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ABSTRACT Due to the diffraction limit, the systems to localize signal sources used to suffer from the low
resolution issue, which also occurs in the pipeline leakage localization. For a pressurized pipeline that carries
gas, a leakage will generate a negative pressure wave (NPW) that propagates along the pipeline. The NPW
can be detected by piezoceramic transducers that are bonded on the surface of the pipeline. Via processing
NPW signals, the locations of the leakages can be obtained. However, since the wavelengths of the NPW
signals are several meters, the resolution is meter sized. In this paper, a novel pipeline leakage localization
method which can adjust the resolution is developed to improve the localization resolution. The proposed
method includes a formula to adjust the localization resolution based on the time reversal technique. Via
adjusting the parameter of the formula, various localization resolutions can be obtained. We investigated
the performance of the proposed method in an experiment with a 55.8 m PVC pipeline equipped with two
manually controllable leakage points.With the help of the piezoceramic transducers, the experimental results
show that the proposed method can deliver the resolutions which represent a significant improvement, as
compared with that of the conventional time reversal localization method. Furthermore, the proposed method
can be used for other passive detection.

INDEX TERMS Negative pressure wave, resolution, localization, piezoceramic transducer, time reversal
technique, pipeline.

I. INTRODUCTION
Recently, various techniques have been developed for struc-
ture health monitoring (SHM) [1]–[3] For example, the struc-
tural damage detection based on the electromechanical
impedance [4]–[7] and vibration modal shape [8]–[10] were
investigated. Among the SHM methods, the ones based on
the waves can reveal a variety of characteristics of the
defects, such as position and size. For example, Huang and
Bednorz introduced S-parameter measurement to the ultra-
sound inspection of the aluminum plate [11]. In addition, the
block-sparse imaging method [12], the phased array imaging
method [13] and the delay-and-Boolean-ADD imaging algo-
rithm [14] are used to process ultrasonic signals to localize

the defect. Since the ultrasonic signal and the electromag-
netic signal have the spatial reciprocity, the time-reversal
imaging algorithm can give the damages’ location, when
it is used to process the ultrasonic or electromagnetic sig-
nals from damages [15], [20]. Gao et al. [16]. analyzed the
guide waves propagation characteristics by using the local
probability-based diagnostic imaging method to inspect the
multi-damage in an aluminum plate. Hosseinabadi et al. [17]
used the damage-sensitive features of the guided ultrasonic
wave signals to establish a multiple-input multiple-output
fixed grid wavelet network, and trained the wavelet net-
work to identify the structural damage. Linet al. [18] devel-
oped an excitation waveform design strategy based on pulse
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compression to meet the demands of high-resolution Lamb
wave inspection in composite materials. An et al. [19]
developed an ultrasonic wavefield imaging method to detect
hidden damages. A wavelet packet-based ultrasonic energy
analysis was developed to distinguish the type of cracks [21].
However, most of investigations about the SHM methods
based on the wave signal processing focus on active sensing
which have to use a signal transceiver to obtain the signals
from the defects. Little research on passive sensing approach
has been conducted, especially the passive localization of
the pipeline leakage [22]–[31]. The pipeline leakage pas-
sive localization methods based on the signals generated by
the occurrence of leakage generally fall into two categories.
One is the localization method based on negative pressure
wave (NPW) [24]–[27], [30]. Jia et al. [24] used the hoop
strain caused by the NPW to develop an approach to localize
leaks. Zhao et al. [25] developed a method on the basis of
wavelet transform to derive the position of the leak point.
Hou et al. [26] developed a modified leak location formula
based on the Compound Simpson formula and Dichotomy
Searching. Hu et al. [27] developed a leak location approach
which uses harmonic wavelet to process the NPW signal
with high noise. The other is the acoustic based localiza-
tion method [28], [29], [31]. Liu et al. [28] modified the
propagation theory based on the dominant-energy frequency
method to process the leak’s acoustic signal. Giunta et al. [29]
combined vibroacoustic sensing technique with wavelet anal-
ysis to reach leakage detection and localization in the
laboratory.

However, for all wave signals including NPW, due to the
lack of spatial high frequency components, the resolution of
the localization methods based on wave signals is limited to
the Rayleigh criterion of about 0.5λ (λ is the central wave-
length of the spectrum), namely, the maximum −3 dB width
is equal to half of the wavelength [32]–[35]. Furthermore,
the wavelength of the NPW is several meters. Therefore,
the NPW localization resolution which is highly related to the
question of the size of the leak areas, used to be meter
sized [32].

