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ABSTRACT Predicting the urgency demand of patients at health centers in smart cities supposes a challenge
for adapting emergency service in advance. In this paper, we propose a methodology to predict the number
of cases of chronic obstructive pulmonary disease (COPD) from environmental sensors located in the
city of Jaén (Spain). The approach presents a general methodology to predict events from environmental
sensors within smart cities based on four stages: 1) summarize and expand features by means of temporal
aggregations; 2) evaluate the correlation for selecting relevant features; 3) integrate straightforwardly expert
knowledge under a fuzzy linguistic approach; and 4) predict the target event with the sequence-based
classifier long short-term memory under a sliding window approach. The results show an encouraging
performance of themethodology over the COPD patients of the city of Jaén based on a quantitative regression
analysis and qualitative categorization of data.

INDEX TERMS Predicting urgency demand, long short-term memory, temporal aggregation, fuzzy linguis-
tic approach.

I. INTRODUCTION
Allocating patients at Emergency Services in smart cities
is a key factor in decision making of Health Centers [1].
Predicting this demand enables adapting policies and dis-
tributing dedicated resources [2] in order to improve the
Emergency Service, especially in crisis scenarios of seasonal
stages.

At the same time, from the last years, the number and type
of environmental sensors [3] installed in smart cities [4] is
increasing due to their low-power, low-cost, high-capacity,
and miniaturized [5]. Frequently, these sensors provide dif-
ferent data types and collecting rate, which hinder the data
fusion requiring spatiotemporal processing and an ad hoc
development guided by expert knowledge [6].

Based on these challenges, in this work we propose a
methodology which has been implemented to predict the
number of cases of Chronic Obstructive Pulmonary Disease
(COPD) [7] within the emergency service of Jaén (Spain)

from heterogeneous environmental sensors located in the city.
The study of COPD patients in the city of Jaén is encouraged
by two aims. On the first hand, the incoming fromCOPD gen-
erates a high assistance and economic impact on Andalusian
Health Services [8]. On the other hand, Jaén is well-known
by leading olive oil-based agriculture [9] being immersed in
a agricultural territory surrounded mainly by olive oil trees,
which develops a high-environmental sensitivity within the
city with a deep repercussion in COPD patients [10].

The remainder of the paper is structured as follows: in
Section I-A, previous related works are presented and the
approach is introduced; in Section II the methodology to pre-
dict events from environmental sensors within Smart Cities
is formally defined; in Section III, experiments based on
the proposed methodology for COPD patients within the
Emergency Service of Jaén (Spain) are performed. Results
are discussed in Section IV. Finally, in SectionV, conclusions
and ongoing adaptations are introduced.
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A. RELATED WORKS
On the first hand, forecasting the demand in Emergency Ser-
vices has been widely studied in previous works. A reference
work with a further analysis on the demand of emergency
care is [11]. This work is centered on forecasting the num-
ber of daily emergency admissions (without analyzing an
specific disease) in Bromley Hospitals in United Kingdom.
Here, several key factors were identified: (i) the influence of
seasonality, (ii) the influence of temporal aggregated weather,
(iii) the pre-analysis of features by correlation coefficients,
and (iv) the impact of context information from health ser-
vices, such as number of calls to nurse telephone advice lines.

In other previous works related to the urgency demand,
we find [12], where monthly COPD hospitalization were ana-
lyzed by a time-series analysis where some external variables,
such as, environmental or contextual data, were related to
the demand prediction. Similarly, the work [13] details the
prediction of daily patient attendances at the pediatric emer-
gency department in Lille Regional Hospital Centre (France),
which serves four million inhabitants (7% of the French
population). The forecasting of these works is based on the
classical and the extension of ARIMA without integrating
external variables.

