
Received March 13, 2018, accepted April 9, 2018, date of publication April 25, 2018, date of current version May 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2829895

Correlating Pattern Grime and Quality Attributes
DANIEL FEITOSA 1, APOSTOLOS AMPATZOGLOU 1,
PARIS AVGERIOU1, (Senior Member, IEEE), AND ELISA Y. NAKAGAWA2, (Member, IEEE)
1Department of Mathematics and Computing Science, University of Groningen, 9700 Groningen, The Netherlands
2Department of Computer Systems, University of São Paulo, São Carlos - São Paulo 13566-590, Brazil

Corresponding author: Daniel Feitosa (d.feitosa@rug.nl)

This work was supported in part by the Brazilian and Dutch agencies CAPES/Nuffic under Grant 034/12, in part by the CNPq under
Grant 204607/2013-2, and in part by the INCT-SEC under Grant 573963/2008-8 and Grant 2008/57870-9.

ABSTRACT The gang of four design patterns are widely adopted in industry as best practices and their effect
on software quality has been long investigated in academia, with both positive and negative consequences
being observed. One important parameter that relates to the effect of patterns on quality is the deterioration
of pattern instances due to the buildup of artifacts unrelated to the pattern structure. This is called pattern
grime and can potentially diminish some of the benefits of using patterns in the first place. In this paper
we investigate the relation between pattern grime and three qualities, namely performance, security, and
correctness. To this end, we conducted a case study with five industrial projects (approx. 260 000 lines
of code) implemented by 16 developers. Our findings suggest a correlation between the accumulation of
grime and decreased levels of performance, security, and correctness. Moreover, factors such as the project
itself, pattern type and the developer can influence this relation. The obtained results can benefit both
researchers and practitioners, as we provide evidence on the accumulation of pattern grime and its correlation
to performance, security and correctness, and how different factors affect these correlations.

INDEX TERMS Design patterns, pattern grime, quality attributes, industrial case study.

I. INTRODUCTION
The popular GoF (Gang of Four - Gamma, Johnson, Helm,
and Vlissides) design patterns catalog consists of 23 solu-
tions to recurring problems of object-oriented design [1].
Practitioners often adopt them as good design practices, but
at the same time they are concerned with their impact on
the system under development, particularly their effect on
quality attributes [2]. This concern is reasonable, as patterns
can occur in a significant part of software systems (from
15% to 65% of the classes) [3], [4]. Additionally, the state
of the research suggests that this effect of patterns on soft-
ware quality is not uniform, but it depends on a number of
parameters [5]. Several works have concluded that a pattern
can be beneficial in some cases and harmful in others, with
respect to a specific quality attribute, by studying the struc-
tural characteristics of patterns, such as the number of pattern
participating classes, number of methods, etc [6]–[9].

One significant aspect of patterns’ instantiation that might
incurs negative consequences on software quality is the
presence of artifacts (e.g., methods or classes) that are not
related to the pattern rationale. This phenomenon has been
defined by Izurieta and Bieman [10] as pattern grime, which
is the ‘‘degradation of a design pattern instance due to

accumulation of artifacts unrelated to the instance’’. For
example, in a Decorator pattern instance, the addition of
public methods to the class playing the Decorator role that
are not invoked inside the class playing the Component role
introduces grime into the instance as this new responsibility
is not compliant with the original definition of the pattern [1].
Such a change could reduce the cohesion of the class, as well
as hinder its understandability [9]. In general, accumulating
pattern grime contributes to the degradation of quality in
pattern instances [10]–[12]. Given the aforementioned high
percentage of class participation in GoF patterns, the effects
of ever-growing grime can be detrimental to the overall
quality of those systems.

Despite ongoing research on identifying the impact of
pattern grime on software quality [10], [11], [13], there are
still three shortcomings. First, only a few quality attributes
have been addressed so far, namely testability, adaptabil-
ity and understandability. Second, despite the existence
of industrial case studies examining how pattern grime
accumulates [14], [15], there is a lack of industrial studies
regarding how the accumulation of grime relate to levels of
quality attributes; the existing studies are limited to open
source software. Finally, even these studies on open source

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23065

https://orcid.org/0000-0001-9371-232X
https://orcid.org/0000-0002-5764-7302


D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

have limited depth regarding the investigation of factors that
contribute to this relation between grime and qualities. For
example, developers with different levels of involvement in
a project may accumulate grime differently. Identifying the
factors related to higher levels of grime can improve the
impact of design patterns on quality, as well as to a more
adequate allocation of resources in a project.