A common way to improve localization resolution is to
use the so-called Locally Resonant MetaMaterials (LRMM)
which can increase the spatial high frequency compo-
nents [33]–[40]. Some LRMMs are made of a multilayered
dielectric. Liao et al. [33] used a multilayered dielectric slab
to obtain a resolution of 0.4λ. Gong et al. [34] enhanced the
resolution to 0.1λ by using a grating plate. Some LRMMs
are made of numbers of metallic rods or strips. For example,
Rupin et al. [35] designed a LRMM composed of 100 long
aluminum rods (61 cm long, 6.35 mm in diameter) and
improved the resolution to λ/6.2. Li et al. [36] demonstrated
that the LRMM made of a lattice of 3×10 metallic cylin-
ders supports the enhancement of the information capacity
of a localization system, a resolution of λ/20 is obtained.
Gao et al. [37] developed the planar resonant lenses consist-
ing of six substrates with periodically distributed strip res-
onators of various lengths and obtained a resolution of λ/20.

FIGURE 1. A pipeline with a leakage and the surface-bonded PZT sensors.

Another parts of LRMMs are composed of split-ring res-
onators. Wang et al. [38] claimed that a LRMM consist of
split-ring resonators whose size is 0.1λ × 0.1λ, can enhance
the resolution to 0.1λ. Ates et al. [39] designed split ring
resonators to boost the transmission efficiency of the evanes-
cent, and got a resolution of λ/29. Grbic et al. [40] developed
a LRMM which consists of 5×19 grids of printed copper
strips (microstrip transmission lines) loaded with series chip
capacitors C and shunt (to the ground) chip inductors L,
and obtained a resolution of 0.21λ. Although the method
based on LRMM can improve the resolution, they have to
use the additional devices (LRMMs) which will increase the
hardware cost of the localization system. Furthermore, once
the configurations of LRMMs are fixed, the resolution based
on the LRMMs is nonadjustable. Therefore, the method is
less practicable for actual localization application, such as
pipeline leakage localization.

In this paper, a new leakage localization method with
adjustable resolutions is developed for a pipeline. The pro-
posed method includes a time reversal localization resolu-
tion adjustment formula. By adjusting the parameter of the
formula and designing the corresponding localization back-
ground function, the proposed method can provide various
localization resolutions without using any additional devices.
For studying the performance of the proposed method in
passive localization applications, a pipeline leakage local-
ization experiment was executed. Two surface-bonded Lead
Zirconate Titanate (PZT) transducers are used to detect the
propagation of the NPW. PZT is a type of piezoceramic
material with strong piezoelectric effect and is adopted in
this research. The experimental results show that the two
leakage locations along a 55.8m PVC pipeline can be identi-
fied accurately by using the proposed method. Furthermore,
the conventional localization method can only offer a res-
olution of about 5.5m. Meanwhile, by using the proposed
method, the resolution can be adjustable, and the minimum
resolution can even be 3cm in this experiment.

II. THEORY OF THE PROPOSED METHOD
Shown in Figure 1 is a pipeline with a leakage. Two PZT
sensors are bonded on the pipeline near both ends. For a
pressurized pipeline that carries gas, a leakage will generate
a NPW that will propagate along the pipeline. The NPW will
be detected by piezoceramic transducers that are bonded on
the surface of the pipeline.

We assume that the nth sensor is located at rn. We fur-
ther assume that the leakage happens at rL, and generates
a NPW signal e(rL, t). In this paper, plain symbols denote
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scalar quantities, whereas vectors andmatrices are denoted by
bold symbols. Assume the leakage generates an NPW signal
at time t = TL All sensors are synchronous.

Assume the channel impulse response from rL to rn is,

hm(rn, rL, t) = an,L,mδ(t − tn,L,m) (1)

where an,L,m is the attenuation coefficient between rL and
rn, δ

(
t − tn,L,m

)
is the ideal impulse signal, tn,L,m is the

propagation delay time of the NPW from rL to rn, The
subscript ‘‘m’’ corresponds to the forward propagation fields,
measured via the experiment.