Moreover, the technological advances in smart cities pro-
vide a fine granularity in small population nuclei. In this
way, in the recent work [14], the monitoring within intra-
urban scales enables forecasting events on a neighborhood
level during warm weather episodes. In general, the poten-
tial of the integration of heterogeneous sources in smart
cities is being highly valuable for many fields, such as,
i) in [15] utilizes temperature and humidity data to inform
both household-level and city-wide prediction of electricity
demand; ii) in [16], forecasting and monitoring of energy
efficiency developed in public buildings, and iii) in [17]
where social aspects (crime, safety and employment) were
analyzed from the perception of citizens.

On the second hand, in order to deal with the prediction
of temporal events within a smart city from environmental
sensors, we propose a general methodology. For that, sev-
eral stages are defined to process information from sensor
data streams to identify features which can be integrated in
machine learning algorithms. This methodology has been
described in an open and general way in order to be suitable
in the integration within future or current implementations
based on the persistence of environmental sensors from ambi-
ent stations in Smart Cities [18].

Firstly, aggregating and sampling the sensor data streams
from environmental sensors are required [19] to provide
an homogeneous temporal granularity. Secondly, when the
number of environmental sensors in the smart city arises,
we aim to detect the relevant sources by means of statistical
analysis methods, such as correlation coefficient [20], which
has been properly proposed for analyzing factors in forecast-
ing demand of emergency care [11]. Thirdly, we normalize
the features from the sensor data streams of environmental
sensors and identify the most relevant.

Our approach includes a fuzzy linguistic processing in
computing the features in order to: (i) include interpretable
linguistic information from expert human knowledge [21],
(ii) extend the features of environmental sensors by means
of linguistic terms [22]–[24], and (iii) normalize the aggre-
gated measurements with linguistic terms, with membership
degree is defined between [0, 1]. Our linguistic approach is
based on fuzzy logic [25], which has provided successful
results in developing intelligent systems from sensor data
streams [26]–[29].

Fourthly, a sequence-based classifier learns temporal fea-
tures from environmental sensors under a sliding window
approach [30]. The proposed sequence-based classifier in this
work is the Long Short-Term Memory (LSTM). LSTM is
a Recurrent Neural Networks which is made up of a chain
of repeated modules, called memory cell. A memory cell
is composed of an input gate, a self-recurrent connection,
a forget gate and an output gate. The cell states of LSTMs
can be controlled in order to remove or add information based
on the learning of the gates. LSTM has shown promising
performance in multivariate time series of observations to
recognize patterns of clinical measurements [30], as well
as, moderating the forgetting and consolidation of illness
memory in readmission prediction [31].

II. METHODOLOGY
In this section we describe the proposed methodology to
predict temporal events within a smart city from envi-
ronmental sensors. This is based on the next following
stages:
• Integrating information from heterogeneous sources,
chiefly environmental sensors of the city, to collect
and summarize the environmental information within a
homogeneous temporal granularity.

• Selecting relevant features from environmental sensors
based on the correlation regarding the target class to
predict. This stage is key to reduce the candidate number
of environmental sensors which describe the status of
smart cities.

• Applying a fuzzy linguistic processing to sensor data
streams by means of expert knowledge to develop lin-
guistic features which describe the environmental sen-
sors in a linguistic way.

• Including a sequence based classifier, such as
LSTM [32], to learn a sequence of features under a
sliding window approach.

In Figure 1, we show a scheme of the proposed approach,
which is widely described in the next Sections.

A. TEMPORAL AGGREGATION FROM HETEROGENEOUS
ENVIRONMENTAL SENSORS
In this section we describe how to provide an homogeneous
temporal granularity of sensor data streams from environ-
mental sensors by means of aggregation operators.

In a formal way, an environmental sensor si provides a
sensor data stream S i = {vit∗ , v

i
t∗+1t i , v

i
t∗+1t i·j} in a current
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FIGURE 1. Scheme of the approach. From environmental sensors the
information processing provides (i) temporal aggregation, (ii) selection of
relevant features, (iii) integration of expert knowledge, and (iv) a
sequence learning of events.

time t∗ within a collecting rate 1t i, where vit represents a
measurement of the sensor si.