In this paper, we address the aforementioned shortcomings
through an industrial case study that examines the rela-
tion between the accumulation of pattern grime and qual-
ity. The study was designed according to the guidelines of
Runeson et al. [16], reported based on the Linear Analytic
Structure [16]. Thus, we offer three advancements com-
pared to the state of the art (which is further elaborated in
Section II). First, we focus on three qualities that have not
been studied: performance, correctness and security. Second,
we consider five industrial software systems for our investi-
gation, instead of open source. Finally, we investigate three
factors that may influence the underlying relations:
• the projects under development have several character-
istics such as application domain and type of systems
(e.g., user application, library), which may influence the
usage of patterns and development practices. Studies
have already shown that projects can accumulate pattern
grime differently [10], [15]. Thus, we seek to investigate
if this may reflect on the relation between grime and
levels of quality as well;

• the types of pattern (e.g., Template Method, Singleton,
etc.) have also been pointed out as a factor on how pat-
tern grime is accumulated [10], [14], [15]. The different
structural and behavioral characteristics of patterns may
also be related to how exactly quality is affected; and

• the developers often have different traits such as back-
ground and experience, which may affect their behavior
and productivity [17]. Besides, developers have also
been found to accumulate grime differently [15], which
corroborates the relevance of also investigating if this
factor relates to a varying level of quality.

The study is executed based on the commits performed by
16 developers during the implementation of five projects that
sum up to approx. 260,000 source lines of code. The studied
qualities are assessed through the number of violations of
various coding practices, each one mapped to one of the
qualities (for more details see Section III.C.4).

The remainder of this paper is organized as follows.
In Section II, we present related work. The design of our case
study is described in Section III. In Sections IV and V, we
report on our results and discuss the most important findings.
We present the identified threats to validity in Section VI,
together with actions taken to mitigate them. In Section VII,
we conclude the paper and present some interesting exten-
sions for this study.

II. RELATED WORK
In this section, we focus on the terminology related to pat-
tern grime, and address empirical studies that investigate

the relation between accumulation of grime and quality
attributes.

A. DESIGN PATTERN GRIME AND QUALITY ATTRIBUTES
Pattern grime concerns the degradation of pattern instances
without breaking down the original structure on the pat-
tern definition [10]. This degradation occurs through the
addition of associations that do not comply with patterns’
responsibilities (e.g., addition of a public method that is
not in the definition), which can accumulate along the
evolution of the instance and obscure their design [11].
Izurieta and Bieman [18] established that the added associ-
ations can be assessed from three base perspectives, i.e.,
there are three forms of pattern grime. Class grime regards
class-related elements (e.g., number of attributes, meth-
ods, or children) that are unrelated to the role of a class
in the pattern instance. Modular grime regards relationships
(e.g., dependency, generalization) between classes of the pat-
tern instance and other classes, which are not predicted in
the definition of the pattern. Organizational grime regards
how pattern-participant classes are distributed into packages
and/or namespaces. This threefold classification was further
refined by Schanz and Izurieta [14], who provided a tax-
onomy of subtypes for modular grime, and by Griffith and
Izurieta [13], with a taxonomy of subtypes for class grime.

Regarding the relation between the accumulation of pattern
grime and the levels of quality attributes, we identified three
empirical studies. Izurieta and Bieman [11] investigated how
grime is associated with the testability of pattern instances.
For that, they considered instances of Singleton, Visitor and
State patterns obtained from an open-source system and
assessed their testability by the number of test cases necessary
to cover them. By analyzing the testability against the accu-
mulation of modular grime, Izurieta and Bieman found that
testability decreases (i.e., more test cases are needed) as grime
accumulates. Moreover, other issues such as the appearance
of code smells also aggravate. In a complementary study,
Izurieta and Bieman [10] explored how pattern grime affects
the testability and adaptability (measured by pattern instabil-
ity) of instances from three open-source systems. They exam-
ined all three forms of pattern grime (i.e., class, modular and
organizational) and again observed a negative impact. Both
testability and adaptability decreased with the accumulation
of grime, although the results regarding organizational grime
were inconclusive due to lack of more data. Finally, Griffith
and Izurieta [13] investigated how the understandability of
pattern instances changes due to the accumulation of grime.
To this end, they focused on class grime and randomly
collected pattern instances from a database of open-source
components [19]. By correlating the accumulated grime with
understandability (assessed according to the QMOODquality
model [20]), they found that this quality attribute is also
affected negatively.