The leakage signal recorded by the nth sensor can be mod-
eled as,

x(rn, rL, t) = e(rL, t) ∗ hm(rn, rL, t) ∗ δ(t − TL) (2)

where ‘‘∗’’ represents the convolution operation.
The cross-correlation function y(t) between x(r1, rL, t)

and x(r2, rL, t) is computed as,

y(t) = x(r1, rL, t) ∗ x(r2, rL,−t)

= e(rL, t) ∗ e(rL,−t)

∗ a1,L,ma2,L,mδ(t − t1,L,m + t2,L,m) (3)

Then, the self-correlation function y′(t) of x(r1, rL, t) is
computed as,

y′(t) = x(r1, rL, t) ∗ x(r1, rL,−t)

= e(rL, t) ∗ e(rL,−t) ∗ a1,L,ma1,L,mδ(t) (4)

Assume function h′1,L,2(t) satisfies the following equation,

y(t) = y′(t) ∗ h′1,L,2(t) (5)

With using Fourier transform, h′1,L,2(t) can be computed
as,

h′1,L,2(t) =
a2,L,m
a1,L,m

δ(t − t1,L,m + t2,L,m) (6)

The amplitude normalization and the p-1 time self-
convolution are applied to h′1,L,2(t) to obtain s12(t), named
as time reversal localization resolution adjustment function.

s12(t) = δ(t − p× t1,L,m + p× t2,L,m) (7)

Using s12(t), we can re-write x(r1, rL, t) and x(r2, rL, t)
as,

x ′(r1, rL, t) = x(r1, rL, t) ∗ s12(−t)

= e(rL, t) ∗ a1,L,mδ(t − TL + (p− 1)

× t1,L,m − p× t2,L,m) (8)

x ′(r2, rL, t) = x(r2, rL, t) ∗ s12(t)

= e(rL, t) ∗ a2,L,mδ(t − TL − p

× t1,L,m + (p− 1)× t2,L,m) (9)

Designate the localization background functions for
x ′(r1, rL, t) and x ′(r2, rL, t). At a generic observation point
rk of the monitoring area, the localization background func-
tions of x ′(r1, rL, t) is written as,

hc(r1, rk, t) = δ(t + (p− 1)× t1,k,c − p× t2,k,c) (10)

and the localization background functions of x ′(r2, rL, t) is
written as

hc(r2, rk, t) = δ(t + (p− 1)× t2,k,c − p× t1,k,c) (11)

where t1,k,c is the propagation delay time of NPW from rk
to r1, t2,k,c is the propagation delay time of NPW from rk
to r2, The subscript‘‘c’’ represents that this corresponds to
the back-propagation fields, obtained by calculation.

Then x ′(r1, rL, t) and x ′(r2, rL, t) are time reversed, and
virtually back-propagated from the transducer as if it was able
to act as a source (the proposed method employs convolution
computation with the corresponding localization background
functions to realize the back-propagation of the time reversed
signals). Then, the signal obtained at the generic observation
point rk can be represented as,

q(rk, t) =
2∑

n=1

x ′(rn, rL,−t) ∗ hc(rn, rk, t) (12)

When the computational data matches the measured one,
namely tn,k,c = tn,k,m, (12) is a consequence of the reversibil-
ity property of the wave equation which implies that a max-
imum of energy is found on the point where the source
was. Therefore, the leakage can be localized via plotting the
maximum energy distribution curve of the monitoring area,

Io(rk) = Max(
2∑

n=1

x ′(rn, rL,−t) ∗ hc(rn, rk, t)) (13)

III. EXPERIMENTAL RESULTS
The full model pipeline was composed by a series of PVC
pipe sections with a total length of 55.8m, as shown in
Figure 2. The pipeline had six 9.1m straight sections which
were connected by ten 90◦-elbow connectors and five 0.2m
sections. Two PZT sensors (15mm × 10mm × 0.4mm)
were bonded on the outer surfaces of the pipeline. They are
1.32m and 54.46m away from the starting end. Twomanually
controllable valves are respectively located at 24.84m and
34.21m from the starting end. Opening any one of the valves
simulates a leakage. Air was pumped into the pipeline by a
compressor and a pressure regulator was used to regulate the
pipeline pressure. For the safety reason, an automatic pressure
release was employed. An event of leakage can be created
by opening a valve on the pipeline. Then, the NPW signals
generated by the leakages can be detected by the PZT sensors.
An NI PXI-5105 Digitizer was used as a data acquisition
system. The digitizer was triggered by the voltage signal of
the sensor 1 with a −0.02V trigger level. The sampling rate
of the data acquisition system is 100KS/s. The NPW velocity
is considered as 300m/s [24], [30]. A signal conditioning
circuit proposed in [30] was introduced to process the output
voltages of the PZT sensors. Since the signal conditioning
circuit works as a band pass filter [30], the output voltage of
PZT sensor can keep being zero if there is no NPW reaching
the location of the PZT sensor.
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FIGURE 2. Schematic diagram and photo of the pipeline experiment.
(a) The schematic diagram of the pipeline with PZT sensors.
(b) A photo of the pipeline.