In order to homogenize the data streams based on the tem-
poral granularity1t of the target class T , we aggregate those
environmental sensors of higher collection rate 1t i < 1t ,
which granularity is finer. For that, we propose summarizing
the data streams using different aggregation operators, such
as max, min, sum or average, which are proposed by experts.
These aggregated sensor data streams configure the candidate
attributes to predict events from environmental sensors.
Thereby, several aggregation operators can be defined for

a given environmental sensor: (i) enlarging the number of
candidate attributes in regard to the original number of envi-
ronmental sensors and (ii) keeping a homogeneous temporal
granularity 1t for all environmental sensors.

In a formal way, a temporal aggregation operator Ok1t
summarizes a data stream S i within a homogeneous temporal
granularity defined by 1t obtaining a candidate attribute S ik :

S ik = Ok1t (S
i)

Ok1t (S
i) = {Okt∗ (S

i), . . . ,Okt∗+1t·j(S
i)} (1)

where each measurement obtained byOkt (S
i) is included in

the candidate attribute S ik with an aggregation operation ∪k ,
which describes the semantic of the operator Ok , from the
original measurement vit ′ :

Okt (S
i) =

k⋃
t ′∈[t,t−1t]

vit ′ (2)

At this point, the data stream from environmental sensors
have been aligned and aggregated to provide a set of candi-
date attributes with homogeneous temporal granularity.

B. CORRELATION FEATURE SELECTION FROM
ENVIRONMENTAL SENSORS
In this section, we describe how to select the most relevant
features from candidate attributes based on the correlation
regarding the target class which defines the event to predict.
The aim of this stage is (i) to reduce the number of attributes
involved, which increases the performance and avoid the
over-fitting [33] and (ii) to obtain a value of relevance from
features regarding the target class, which provides an inter-
pretable metric for experts [34].

For that, we compute the correlation from candidate fea-
tures, which are composed of each data sensor stream S ik
from previous stage, to the target class T which defines
the event to predict. Correlation feature selection is a well-
know method based on the principle that relevant features
are those with are highly correlated with the target classi-
fication [35]. Additionally, for selecting relevant features,
additional metrics [36], [37] or models based on decision
trees [33] have been effectively proposed and they can be
taken into consideration in other works and contexts.

In this work we apply the Pearson correlation coeffi-
cient [20], which provides a measure of the linear correlation
between two features in the range [−1, 1]:

ρS ik ,T
=
cov(S ik ,T )

σS ik · σT
(3)

where cov(S ik ,T ) represents the co-variance between a
given feature S ik and the target class T , and σS ik , σT their
standard deviations, respectively.

Finally, an α-cut is applied to the absolute value of
coefficient for selecting the most relevant features from envi-
ronmental sensors S∗k,i/|ρS ik ,T | > α. We note positive and
negative correlation is also properly described by the sign of
the correlation coefficient.

For sake of simplicity, we can write S i∗ for the relevant
features from the environmental sensor si instead of S∗k,i.

C. COMPUTING LINGUISTIC FEATURES FROM DATA
STREAMS OF ENVIRONMENTAL SENSORS
In this section we describe how to compute linguistic fea-
tures from the relevant features S i∗ obtained in previous
stages.

For each relevant aggregated data stream S i∗, we associate a
fuzzy linguistic terms V i

r to describe the measures of the sen-
sor Okt (S

i). V i
r represents a fuzzy linguistic set characterized

by a membership function µ
Ṽ ir
(Okt (S

i)), which computes the

degree of membership of a measurement Okt (S
i) in the fuzzy

linguistic set V i
r . For sake of simplicity, we write V i

r instead
of µ

Ṽ ir
(Okt (S

i)) and V i
r (t) instead of Okt (S

i).

Thereby, the linguistic terms V i
r , which describe the envi-

ronmental sensors S i∗, configures the features by means a
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numerical representation between [0, 1] defined by the degree
of membership.

Finally, we note step provides also a normalization of data,
which has been demonstrated to improve the Machine Learn-
ing capabilities [38]. Other relevant statistical approaches,
which are non based on expert knowledge, for this pur-
pose could be included in ongoing works, such as Kernel
Fisher Discriminant Analysis [39] or Discriminative Linear
Transforms [40].