B. COMPARISON TO STATE OF THE RESEARCH
In Table 1, we compare the main parameters that differentiate
our study from related work. In particular, we emphasize that:

23066 VOLUME 6, 2018



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

TABLE 1. Comparison with related work.

(a) we investigated three quality attributes (i.e., performance,
security and correctness) that have not been addressed in this
context; (b) we studied five industrial non-trivial projects
(in contrast to open-source ones) that collectively provided
36,571 units of analysis (i.e., modifications to the source code
of pattern instances, see Section III); and (c) we investigated
factors that, although have been explored with regards to the
accumulation of grime, have not still been examined with
regards to the relation between grime and quality attributes.

III. STUDY DESIGN
In this section, we present the protocol of our case study,
designed according to the guidelines of Runeson et al. [16],
reported based on the Linear Analytic Structure [16].

A. OBJECTIVES AND RESEARCH QUESTIONS
We formulated the goal of this study using theGoal-Question-
Metric (GQM) approach [21], as follows: ‘‘analyze the accu-
mulation of grime on GoF pattern instances for the purpose
of evaluation with respect to its relationship with the levels
of performance, security and correctness, from the point of
view of software designers in the context of industrial software
development’’. To accomplish this goal, we proposed three
research questions (RQs), which are elaborated as follows.

RQ1 Does the accumulation of pattern grime correlate
with changes in the investigated quality attributes?

RQ1.1 Is a correlation observed for class grime?
RQ1.2 Is a correlation observed for modular grime?
RQ1.3 Is a correlation observed for organizational
grime?

RQ1 aims at acquiring initial evidence of the relationship
between the accumulation of pattern grime and changes in
the levels of correctness, performance and security. We note
that we address each quality attribute in isolation. To more
comprehensively answer this question, we investigated all
three forms of grime proposed by Izurieta and Bieman [18],
i.e., class, modular and organizational grime.

RQ2 Which factors affect the aforementioned relation?
RQ2.1 Does it vary for different projects?
RQ2.2 Does it vary for different patterns?
RQ2.3 Does it vary for different developers?

Next, we extend our analysis to factors that may influence
the relation between pattern grime and quality attributes.
In this study, we examined three factors. First, we investi-
gated if the correlation between grime and quality attributes
differs for different projects (RQ2.1). Second, we were inter-
ested in answering this question, but for different patterns
(RQ2.2). Although these two factors were briefly addressed
in related work, they have not been empirically explored so
far. To complement the analysis, we also investigated whether
the relationship varies depending on the developer (RQ2.3),
in the sense that the expertise or experience of developers
may be reflected in the accumulated grime and/or quality
attribute.

B. CASE SELECTION AND UNIT OF ANALYSIS
To answer the posed research questions, we designed an
exploratory case study [16]. Since related work is limited
to studying only open-source applications, we decided to
fill the gap and perform an industrial case study with five
industrial projects from a company in the domain of web and
mobile applications development. Moreover, these projects
provided us with a diverse and comprehensive sample of
developers (and projects) to investigate: one team of six
people worked on three of the projects, while the other two
projects were developed by two other teams (of five people
each) independently.

The cases of our study comprise pattern instances of the
aforementioned projects. Based on the evolution of these
instances, we assemble our units of analysis, which consist
of the changes that they undergo (i.e., the source code change
between two successive commits). We perform our analy-
ses and answer our research questions based on this unit
of analysis and, thus, we selected this particular unit due
to its granularity, which allows us to isolate all necessary
variables. In particular, collecting data regarding individual
developers is facilitated, as commits regard changes authored
distinctively.
We clarify that the usage of such unit of analysis entail

the collection of multiple data points for individual pattern
instances. However, each data point concerns a different
snapshot of the pattern instance, i.e., there is no repetition.
Moreover, the snapshot of a pattern instance is collected only
when a change is made, i.e., the collection is not made for
every commit. Nevertheless, it is paramount to avoid bias by
having an excessive number of units from a few instances. For
that, we verified the balance of our population on this regard
(see Section IV).