The internal pressure at the leakage point drops signif-
icantly as a result of pipeline content escaping through
the leakage point. The pipeline content moves from both
upstream and downstream simultaneously towards the leak-
age point. This flow of content generates a negative pres-
sure wave propagating through the pipeline contents from
the leakage point towards both ends of the pipeline. This
decrease in pressure inside the pipeline is accompanied by
the contraction of pipe’s circumference resulting in strain
variation on the pipe wall.

Due to the strain variation, the piezoelectric material
directly mounted on the pipeline wall generates a correspond-
ing electric signal. As shown in Figure 3, before the leakage
happened, the signal captured by the sensor is 0 V because
the internal pressure keeps constant under the normal oper-
ating conditions. Then, the downward, pulse-like waveform
is generated due to the arrival of the NPW to sensors. The
initial downward edge of the pulse indicates the decrease
of internal pressure associated with the NPW. The upward
edge of the pulse indicates the internal pressure settling
at a different baseline pressure. The negative peak of the
waveform indicates the NPW passes through the PZT sensor
location. Finally, when the internal pressure settles down, low
frequency signals dominate the PZT sensor, and a circuitry
which works as a band pass causes the output amplitude to
returns to 0 V.

FIGURE 3. The signals captured by the two PZT sensors. (a) Sensor 1.
(b) Sensor 2.

The conventional time reversal (TR) localization
method [32] and the proposed method identify the leakage
locations by using the maximum signal amplitude. Therefore,
the amplitude of the measured data is inverted, before it is
processed by using the bothmethods. The results based on the
both methods are shown in Figure 4 The parameter p in (7)
is set at various values in order to investigate the influence of
the time reversal localization resolution adjustment function.
From Figure 4, it can be seen that the three curves focus
at the leakage positions. For such focusing patterns, their
−3 dB width is a main feature, since this feature defines the
resolution which is highly related to the question of the size of
the leak areas. In other word, the−3 dBwidth sets a boundary
limit between points having different signatures by using a
special value chosen here at 0.7 (−3 dB). Apparently, both
methods can correctly reveal the positions of the leakages by
identifying the peaks of the three curves. However, the−3 dB
widths of the curves based on the conventional time reversal
localization method are much wider than those based on the
proposed method when the parameter p in (7) is larger than
one. Furthermore, the −3 dB width based on the proposed
method gets narrow with the increase of the parameter p.

Table 1 describes the energy peak’s locations and −3 dB
widths based on the two localization methods in detail. The
peaks of the curves based on the conventional time reversal
localizationmethod are localized at 24.84m and 33.34m, with
the−3dBwidths are 5.55m and 5.65m respectively. The same
curve peak locations can be observed in the results of the
proposed method with various the parameter p. That means
that the both methods can identify the positions of the leaks.
On the other hand, the minimum −3dB width of the conven-
tional time reversal localizationmethod is 5.55m.Meanwhile,
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FIGURE 4. The maximum energy distribution curve based on the two
methods. (a) L1. (b) L2.

TABLE 1. The energy peak’s locations and −3dB widths based on the
two localization methods.

the proposed method can provide a −3dB width of 0.03m
which is 0.541% of that of the conventional TR localization
method, when the parameter p=80, as shown in Figure 5.

IV. DISCUSSION
To explain the reason why the resolution is improved, the out-
put values of the two methods at any generic observation
point are investigated. Consider a generic observation point
rz which is close to the leakage, the NPW propagation delay
time from rz to rn is tn,z,c. Consider tn,z,c = tn,L,c+1tn,z,L.
For the conventional time reversal localization method,

the equation described in [32] is used for analysis,

FIGURE 5. The maximum energy distribution curve based on the
proposed method with p=80. (a) L1. (b) L2.

namely,

Ic(rz) = Max(
2∑

n=1

x(rn, rL,−t) ∗ h′c(rn, rz, t)) (14)

where h′c(rn, rz, t) is the channel impulse response from rz to
rn, and h′c(rn, rz, t) = δ(t − tn,z,c).