1) CONFIGURING LINGUISTIC TERMS WITH FUZZY SCALES
In order to provide a straightforwardmethodology to describe
the linguistic features using fuzzy linguistic scales, which
provide high interpretability with minimal expert knowledge.
In concrete, we propose:
• To model the relevant features by means of Computing
with Words, where fuzzy linguistic multi-granular mod-
elling [21] enables experts expressing their preferences
using a linguistic notation.

• To propose a fuzzy linguistic scale ¯|L i| of granularity g to
describe each relevant environmental sensor S i∗, in where
each term ¯Ail is characterized by using a triangular
membership function µ ¯Ail

(x) [41]. The terms within
the fuzzy linguistic scale (i) fit naturally and equally
ordered within the domain of discourse of the sensor
data stream S i∗ from the interval values [L1, . . . Lg],
(ii) fulfill the principle of overlapping to ensure a smooth
transition [42].

¯|L i| = { ¯Ai1, . . . ,
¯Ail, . . . , Ā

i
g}, (4)

• To enable experts aggregating Aik∪k+1 terms to describe
hesitant fuzzy linguistic terms [43], which config-
ure trapezoidal fuzzy sets [44] within fuzzy scales [45].

In this way, the experts select those linguistic features V i
r

from the terms V i
r ∈ Āir

∗

within the fuzzy scale ¯|L i| which
better describe the relevant features S i∗ based on the expert
criteria with minimal configuration using a intuitionistic
representation.

D. LEARNING A SEQUENCE OF FEATURES UNDER A
SLIDING WINDOW APPROACH
In this section, we describe how to develop a sequence fea-
tures from environmental sensors under a sliding window
approach.

Previously, following the proposed methodology, we have
computed the linguistic features V i

r , which describe a tempo-
ral aggregation V i

r (t) from the relevant environmental sensor
S i∗ in a given time-stamp t .
In order to describe the evolution of the membership

degrees from linguistic terms within a previous time inter-
val, we include a sliding window of size W to compose a
sequence of features. In this way, from a time-stamp tk , which
represents a point of time tk = t∗ − 1t · k from the current
time t∗ and the temporal granularity1t of the target class T ,
we obtain:

• The target value T (tk ) of the class T to learn.
• For each relevant environmental sensor S i∗, a sequence
of features V i

r (tk )
∗ defined by the sliding window t∗k =

{tk , tk−1, , . . . , tk−W } from the current time t∗ :

V i
r (tk )

∗
= {V i

r (t
∗
k )}

k∗ ∈ {0, . . . ,W } (5)

Finally, T (tk ) and V i
r (tk )

∗ represent respectively the target
class (output) and sequence features (input) to be learned
by a sequence-based classifier. Here, we propose LSTM as
sequence-based classifier modeled by a Recurrent Neural
Network for multivariate time series. Other approaches, such
as Hidden Markov Models [46] could be similarly integrated
in other contexts, although LSTM has been demonstrated to
overcome the performance in sequence-based classifiers in
several domains [47].

III. EXPERIMENTAL SETUP
In this section we describe the experimental setup applied
over a real scene of prediction the urgency demand of COPD
patients from environmental sensors within smart cities with
high-environmental sensitivity.

The data included in this section correspond to the city of
Jaén (Andalucia, Spain), where several heterogeneous envi-
ronmental sensors are installed to collect the information of
the locality and the number of cases of (COPD) within the
Emergency Service within the Andalusian Health Service.

A. DESCRIPTION OF DATA
The data source collected in this work is related to the envi-
ronmental sensors from the Andalusia Environment Coun-
cil1 and the Spanish Society of Allergology and Clinical
Immunology.2 The environmental sensors located in the city
of Jaén are:
• Pollutant. The specific pollutants studied in relation
to COPD are particulate matter (PM10), carbon
monoxide (CO), sulfur dioxide (SO2), nitrogen
dioxide (NO2) [48].