Other main sources of bias regard the authoring of commits
and the size of change, which may compromise our analyses.

VOLUME 6, 2018 23067



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

To address these concerns, we consulted with the company,
which informed us that their developers are not allowed to
commit for each other neither exchange source code to com-
mit it. Moreover, a practice of small commits is encouraged
to avoid the aforementioned bad practices.

C. VARIABLES AND DATA COLLECTION
To address the research questions, we recorded four sets of
variables for each unit of analysis. Each set regards one of
the major steps in the data collection: 1) Characterize com-
mits; 2) Collect patterns instances; 3) Assess pattern grime;
4) Assess quality attributes. In the following we describe each
step, the variables collected in them (highlighted between
parentheses), and tools we used. A summary of the recoded
variables is presented in Table 2.

TABLE 2. List of recorded variables.

1) STEP 1: CHARACTERIZE COMMITS
The versioning of the five projects was managed using Git.
For each commit we recorded the project name (project),
the commit hashcode (commit) and the developer responsible
for the commit (dev). We also recorded the files that were
modified in order to filter out undesired commits. In particu-
lar, we ignoredmerges (as nomodifications to source code are
applied) and commits that did not modify pattern instances.
We clarify that the latter filtering is performed in the next step.

2) STEP 2: COLLECT PATTERN INSTANCES
This collection was performed for every commit, which
is a time-consuming task. Hence, we automated this task
using two tools. We first used the Design Pattern Detector
(DPD, v4.12) [22], which is able to identify 12 GoF patterns:
Adapter/Command, Composite, Decorator, Factory Method,
Observer, Prototype, Singleton, State/Strategy, Template
Method, and Visitor. We selected this tool because it covers
a fair amount of design patterns that can be detected and it
has adequate performance, as reported in Tsantalis et al. [22],
also when compared to similar tools [23], [24]. To further
validate the performance of the tool, we manually assessed
50 instances, which were all true positives.

Despite the performance of DPD, it detects only the main
pattern-participant classes (i.e., those that provide the main
structure of the pattern solution, commonly abstract classes).
To detect the extended pattern-participants classes (i.e.,
the other classes that play a role in the pattern), we employed
a tool developed in our group, name SSA+1 (v1.0). This
tool can detect and complement the output of DPD with ten
extended pattern participants: Concrete Creator and Product,
for Factory Method pattern; Concrete Prototype, for Proto-
type pattern; Leaf, for Composite pattern; Concrete Decora-
tor andConcrete Component, for Decorator pattern;Concrete
Observer, for Observer pattern; Concrete State/Strategy, for
State/Strategy pattern; Concrete Class, for Template Method
pattern; and Subject, for Proxy pattern. For that, SSA+
queries the abstract syntax tree (AST) of the system according
to a set of rules to identify each extended pattern participant
(e.g., inherit from a main pattern-participant class). As the
task performed by SSA+ is deterministic (i.e., it identifies
classes that comply with a set of rules), we validated it by
manually checking the output for 50 randomly selected pat-
tern instances, and no error was detected. In addition, SSA+
was similarly validated in another study [15].

Based on the collected information, we assign an ID
(inst_id) for every instance and record it together with the
type of the pattern (pattern). We note that IDs are assigned
when instances are first detected and then reused when the
same instance is detected again in later versions, i.e., they
are persistent across versions of the project. Instances were
considered equivalent if the main pattern participants had the
same class name or matched a renamed version of the class
(obtained from Git).

3) STEP 3: ASSESS PATTERN GRIME
For every unit of analysis (i.e., change to a pattern instance),
we assessed the amount of pattern grime accumulated with
regards to its three forms (i.e., class, modular and organi-
zational). For that, we selected six metrics, two for each
form of grime, which were previously used and validated to
assess pattern grime in non-trivial systems [10], allowing us
to analyze its accumulation from various perspectives.