At the generic observation point rz, the output value of the
conventional TR localization method can be written as

Ic(rz) = Max
(
a1,L,me(rL,−t) ∗ δ(t + TL +1t1,z,L)

+ a2,L,me(rL,−t) ∗ δ(t + TL +1t2,z,L)
)

(15)

At the generic observation point rz, the output value of the
proposed method can be written as

Io(rz) = Max
(
a1,L,me(rL,−t)

∗ δ(t + TL + (p− 1)1t1,z,L − p1t2,z,L)

+ a2,L,me(rL,−t)

∗ δ(t + TL + (p− 1)1t2,z,L − p1t1,z,L)
)

(16)

Since two transducers are set at the two ends of the
pipeline, when the generic observation point rz is closer to
one end, the point will be far away from the other by the
same distance. That means 1t1,z,L = −1t2,z,L. Therefore,
(15) and (16) can be re-written as,

Ic(rz) = Max
(
a1,L,me(rL,−t − TL −1t1,z,L)

+ a2,L,me(rL,−t − TL +1t1,z,L)
)

(17)
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FIGURE 6. The two sensors’ output signals of the proposed method with
various parameter p at 25.6m for leakage L1. (a) p=3. (b) p=5. (c) p=20.

Io(rz) = Max
(
a1,L,me(rL,−t − TL − (2p− 1)1t1,z,L)

+ a2,L,me(rL,−t − TL + (2p− 1)1t1,z,L)
)

(18)

The two signal components contained in (18), namely
a1,L,me(rL,−t−TL− (2p−1)1t1,z,L) and a2,L,me(rL,−t−
TL + (2p − 1)1t1,z,L) are from sensor 1 and sensor 2,
respectively. The time interval between the two components
is (4p − 2)1t1,z,L. Since (4p − 2)1t1,z,L increases with
the increase of the parameter p, the components can keep
away from each other in time domain by increasing the
parameter p. To demonstrate this, the output signals of the
proposed method with various parameter p, at 25.6m and
34m are shown in Figures 6 and 7. At the observation points,
the output signals of the two sensors become further away

FIGURE 7. The two sensors’ output signals of the proposed method with
various parameter p at 34m for leakage L2. (a) p=3. (b) p=5. (c) p=20.

from each other with the increase of the parameter p. As a
result, the superposition energy of the two signals decrease
with the increase of p The peak value of the output signal
will decrease at the observation point. The area covered by
the−3dBwidth becomes less, and the resolution is improved.
On the other hand, in (17), The time interval between the

signal component a1,L,me(rL,−t − TL − 1t1,z,L) and the
signal component a2,L,me(rL,−t−TL+1t1,z,L) is 21t1,z,L
When p>1, (4p − 2)1t1,z,L > 21t1,z,L. Therefore, the two
signal components contained in (17) get closer to each other,
compared to those in (18), as shown in Figure 8. As a result,
Ic(rz) ≥ Io(rz), which causes that the −3dB width of the
conventional TR localization method is wider than that of the
proposed method with p>1.
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FIGURE 8. The two sensors’ output signals of the conventional time
reversal localization method for the two leakages. (a) at 25.6m,
leakage L1. (b) at 34m, leakage L2.

V. CONCLUSION
In this paper, a novel localization method is developed to
localize the leakage of a pipeline with adjustable resolu-
tion. The proposed method designs a time reversal based
formula to adjust the localization resolution to optimize the
captured leakage signals. The optimized signals and the cor-
responding back-ground functions are then used to localize
the leakages. By using the proposed method, the resolu-
tion (−3dB width) can get higher with increase of the
parameter p in the time reversal based formula. We applied
the proposed localization method to localize leakages in
a model gas pipeline. The experimental results demon-
strated that the proposed method can localize the leakages in
a 55.8m PVC pipeline, with adjustable resolutions. Further-
more, when the parameter p=80, the proposed method can
provide a −3dB width of 0.03m which is 0.541% of that of
the conventional TR localization method. In addition to the
pipeline leakage monitoring, the method can also be used for
other passive monitoring problems.
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