• Ambient airborne pollen. It is associated to respiratory
hospital admissions [49]. Moreover, the pollen species
reveal significant effects in a separated way in hospital
admissions [10].

• Atmospheric phenomena. It is described as set of envi-
ronmental factors which affect exacerbation of COPD
visits within Emergency Service [50].

• The day of the week. It is included as additional source,
which is non based on ambient sensors, due to the fact
that the behavior of an Emergency Service in Spain
has been demonstrated to be affected by the day of the
week [51]. In concrete, Mondays and weekends were
identified as the days of most visits with regards to
ending working days.

In Table 1 we show the acronym, magnitude and collecting
rate.

1http://www.juntadeandalucia.es/medioambiente/site/portalweb/
2http://www.seaic.org/
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TABLE 1. Environmental sensors located in the city of Jaén. The acronyms
for ambient stations are GP) gaseous pollutants, WD) weather data and
PL) pollen level.

Secondly, the number of COPD patients (NCP) registered
in the Hospital Emergency represents the target class. Data
have been collected from the Council of Health for the
Andalusian Health Service3 within a confidential protocol in
accordance with the ethical standards of the 1964 Declaration
of Helsinkwhich which guarantees the anonymity of the data
being summarized the number of cases for each day. TheNCP
has been obtained from a recent codification process which
categorizes a case of urgency to a specific label. The data from
this system includes two recent years (2015 and 2016).

We note, the target class describes an imbalanced
dataset [52], [53] where the distribution of NPC is not equally
represented. The average and standard deviation of NPC are
µ = 2.70, σ = 4.43, respectively. Moreover, twomain stages
are clearly identified within NCP: (i) seasonal stage where
NCP > 10 and the distribution parameters are µ = 14.60,
σ = 10.31; and (ii) stationary stage where NCP <= 10 and
the distribution parameters are µ = 1.83, σ = 1.48.

B. TEMPORAL AGGREGATION
The temporal granularity of the measurements of the target
class (NCP), which determine the the number of cases of
COPD patients, is1t = 24h. However, some collecting rates
from the environmental sensors varies between minutes and
hours.

In order to provide a temporal aggregation from het-
erogeneous environmental sensors, which was discussed
in Section II-A, we include the aggregation operators
to obtain the candidate attributes, which are described
in Table 2.

C. SELECTION OF RELEVANT FEATURES
This section is focused on selecting the relevant features
from once of the candidate. For that, as we described en
Section II-A, we compute the Pearson correlation coeffi-
cient [20] between the candidate features and the target class
NCP S∗k,i = |ρS ik ,T | > α with α = 0.1 obtaining the results

shown in Table 3:
Moreover, as the correlation is affected by the imbalanced

distributionwithin the seasonal stage, we have also computed
the Pearson correlation coefficient only within the stationary

3 http://www.juntadeandalucia.es/servicioandaluzdesalud

TABLE 2. Aggregation operators for environmental sensors.

TABLE 3. Correlation coefficient ρ
Si
k ,T

of relevant features: Feature

I) further stationary and seasonal stage; Feature II) seasonal stage.

stage to extract relevant features for it, obtaining the results
shown in Table 3.

D. COMPUTING LINGUISTIC FEATURES
Next, as we detail in Section II-C, we describe the relevant
features using linguistic approach with a minimal expert
knowledge.

For that, we generate for each relevant feature a normalized
linguistic scale L i with granularity g = 5, where proposed
linguistic terms fit naturally ordered within the domain of
discourse of the environmental sensor. A granularity 5 in
scales increases the response rate and response quality, and
it is readily comprehensible to enabling experts to express
their view [54]. In order to expand the number of features
of based on their correlation coefficients, we set the number
of linguistic features based on the criteria:

|ρS ik ,T
| =


1, ρS ik ,T

≤ 1/3

2, 1/3 < ρS ik ,T
< 2/3

3, ρS ik ,T
≥ 2/3

Thereby, the selected linguistic terms, which describe and
expand the relevant features, are shown in Figure 2 and
Table 4. They compose the final features to be learned by the
sequence-based classifier.

