increase the channel
selection performance even more. We will also make our
channel reward function more practical so that it can be
used for actual testing of the algorithm during over-the-air
transmission on actual software-defined radio (SDR) exper-
imental test-bed. Finally, we will also be using adaptive
sampling rates to further reduce the load on V2V vehicular
system.
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