To assess class grime, we calculate: (a) number of alien
attributes (cg-naa), i.e., that are not described in the original
pattern; and (b) number of alien public methods (cg-napm).
We clarify that we consider only public methods, as they are
responsible for exposing functionality of the pattern instance
to the whole system. For modular grime, we calculate:
(a) afferent pattern coupling (mg-ca) that is the amount of
in-coming dependencies (or fan-in), representing the respon-
sibility of the pattern instance [10]; and (b) efferent pattern
coupling (mg-ce) that is the amount of dependencies on
classes external to the pattern instance (or fan-out), represent-
ing the instability of the pattern instance [10]. Organizational
grime is assessed by calculating: (a) number of packages
(og-np) that contain classes participating on the pattern

1https://github.com/search-rug/ssap

23068 VOLUME 6, 2018



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

instance; and (b) afferent coupling at package level (og-ca).
Although afferent coupling is also calculated for modular
grime (mg-ca), og-ca will depict the responsibility at a higher
level of abstraction. For example, mg-ca may increase within
the same package containing the pattern instance, which
would not affect og-ca.

To automate the data collection of the aforementioned
metrics, we used a tool developed in our group, namely
spoon-pttgrime2 (v0.1.0). This tool takes as input Java source
files of a project and an XML file describing the pattern
instances in the project (i.e., the output from SSA+). For each
pattern instance, spoon-pttgrime calculates the six aforemen-
tioned metrics by querying the project’s AST using the Spoon
library [25]. To validate the tool, we verified the calculated
metrics for 50 pattern instances that were randomly selected,
and the results were all correct. Based on the collected
information, we record the amount of grime accumulated
according to each metric, i.e., the difference between two
consecutive versions of the pattern instance.

We note that other indicators of grime have been proposed
in the literature, which are based on taxonomies of modular
and class grime [13], [14]. However, they are not independent
grime indicators in the sense that they are subtypes of the indi-
cators that we already investigate. Moreover, these additional
indicators have been so far validated only through synthetic
experiments [12]–[14], and there is no tool to automate their
measurement. At the same time, the size of the population
of our study makes it infeasible to assess them manually.
Therefore, we decided to consider such indicators in our
future work, and not include them in this study setup.

4) STEP 4: ASSESS QUALITY ATTRIBUTES
As mentioned in Section I, we estimated the studied quality
attributes based on the number of violations of various coding
practices. For that, we used FindBugs (v3.0.1), which consid-
ers bug patterns as rules to identify violation of good coding
practices [26]. In particular, FindBugs organizes its rules (i.e.,
bug patterns) into nine high-level categories,3 from which
five can bemapped into the studied quality attributes: correct-
ness (Correctness andMultithreaded Correctness categories),
performance (Performance category), and security (Security
and Malicious Code categories). We note that, despite the
name of the tool, we do not consider its output as bugs but
simply as warnings, i.e., violations of good coding practices,
and take them as indicators of quality. A similar approach
was used by Kahlid et al. [27], who correlated the violations
of three categories (one being performance) to quality as
perceived by end-users. They found the data to be closely
related, which supports the violations as quality indicators.

We selected FindBugs due to its collection of rules (252 of
them regarding the considered categories), the possibility to
map them into the studied quality attributes, as well as due to

2https://github.com/search-rug/spoon-pttgrime
3The categories are: Security, Correctness, Multithreaded Correctness,

Performance, Malicious Code, Bad Practice, Internationalization, Experi-
mental and Dodgy Code

its adequate precision when compared to similar tools [26],
[28], [29], which reflects on the relevance of the offered
rules. Moreover, we analyzed and validated FindBugs in
a previous study [30] and found that the precision can be
noticeably improved by excluding violations with low level
of confidence. To estimate the level for each quality attribute,
we calculate the amount of rules violations in the pattern-
participant classes of a unit of analysis (cor-viol, per-viol, and
sec-viol). We clarify that lower numbers of violations reflect
a higher level of quality.

