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ABSTRACT In this paper, we present a novel method for visualizing an abstract tomogram of network flows.
Through a tomogram, we offer visual cues for quickly sensing aggregate and temporal networking behaviors
of the monitored systems. In an integrated view of a tomogram, users can cut across a specific dimension to
reason about interesting networking activities without losing the overall picture of the networked system.
We extend this tomogram with user interfaces for finding correlation between network flows and their
attributes using a co-occurrence analysis algorithm. This paper also presents an interface for conducting
sequence mining for interested flows in order to infer causal relationships. Security engineers need to
prioritize the aforementioned situation analysis tasks by focusing on endpoints with relatively higher security
risks. To help security engineers with this task, we devise a way to assess and visualize the security risks
according to a new centrality measure that is computed based on various networking information from a set
of network flows. Our paper shows that the novel visualization method and analytics interfaces offer more
intuitive means to track down complicated symptoms of advanced and covert security threats.

INDEX TERMS Visual analytics, network tomography, tomogram, context awareness, network flows, co-
occurrence, sequence mining, security risk, centrality.

I. INTRODUCTION
Security threats are constantly evolving to become more
covert and complex. To detect the complicated symptoms of
these advanced threats, it is necessary to analyze a myriad
of heterogeneous security events [1]. However, field security
engineers oftentimes have to go through the hassles of iden-
tifying the security events that require more urgent and thor-
ough investigation. Visualizing the groups of security events
and their basic statistical information may offer some hints
about abnormal situations. However, existing visualization
tools come short as they mostly offer fragmented and partial
views of the complex security events. Also, these tools do
not offer sufficient contextual information [2]. The having
of Playstation network that occurred in 2011 revealed that
security engineers who were pre-occupied with the analysis
of many less-critical security events failed to recognize the
actual moment of intrusion [3]. Such an unfortunate event
calls for better visual cues and situation analysis interfaces.
We have raised such concerns in our preliminary work that
was presented in [4]

In this paper, we develop a way to provide an integrated
view of security events that have occurred in a networked
system. We refer to this comprehensive view as a tomogram
of network flows, where security events are represented by
network flows that are generated by a networked system. We
adopt the term tomogram which is conventionally used as a
representation of a cross-section through solid objects with
penetration waves [5]. In our context, a tomogram of network
flows (a tomogram for brevity) is a complete visual stack
of various networking dimensions. For instance, a tomogram
can show activities on pairwise connections between end-
points. At the same time, a tomogram shows aggregate and
temporal networking behaviors in terms of protocols, ports
and applications used by the endpoints, all within a single
view. Given a tomogram, security engineers can cut across
different networking dimensions without losing a macro-
scopic view of the entire system being monitored.

The main objective of this paper is to help the act of
network tomography to be done in a more intuitive and
contextual fashion. Here a network tomography is a study of a
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network’s internal characteristics using networking informa-
tion derived from endpoint data [6]. Given profiled behaviors
in the past, our tomogram detects and highlights abnor-
mal network flows that are subject to further investigation.
In addition, our tomogram is equipped with user interfaces
for analyzing situations around a flow of interest with co-
occurrence and sequence mining algorithms. Our tomogram
also visualizes criticality of an endpoint in terms of security
risks. This paper provides a novel algorithm for comput-
ing multi-variate Eigenvector centrality of every node in the
networked system based on the network flow information
between endpoints. By highlighting highly critical nodes,
security engineers can more easily prioritize additional tasks
of analyzing situations around the flows that are related to the
critical nodes.

This paper is structured as follows to elaborate our contri-
butions further: (1) In Section 2, we introduce related works
in the context of network tomography and visualization;
(2) In Section 3, we explain a new tomogram visualiza-
tion method; (3) In Section 4, we explain the tools that are
implemented on the tomogram to help security engineers
conduct situation analysis; (4) In Section 5, we present our
new methods for assessing security risk of a node based
on a centrality measure with network flow information;
(5) In Section 6, we evaluate the performance of our methods,
and (6) we conclude in Section 7.

II. RELATED WORK
In this section, we introduce related works on network tomog-
raphy and security analysis for networked systems based on
visualization of networking information.