In the case of the non-ambient feature day of the week,
we included a straight forward fuzzyfication based on the
fact that the days closer to Monday and weekend have
been demonstrated to have a higher impact in urgency
demand [51]. So, the domain of the days of the week is related
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TABLE 4. Relevant features and linguistic terms selected from normalized
fuzzy scale. The columns represent (from left to right): F) relevant feature,
R) positive or negative correlation, |ρ

Si
k ,T
|) number of linguistic features,

|Si
∗|) domain of discourse, and V i

r ) selected linguistic terms by expert.

FIGURE 2. Triangular fuzzy scales (in regular line) and proposed linguistic
terms (in dotted lines) for the environmental sensors: max(Olea),
max(AMA) and avg(CO), which describe an example of selection for 1,
2 and 3 relevant linguistic features.

to a degree of relevance {MO,TU ,WE,TH ,FR, SA, SU} →
{1, 0.75, 0.5, 0.25, 0.25, 0.5, 0.75}.

E. LEARNING A SEQUENCE FEATURES UNDER A SLIDING
WINDOW APPROACH WITH LSTM
Following the methodology described in Section II-D,
we compose a sequence features from the linguistic features
which describe the environmental sensors under a sliding
window approach. The size of the sliding window has set to
W = 30 that represents a sequence features of thirty days.

TABLE 5. RMSD and MAE in regression on NCP.

The sequence-based classifier proposed in this work is
LSTM due to the encourageing performance developed in
Machine Learning [55]. The configuration of LSTM was:
• Learning rate= 0.0001, to work well as standard param-
eterization [56], [57].

• Number of neurons = 64, as a minimal reference value
in learning patterns in RNN [58]

• Number of layers = 3, because a great number of layer
increases exponentially the learning time without signif-
icance in accuracy [59].

• Batch size = 150 and training epochs = 30, in order
to provide an adequate learning within LSTM from
9000 samples.

IV. RESULTS
In this section we present the results obtained under the
experimental setup described in Section III and two main
analysis:
• Regression of the NPC from target class, which is rep-
resented by a continuous quantitative variable.

• Classification, which is represented by a qualitative
categorization from the value of NPC.

In both analysis, the results are evaluated within the
approaches of:
• 1-day ahead, which determines the NPC based on the
sequence of features from previous days without taking
into account the information from the current day.

• 0-day ahead, which determines the NPC based on the
sequence of features from the current day to the previous
day.

In all cases, the evaluation has been configured under a
leave-one-out cross validation [60] within further timeline.

A. REGRESSION OF NCP
In the regression analysis, the number of COPD patients
(NCP) registered in the Hospital Emergency defines the con-
tinuous quantitative variable to be predicted in the target
class. Here, LSTM has been configured within an Adam
Optimizer and the cost function as mean squared error [61].

The Figure 3 shows the NCP in the two years dataset
together with 1-day and 0-day ahead predictions. Root-mean-
square deviation (RMSD) andmean absolute error (MAE) are
detailed in Table 5.

B. CLASSIFICATION OF NCP
In the classification analysis, the quantitative value has been
translated to a qualitative categorization of NPC with three
variables:
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FIGURE 3. Regression on NCP for 0-day and 1-day ahead.

FIGURE 4. Classification on NCP (Normal (1), High (2) and Extreme (3))
for 0-day and 1-day ahead.

• Normal, if the number of cases is ordinary NCP < 10,
which mainly describes the stationary stage.

• High, if the number of cases is unusually high 10 <=
NCP <= 25.

• Extreme, if the number of cases represents an alarming
state for the resources and planing within the Health
Center NCP > 25.

The activation function for classification over LSTM is
softmax [62] trained under cross entropy [63] as cost function.