D. ANALYSIS PROCEDURE
To investigate the collected data, we performed various
statistical analyses. First, to answer RQ1, we calculated the
correlation between every pair of <grime metric, quality
indicator> (e.g., pattern efferent coupling vs. performance
violations). We assess the strength of the correlation
according to the guidelines of Evans [31]: ‘very weak’
(0.00-0.19); ‘weak’ (0.20-0.39); ‘moderate’ (0.40-0.59);
‘strong’ (0.60-0.79); and ‘very strong’ (0.80-1.00). To select
themost fittingmethod for correlation analysis, we first tested
the normality of our data, using the Kolmogorov-Smirnov
test [32], which is more appropriate for large samples.
We clarify that for normally distributed variables, we used
Pearson correlation method [32], otherwise, we used the
Spearman’s rank correlation method [32]. Moreover, the cor-
relations calculated in this study do not entail bias from
consecutive measurements with same value, also known as
artificial boost. This is because every unit of analysis regards
different states of a particular pattern instance. Therefore,
consecutive measures with same value suggest that a specific
metric is not designed to capture this particular change, and
this information is relevant to our study.

To answer RQ2, we performed the following steps for each
factor (i.e., project, pattern, developer) that might affect the
relation between pattern grime and quality. First, we grouped
the dataset according to the factor. Next, we verified whether
the groups differentiate between themselves with regards
to the measured variables. For that, we performed an Analysis
of Variance (ANOVA) [32] to confirm a disparity among
groups, followed by post-hoc tests for pairwise comparisons.
We note that we applied Levene’s test [32] to assess the
assumption of equal variances of the tested populations.
When the assumption was met, we used regular ANOVA,
followed by Tukey’s Honestly Significant Differences (HSD)
tests [32]. Otherwise, we used Welch’s ANOVA, followed by
Games-Howell tests (which are more appropriate for large
samples). Finally, for the groups that are statistically differ-
ent, we calculate the correlation for each pair of grime and
quality metrics and identify statistically relevant correlations.

IV. RESULTS
In this section, we present a summary of the collected data,
as well as the results of the analysis performed to answer
the research questions posed in Section III.A. During the
data collection, we identified 1,422 commits that contain

VOLUME 6, 2018 23069



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

the creation or modification of pattern-participating classes
of the five investigated projects, from which the major-
ity (94%) regard the modification of one or more pattern
instances. Based on the commits, we isolated 2,329 pattern
instances of eight different GoF patterns: (Object) Adapter /
Command, Decorator, Factory Method, Observer, Singleton,
State / Strategy, and Template Method. In Table 3 we present
a summary of the units of analysis by project and patterns.

TABLE 3. Summary of dataset.

In Section III.B, we highlighted the necessity of having
a balanced population (i.e., pattern instances should have
similar number of modifications) to avoid bias from pattern
instances with excessive number of units of analysis. After
studying the history of commits, we assessed that each pat-
tern instance underwent a maximum of 178 modifications.
Moreover, 87% of the pattern instances (i.e., 2,039) were
modified at least once, and 64% (i.e., 1,500) at least five
times. Our analysis suggests that although the population is
not evenly balanced, the discrepancies are not enough to harm
the statistical analysis of our study nor the answers to the
research questions.

In summary, we collected a total of 36,571 units of analysis
(i.e., creation/modification of a pattern instance in a commit).
For each unit, we recorded the amount of pattern grime
that was accumulated according to six metrics (cg-∗, mg-∗

and og-∗) and the number of violations regarding the three
studied quality attributes (∗-viol).We clarify that due to a non-
disclosure agreement signed with the company in this case
study, we cannot share the created dataset, nor certain details
regarding specific projects and developers.

To characterize our population, in Table 4 we present
the descriptive statistics for these variables. We notice that
pattern efferent coupling (mg-ce) is the grime metric that
changes the most, which may be a sign of bad practices
since it represents the dependency of the pattern instance on

TABLE 4. Descriptive statistics per commit.

other classes. On the counterpart, number of packages (og-
np) is the metric that changes the least, which is expected
given that pattern instances normally grow within the same
package. Furthermore, we notice that violations of good prac-
tices regarding correctness appear to be considerably more
frequent than regarding performance and security. This obser-
vation may be partially related to the fact that the majority of
the rules checked by FindBugs concern correctness: out of all
the rules for the three studied qualities, correctness accounts
for approx. 70%, while performance and security correspond
to approx. 15% each. Nevertheless, we could detect con-
siderably fewer violations concerning security rather than
performance, which suggest that other parameters are also
relevant, such as the type of application or even the specific
security-related violations that FindBugs checks.