Network tomography was first coined by Vardi [6] to
define a study of network characteristics based on the infor-
mation derived from endpoint data. Network tomography is
mostly keen on performance studies such as link loss and
packet latency that can be inferred from correlated end-to-
end measurement [7]. Beside performance issues, network
topologies can be discovered through tomographic infer-
ence [8]. This paper newly extends network tomography to
the domain of network security. We represent the security
events with network flows between endpoints. This paper
devises a tomogram to visualize the network flows in mul-
tilateral fashion and to help security engineers in the field to
conduct various statistical and situational analyses for sensing
symptoms of advanced security threats.

Various visual tools exist for network management.
Minarik and Dymacek [9] used a prober to extract statistics
of Layer-3 communications between pairs of nodes in a
network. Their tool shows information such as source, des-
tination IPs and ports, packets and protocols used. The work
by Liao et al. [10] showed a way to visualize the dynamics
of a network. It used Gephi graph visualization tool [11] to
observe any change in network conditions over time. It visu-
alized bipartite host-to-host graphs and similarity graphs for
analyzing the dynamics of transitions [10]. The works pre-
sented in [9] and [10] primarily rely on the visualization of

pairwise communications and topological views. They do not
support grouping of network nodes at various angles such
as the use of applications, organizational information and
protocols used. NVisionIP [12] is a tool that maps hosts on a
two-dimensional (subnet×host) coordinate and clusters hosts
by the characteristics of interest. NVisionIP can be used for
recognizing suspicious port scanning activities and symptoms
of denial-of-service attacks. However, with the abstraction of
network conditions in a coordinate system, topological infor-
mation gets lost. Therefore, it is difficult to monitor activities
between endpoints. FlowTag provides query interfaces for
filtering out interested event logs collected from security
monitoring equipments [13]. Similar to [10], pairwise com-
munications between two IP nodes can be analyzed. Query
interface of FlowTag helps security engineers narrow down
the logs to analyze. Hence analysis time could be significantly
reduced. [14] visualized a treemap in a selected time span
to show mostly used ports or hosts. Similarly, [15] showed
a flow map where nodes are radially mapped around a focus
node at the center. It used timelines and event plots for study-
ing the temporal relationship between nodes. [16] divides
a network into 4 layers according to subnet classes. Users
can pinpoint a host and find any other hosts it interacted
with. The abstraction of the network space is similar to the
coordinate system of NVisionIP [12], and it is not easy for
the users to spot a node of interest. Freet and Agrawal [17]
visualized logs from IDS (Intrusion Detection System). How-
ever, the views are fragmented, which makes it difficult to
see the collective behavior. Zhang et al. [19] used trees of
HTTP requests and relationships on a radial map. However,
this is limited to HTTP, and the aggregate behaviors on
other network factors are not shown. Lastly, [19] presented
inter-disciplinary research effort between security analysts,
visual designers and data scientists on effectively coloring
frequency of security log items on amulti-pixel structure. The
visual cues are useful for easily recognizing abnormal events
in the security logs. However, analyzing the context of such
an event does not seem to be trivial.

From the previous works, we learned that excessive
abstraction of the network conditionmay not provide intuitive
visual analytics interface to the users. On the other hand,
when the topological views are primarily used, overall statis-
tical and contextual information may not be inferred easily.
In this work, we aim to provide pairwise connection and
contextual information at the same time and on the same view.
We can show co-occurred network flows, frequently observed
sequential patterns and correlations between network flow
attributes. In addition, our tomogram can visualize significant
changes at various networking perspectives during temporal
transitions, without losing the overall picture of the whole
system. In the following, we show how such novel visual
analytics can be realized.

III. CONSTRUCTION OF NETWORK TOMOGRAM
In this section, we introduce a way to represent a set of
network flows with a tomogram. A network flow is a record
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FIGURE 1. Collecting network flows by conducting deep packet
inspection on all packets captured on a mirrored port.

of communication information between two endpoints [20].
In order to collect the network flows, we first use port-
mirroring to capture all packets flowing through a network,
as shown in Fig. 1.We feed the captured packets into an appli-
ance that can conduct Deep Packet Inspection (DPI) [21].
We employed an enterprise-grade DPI machine (NetInsider)
that can retrieve up to 40 million concurrent flows from a
40 Gbps network.1 Besides standard Layer-3 information
such as IPs and ports of communicating endpoints, we extract
traffic volume, protocols and application types such as Web,
Peer-to-Peer application, E-mail and HTTP used by the
endpoints.