We have included two metrics for evaluating the classi-
fication provided by the approach: (i) accuracy within the
timeline, which represents the percentage correctly classified,
being TP, true positives, TN, true negatives, FP, false positives
and, finally, FN, fase negatives: acc = TP+TN

TP+TN+FP+FN ; and
(ii) averaged F1-score from discrete variables, which pro-
vides an insight into the balance between classes considering
precision = TP

TP+FP , and recall =
TP

TP+FN .
The Figure 4 shows the qualitative discrete variables Nor-

mal (1), High (2) and Extreme (3) of NCP in the two years
dataset together with 1-day and 0-day ahead predictions.
Accuracy and averaged F1-score are detailed in Table 6.

C. DISCUSSION
Overall, the performance of the approach for predicting the
urgency demand of COPD patients in the city of Jaén from
environmental sensors is encouraging.

TABLE 6. Accuracy (Acc) and averaged F1-score (Avg F1) in regression
on NCP.

On the first hand, the classification of LSTM on NCP has
described a good performance in the accuracy within the
timeline (up to 98%). For solving imbalance between classes
in metric, we evaluate the averaged F1-score obtaining a
notable result of 82%. More prominently, the evaluation of
predictions 1-day ahead has presented similar results with
0-day ahead, which enables the anticipation of the resources
in the Emergency Service.

On the second hand, the regression of LSTM on NCP
provides a suitable estimation of COPD patients with
MAE = 1.2 and RMSD = 2.0, with a slight improvement
1-day ahead. LSTM has learned the critical impact of sea-
sonal stage (µ = 14.60, σ = 10.31) on the number of cases
in urgency demand within the Health Service. The main lack
is predicting NPC within the stationary stage (µ = 1.83,
σ = 1.48), where slight fluctuations have not be related to
the temporal evolution of environmental sensors within the
city.

In this way, we suggest other sources not related in this
work (due to current impossibility of technical integration)
could develop an impact in urgency demand of COPD
patients, highlighting:
• Erroneous codification or diagnosis. There is a high per-
centage of patients with COPD erroneously diagnosed,
especially in the field of primary care [64].

• Impact of environmental context from neighboring
localities, due to the fact that 42.24% of current COPD
patients are not living in Jaén city where environmental
sensors are located, but in bordering villages within the
province.

• Influenza infection [65] with coexisting diseases, such
as seasonal flu [66].

• Imprecision of Particulate Matter (PM10), which gran-
ularity to detect consistent data with the daily cycle of
gaseous pollutants emitted by traffic, requires higher
precision sensors, such as, PM1 or PM2.5 [67].

V. CONCLUSIONS AND ONGOING WORKS
In this work, we present a general methodology to predict
events in Smart Cities from environmental sensors located
within it. The main proposed stages are introduced in refer-
enceworks, but wemainly include: (i) a linguistic approach to
integrate expert knowledge with minimal configuration based
on the intuitionistic representation; (ii) LSTM as sequence
based classifier, which shows promising performance to rec-
ognize patterns in multivariate time series.

The results describe a further evaluation to predict
urgency demand of COPD patients within the city of Jaén.
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A quantitative regression and qualitative classification are
analyzed showing a good performance in predicting the evo-
lution of incidences between seasonal stage and stationary
stage. In the case of seasonal stage, the slight fluctuations
in number of COPD patients has not been related to data
collected from environmental sensors, which is identified
in similar problems in literature to the low precision of
PM10 measures. In this way, we agree that the quality and
cost of ambient stations are currently identified as key factors
in the deployment of Smart Cities [68].

In ongoing works, other external factors, which could
impact in urgency demand of COPD patients, are expected
to be further analyzed. Moreover, we will focus on relat-
ing the stational flu within the environmental sensors and
Health Centers fromAndalusian Health Service. For that next
purposes, several environmental stations located in different
cities and Health Centers will be involved, which geolocation
will be key to be integrated and weighted in order to provide a
spatial forecasting in larger territories. In this onoging work,
the current methodology will present the advantage of iden-
tifying and describe the relevant features from environmental
sensors for each citiy, which will provide an interesting and
descriptive analysis of environmental factors based on the
geolocation.
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