Algorithm 1 Generate Network Tomogram.
Input: List of Flows, FlowList
Output: Network tomogram

1 Function updatetomogram(Node, Flow):
2 if Attribute of Node is "eport" then
3 Update Node’s flowCount, size, packetCount;

return;
4 else if Flow is not in child nodes of Node then
5 Create a node n with Flow’s flowCount, size,

packetCount ;
6 Add n to the child nodes of Node;
7 Update Node’s flowCount, size, packetCount;
8 updatetomogram (n, Flow);
9 else
10 Update Node’s flowCount, size, packetCount;
11 Find a Node c that is in the child nodes of Node

and contains Flow;
12 updatetomogram (c, Flow);
13 Function generatetomogram(FlowList):
14 Previous network tomogram, Tp;
15 A new empty network tomogram, Tc;
16 Copy Tp to Tc;
17 foreach Flow in FlowList do

18 updatetomogram (Tc.Root , Flow);

We collect these network flows periodically and generate
a tomogram according to Algorithm 1. A flow is inserted
into a tree that is dissected with different horizontal layers.
Here, each layer represents an attribute of a network flow.
Day is the time when the flow was retrieved. norg and eorg
are destination and source organizations (or geographical

1Full specification available at http://www.netcoretech.co.kr

FIGURE 2. An example of tomogram construction.

FIGURE 3. An example of generating transactions from a sequence of
flow IDs for co-occurrence analysis.

locations), respectively. The letters n and e stands for ingress
and egress, respectively.We apply this notation for IP and port
attributes as well for brevity, i.e., nip, eip, nport and eport.
We use pre-defined code number for app type and protocol
attributes.

An example of constructing a tomogram from a set of five
network flows is given in Fig. 2. Suppose a new flow with
ID = 1 and app type = 0 is inserted for the first time. There
is no node with app type = 0 on the app type layer. In this
case, our algorithm creates a new node on the app type layer
with app type = 0. When a following flow with ID = 2 and
app type = 0 is inserted, our algorithm spots a matching node
at app type layer with app type = 0. Our algorithm traverses
further down in the child layers to update the nodes that match
the current flow being inserted until a leaf node at the eport
layer is reached. While traversing through the tomogram, our
algorithm updates flow count, flow size (in bytes) and packet
count on the matching nodes. For instance, flow count of the
node with protocol = 6 on the protocol layer is 3. Each
branch in this tree structure represents a network flow.

We generate a tomogram periodically and compute a
cumulative moving average (CMA) of flow count, flow size
and packet count of every node for a given sequence of
tomographies. We color a node with the CMA values as
follows. If any CMA value on a tomogram node exceeds a
configurable threshold at a certain period, then we color the
node red. A red node indicates a sudden increase of network-
ing activities. Suppose a node with nport = 80 is colored red,
then we can infer that there is a sudden influx of flows on
port 80. On the other hand, if any CMA value on a tomogram
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node falls below a configurable threshold, then we color the
node grey to show it that it is ephemeral. For example, port
80 stopped to exhibit any networking activity, then the node
with nport = 80 is colored grey. If an ephemeral node re-
appeared after some period, then the node is colored yellow
to reflect a sporadic networking behavior. A newly created
node is colored blue to indicate that a never-seen flow has
appeared. If there was little change to a CMA value, then a
node is colored white to represent a stationary behavior.

Any node that is not colored white is a sign of abnormal
situation. Instead of looking into a myriad of individual flow
events, we can focus on a specific layer and drill down to the
child layers for more lower-level details. For instance, we can
cut through the app type layer to pinpoint a problematic
node. Then, we can navigate through the IP layers to list
the endpoints involved in the problematic application and
check whether they exhibit suspicious behaviors. Suppose
the app type layer shows that it is the web application that
behaves abnormally. Subsequently, we can move down to
the IP layers to find out which web server is communicating
excessively with external endpoints. Such symptoms can be
a sign of potential data leakage. As opposed to many existing
tools that rely on the visualization of the topology of end-
points [2], our tomogram intuitively visualizes aggregate and
temporal behavior of network flows at different dimensions
in addition to pairwise connection information, all in an
integrated view.

IV. SITUATION ANALYSIS WITH NETWORK TOMOGRAM
In this section, we extend the tomogram to support analysis of
contextual information surrounding network flows of interest.
This section focuses on co-occurrence and flow sequence
analysis.

A. CO-OCCURRENCE ANALYSIS
Given a set of network flows, we can list flows that co-
occurred with a flow of interest. As shown in the example
illustrated in Fig. 4, a user can select an interested flow by
selecting its leaf node. After selection, we compute condi-
tional probabilities of flows co-occurring with the selected
flow. We highlight co-occurred flows on the tomogram and
return the list of actual conditional probabilities. Such corre-
lation can be useful for detecting an anomaly. For instance,
we can compute the average distribution of co-occurrence
for a specific flow in the past as shown in Table 1. The
distribution in the past can be compared with the one obtained
from a new time period. If there is a significant discrepancy,
we can suspect an anomaly and trigger further investigation.

We compute the co-occurrence with FP-Growth algo-
rithm [22]. In order to employ this algorithm, we need to
design a transaction database (DB) as follows. Let I =
{i1, i2, . . . , im} be a set of flow IDs and a transaction DB =
〈T1, T2 . . . , Ti〉, where Ti(i ∈ [1..n]) is a transaction that
contains a set of flow IDs ∈ I.
Fig. 3 illustrates how transactions are extracted. We slide

fixed-length time window over a sequence of flow IDs.

FIGURE 4. An example of highlighting flows that co-occurred with a
selected flow of interest. The conditional probability of co-occurrence is
also shown.

TABLE 1. Changes of co-occurrence distribution over time.

All flow IDs within the time window is put into a transaction.
If there are duplicate flow IDs, we multiply the transaction.
For example, items in a time window [2 5 3 2] yields two
duplicate transactions, T4 = {2, 5, 3}, {2, 5, 3}. Such mul-
tiplication is to make sure we correctly capture transactions
that are likely to co-occur more. We move the time window
every time tick. Therefore, time windows can overlap each
other.

We define a support value of a flow item i in a transaction
as freq_i

|T | where freq_i is the frequency of i, and |T | is the
total number of transactions obtained from the set of network
flows. Confidence is the conditional probability of an item
co-occurring with another flow. We can set min_suppport
and min_confidence. During the iterative computation of co-
occurrence, we rule out items whose support or confidence
value is less than min_support or lower than min_confidence.
Less frequently appearing flows can be overlooked when
min_support is set to a high value. Despite the low fre-
quency, some of them may still pose security threats. How-
ever, we stress again that we color ephemeral, sporadic and
never-seen flows to alert the security engineers and prevent
less frequent but critical flows passing unnoticed.
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FIGURE 5. Showing correlated flow attribute values on a tomogram.

TABLE 2. Patterns of co-occurring attribute values over time.

We can also analyze co-occurrence between different
attributes. To do this, we provide another definition of
transaction database. Let Ia = {i1, i2, . . . , im} be a set
of values of a flow attribute a ∈ {norg, eorg, applica-
tion, protocol, nip, nport, eip, eport}. We define transaction
DB = 〈T1, T2 . . . ,Ti〉, where Ti (i ∈ [1..n]) is a transaction
which contains two different attribute values that we want to
correlate.

As shown in Fig. 5, users can select two attributes
to correlate, e.g., nip and app type. Upon selection of
nip = 192.168.0.2, all flows containing this value is
retrieved. We run the FP-Growth algorithm in order ana-
lyze what app type co-occurred frequently with nip =
192.168.0.2. Fig. 5 shows the flows that went through nip =
192.168.0.2 and indicates that they were frequently involved
in app type = 0 and 11. On the tomogram, we show only the
correlated flows. Table 2 shows the past and current app types
that co-occurred with selected nip values. Any significant
difference can be suspected as anomaly. For instance, we can
notice a 5% conditional probability of using E-mail on nip =
192.168.0.6 in the current period while no such activity was
observed in the past. Such a change can be suspected as an
anomaly.

FIGURE 6. Highlighting frequently appearing sequences of flows on a
tomogram.

FIGURE 7. A example of extracting sequence of elements from a set of
network flows.

B. FLOW SEQUENCE ANALYSIS
In this section, we provide an interface for analyzing fre-
quent sequences that occurred around a flow of interest. For
instance, as shown in Fig. 6, a user can first select the leaf
node of an interested flow (ID = 1). Frequently appeared
sequences that include the selected flow are shown in the pop-
up box and are also highlighted directly on the tomogram.

We employ Prefix-Span [23] algorithm for computing the
frequently appearing sequences from a set of network flows.
To use this algorithm, we defined an item set I and a sequence
S as follows. Let I = {i1, i2, . . . , im} be a set of flow IDs.
A sequence S is an ordered list of elements, which is denoted
by 〈s1, s2 . . . , si〉. si is a subset of network flow IDs. An ele-
ment contains one or more flow IDs that occurred at the same
time. Fig. 7 illustrates an example of retrieving sequences of
elements from a set of network flows.

We slide the fixed-length time window over a sequence
of network flows at every time tick. Items in ( ) indicate
flows that simultaneously appeared in the networked system.
We can set the maximum length of the sequence pattern to
observe. Table 3 shows more examples of sequences that
include interested flow IDs. With this information, security
engineers can infer causal relationship among flows.

Co-occurrence and sequence mining results obtained
through our tomogram can be considered as a set of fea-
tures that represent the situation of a monitored networked
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TABLE 3. Sequence Analysis Example.

FIGURE 8. Mapping between application workflow and a sequence of
network flows on the tomogram.

system at any given time. As a future work, we can extend
our tomogram to support tracking and modeling the tempo-
ral transition of the features using regressions, distributed
Bayesian network algorithms or LSTM networks [24]–[26]
in order to sense anomalies more effectively. In addition,
we can add another visual layer on top of the tomogram
that shows application logic. In [27], we devised a way to
correlate the sequence of network flows and description of
interactions betweenWeb of Things (WoT) services. As illus-
trated in Fig. 8, we can show the mapping of application
workflows on the tomogram. If there is a flow sequence that
does not match a registered workflow of service interaction
at the application layer, then we can immediately alarm this
as an anomaly.

V. TOMOGRAM WITH NODE CENTRALITY
This section presents a visual cue to help security engineers
select more critical flows for further investigation with higher
priority. A criticality of a flow can be measured in terms of
security risks on an endpoint that is involved in the flow. SP
800-30 by NIST provides a framework for assessing risks of
information technology systems [28]. The downside of this
framework is that the risk assessment is done manually by
humans, and it can, therefore, yield subjective results. Also,
the framework does not sufficiently account for the various
networking activities that can contribute to the risk.

This article devises a more systematic approach to ranking
the security risks of an endpoint by a new centrality measure
that is based on endpoint’s various networking behaviors.

First, some terms are defined as follows. NF is a set of
network factors such as flow volume, the number of flows,

Algorithm 2 Node Ranking Algorithm
Input: Networked nodes G, Max Iteration iteration
Output: Scores of all nodes in G

1 Function NodeRank(G, iteration):
2 d ← 0.85;
3 Network Factors NF ;
4 foreach factor i in NF do
5 Fi←

∑
(values of i outbound flows);

6 foreach node v in G do
7 Initialize score Rf (v) to 1

OB ;
8 foreach factor i in NF do
9 while iteration > 0 or not converged do

10 Fi←
∑

(values of i on outbound flows);
11 foreach node v in G without any flows do
12 Rf (v)← Rf (v) + d * 1

Fi
;

13 foreach node v in G do
14 foreach neighbor n in neighbors(v) do
15 Fn←

∑
(outbound flows from n to

v);
16 Rf (v)← Rf (v)+ 1−d

Fi
+ d ∗

∑ Rf (n)
Fn

;

17 Rf (n)← Rf (n)+ 1−d
Fi
+ d ∗

∑ Rf (v)
Fn

;
18 iteration = iteration - 1;
19 foreach factor f in NF do
20 foreach node v in G do
21 Total Rank of v, TR(v)← 0;
22 Wf ← weight of f ;
23 TR(v) = TR(v)+Wf ∗ Rf (v);

the number of applications running on a node, the number of
open ports and communication protocols. A centrality value
of a node is a weighted sum as defined in Equation 1.

R(vx) =
∑
i∈NF

αiRi(vx) (1)

A weight αi of network factor i is set to 1 by default. Note
that αi can be flexibly configured by the security engineers
who may want to impose different weight values to network
factors in certain application domains. Determining optimal
alphai values requires another research effort of assessing the
effects of different weight combinations to security analysis
in various domains. This is not in the scope of this paper, and
we leave it out for a future research when enough cases are
collected.
R(vx) is score of vx , which is defined in Equation 2.

Ri(vx) =
1− d
n
+ d

(∑
t∈G

ai(v,t) ·
Ri(vt )
Ci(vt )

)
(i ∈ NF) (2)

ai(v,t) is an adjacency matrix as well as the stochastic matrix
whose sum of every row is 1.C(vt ) is for normalizing the rank
value, which is defined in Equation 3.

Ci(vt ) =
( n∑
t=1

ai(v,t)
)
(i ∈ NF) (3)
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FIGURE 9. A sample tomogram of network flows implemented with D3.js. Size of a node and the layers for endpoints indicate security risks in terms of
centrality.

Our newly defined centrality can be regarded as a multi-
variate version of Eigenvector centrality [29] and an adap-
tation of PageRank [30]. Note that d in Equation 2 is a
constant called a damping factor. Damping factor reflects
the phenomenon that not all endpoints are reached directly
from other endpoints. We set the damping factor to 0.85,
which is the value used by PageRank as well to discount
scores of incoming page links by 15%. While PageRank
considers only the incoming links for scoring the rank of a
node, we consider both the outbound and inbound flows for
assessing the node’s centrality. Outbound flows from a node
can potentially indicate a data leakage, while inbound flows
can pose potential threats such as intrusions and denial-of-
service attacks. The pseudo-code for our centrality computa-
tion algorithm is given in Algorithm 2.

On our tomogram, the centrality of an endpoint is
expressed as the size of a circular node. An example of a
tomogram with centrality information is shown in Fig. 9.
This is implemented with D3.js which is a Javascript library
for visualization of Big Data [31]. As we can see in the
figure, we can easily spot critical nodes with high centrality
(high risk). Any flows flowing through the large non-white
nodes can be selected with high priority for further situation
analysis.

VI. EVALUATION
In this section, we measure the overhead of conducting the
situation analyses and computing the node centrality. All of
our analysis and computations were executed on a 64-bit
CentOS Linux release 7.3.1611 (Core) machine with four
Intel i5 CPUs @ 3.20GHz and 4GB of RAM. We wrote the
tomogram generation program in Java. A web-based inter-
active visualization of the tomogram was implemented in
Javascript with D3.js library [31]. We used Spark Machine
Learning Library (MLLib) [32] to implement FP-Growth for
co-occurrence analysis and PrefixSpan for sequence mining.

We employed the NetInsider DPI appliance in order to extract
network flows from randomly generated network packets.
We indexed network flows in ElaticSearch, a distributed doc-
ument database [33].

The sample target system we observed with our tomogram
was a Big Data platform for real-time analytics which is
deployed in our lab network, as shown in Fig. 16. This
platform uses Kafka [34] message queue for a real-time
data ingestion. Data collected by Kafka is further relayed to
Spark [35] applications that are scheduled to run parallel tasks
on a cluster of computing resources managed by Mesos [36].
Mesos master is considered as the most critical component in
this case, as its failure can cause unavailability of the entire
Spark applications. The arrows in Fig. 16 represent a direction
of flow between two endpoints. The number on each arrow
head is the number of the total flow between two endpoints
collected for an hour. The number of total flow is one of the
network factors used to compute the node centrality with a
program that was fully written in C++.

The latency of generating tomogram with varying number
of flows is shown in Fig. 10.

It took approximately 183 seconds to construct a tomo-
gram with 724,000 flows, which is 17 hours worth of flows
appeared in our networked system. All child nodes in a
tomogram layer are hashed for a fast search ofmatching flows
while constructing and updating a tomogram. This helped us
maintain linear latency growth to the number of flows in the
system.

In Fig. 11, we measured the latency of computing flow co-
occurrences, correlating between flow attributes and analyz-
ing sequences of flows (denoted FPG-Flow, FPG-Attribute,
and PrefixSpan-Flow, respectively). We set min_support and
min_confidence to 0.8 for both FP-Growth and PrefixSpan
algorithms. We set the maximum length of the sequence
pattern (MaxPatternLength) to 5 for PrefixSpan algorithm.
With FPG-Attribute, every transaction contains two flows.
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FIGURE 10. Latency of tomogram generation.

FIGURE 11. Latency of situation analyses with varying number of flows.

For other analysis methods, we fixed the time window size
to 3 for retrieving transactions.

As shown in Fig. 11, FPG-Attribute analysis took relatively
less time as only the subset of flows that match the interested
attribute-value were retrieved. The latency increased linearly
with the increase of flows for the other two analysis meth-
ods. However, when there were more than 596,800 flows to
analyze, FPG-Flow suffered out-of-memory errors.

As shown in Fig. 12, FPG-Flow analysis and PrefixSpan-
Flow analysis spent the most time in generating transactions.
For both methods, the proportion spent on running the actual
algorithm was relatively small, while I/O cost of retrieving
flow data from the flow storage (ElasticSearch) was dominant
for FPG-attribute analysis.

As shown in Fig. 13, we measured the analysis latency
with varying time window size in seconds for FPG-Flow and
PrefixSpan-Flow. In this measurement, the total number of
flows to analyze was fixed at 42,000. FPG-Flow failed due
to lack of memory when the time window size was increased
beyond 6. On the other hand, PrefixSpan-Flow suffered out-
of-memory error when the time window size was increased to
50. As time window size increases, there is a higher chance
of the same flow repeatedly showing up within the time
window. Therefore, the number of transactions to generate
grew significantly as well.

FIGURE 12. Latency profiling for situation analysis methods.

FIGURE 13. The effect of time window on latency of situation analyses.

FIGURE 14. Number of iterations with varying damping factor.

As for the performance of our node centrality computation,
we first measured the number of iterations against damping
factors from 0.85 to 0.99. As shown in Fig. 14, the number
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FIGURE 15. Latency of node centrality computation.

FIGURE 16. Network topology and network flow information of our
internal Big Data processing platform.

of iterations spiked at 0.99. This observation shows that
damping factor of 0.85 is reasonable in terms of the number
of iterations.

In Fig. 15, we show the latency of computing node cen-
trality. We observed sudden spike when the number of nodes
increased to 1,500. The high overhead for computing the
centrality is inevitable especially when there are multiple
networking factors to consider. As a future work, we plan
to benchmark existing parallelization techniques such as [37]
in order to devise a new parallel algorithm for our centrality
computation.

Lastly, in Table 4, we verified whether our centrality algo-
rithm correctly measured the importance of every component
in our Big Data platform. We ranked each node by its central-
ity and found out that Mesos master and the Gateway nodes
ranked the highest. As mentioned earlier, failure of Mesos
master can cause a disruption to entire Spark applications.
The Gateway node is the first entry point to the systems
in the internal private network. Infiltration into the Gate-
way could lead to cascading intrusions to all other internal
nodes. We can see that the rankings reasonably reflected the
importance of key components of our Big Data processing
platform.

Note that the nodes in our internal network are ranked
relatively higher than the nodes on the external network (e.g.,
Internet). This is because we only port-mirrored our own
networking switch. Unless we tap into the core switches of the

TABLE 4. Rankings of each node in our Big Data processing platform by
our new centrality values.

entire Internet, we cannot observe the networking activities
among all external nodes. We can extend our tomogram to
highlight endpoints from external networks and rank their
centrality separately so that we can monitor external threats
more effectively.

VII. CONCLUSION
We devised a novel method for collectively visualizing aggre-
gate and temporal behaviors of a network system from a set
of network flows that were captured with a DPI appliance.
We call this visualization a tomogram, and we extended it to
help security engineers conduct additional situation analysis.
Users can find flows that co-occurred with a flow of interest,
find a correlation between network attribute values and ana-
lyze a frequent sequence of flows to infer causal relationship
among flows. We can also help the security engineers priori-
tize the flow analysis tasks by highlighting the endpoints with
a higher risk on the tomogram. We assessed the security risk
of a node in terms of a multi-variate centrality measure we
newly defined with various networking behaviors.

As a future work, we plan to extend our tomogram
to model network situations with various state-of-the-art
machine learning algorithms.
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