A. RQ1 – CORRELATION BETWEEN GRIME AND
QUALITY ATTRIBUTES
To answer RQ1, we calculated the correlation between all
pairs of <grime metric, quality indicator> (e.g., cg-ce vs.
per-viol) as explained in Section III.D. We note that we
could not assume normal distribution for all variables and,
thus, we used Spearman’s rank correlation method. More-
over, ‘artificial boost’ is not a concern in this population
(see Section III.D). Fig. 1 depicts a heatmapwith the results of
our analysis, in which darker shades of gray denote stronger
correlation. The coefficients are written within each cell
except for correlations that are not statistically significant
(which are blank). Based on Fig. 1 we can make several
observations.

The accumulation of grime seems to be related
with the depreciation of correctness and performance

FIGURE 1. Correlation between grime metrics (cg-∗, mg-∗, og-∗) and
quality attributes indicators (∗-viol).

23070 VOLUME 6, 2018



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

(i.e., more violations), as we observed strong correlations
(i.e., above 0.6) and moderate correlations (i.e., between
0.4 and 0.59) respectively [31]. Furthermore, the very weak
correlation with security violations (i.e., below 0.2) does not
imply that a link does not exist. This only shows a lack of
evidence.

Another observation is that metrics for assessing class
grime, namely number of alien public methods (cg-napm),
alien attributes (cg-naa), and pattern efferent coupling
(mg-ce) displayed the strongest correlations regarding
every quality attribute. This outcome can be considered
intuitive in the sense that, as structural elements at the class
level, patterns are expected to bemore influential at lower lev-
els of granularity (e.g., class rather than module). The degra-
dation of another quality, namely maintainability, due to the
existence of alienmethods is also reported in related work [9].

The aforementioned observations are based on how grime
accumulates in pattern instances. However, one may wonder
if changes in the quality levels can be simply explained
by natural evolution of the source code, i.e., any type of
change to the pattern instance rather than pattern grime.
To investigate this possibility, we assessed the correlation
between lines of code (LOC) and both grime metrics and
quality indicators. The results show that grime is strongly
correlated (0.81) with LOC, i.e., most maintenance activities
in pattern instances entail accumulation of grime. However,
the correlation between grime and quality indicators was
often slightly stronger compared to the correlation between
LOC and quality indicators. For example, the correlation
between cor-viol vs. mg-ce (0.792) is marginally stronger
than cor-viol vs. LOC (0.785), per-viol vs. mg-ce (0.414) is
stronger than per-viol vs. LOC(0.359), and sec-viol vs.mg-ce
(-0.093) is stronger than sec-viol vs. LOC (-0.074). Therefore,
although the difference between correlation values may be
marginal at times, the overall analysis consistently shows
that grime matches the degradation of quality better than
natural evolution.

B. RQ2 – ANALYSIS OF FACTORS
To further explore the relation between the accumulation of
pattern and the three studied quality attributes, we investi-
gated three factors that may influence the observed corre-
lations as described in Section III.D: projects, patterns and
developers.

1) COMPARISON OF PROJECTS
We collected data from five different industrial projects,
here referred to as P1 to P5. From the 36,571 units of
analysis, 19,891 regard P1, 2,667 regard P2, 7,781 regard
P3, 5,759 regard P4, and 473 regard P5. Moreover, P1 and
P2 were developed by two different teams of developers
while a third team developed P3, P4 and P5. In Table 5,
we show the descriptive statistics of all variables for each
project independently.

We notice that the projects are considerably distinct from
each other with regard to these variables. For example, P2 has

TABLE 5. Descriptive statistics per project.

the highest mean for most grime metrics but not for quality
indicators, while P5 has the lowest means for grime metrics
but present the highest average of performance violations.
To verify the observed differences, we compared the means
between projects by performing an analysis of variances
(ANOVA) for each variable, followed by one post-hoc test for
each pairwise comparison (i.e., 90 in total). The results of the
tests are publicly available online in a supplementary mate-
rial.4 The results show that 91% of the tests are statistically
significant, i.e., the means differ between the two compared
projects. Based on these findings, we hypothesize that the
different characteristics of projects are indeed reflected on the
relationship between the accumulation of pattern grime and
the indicators of correctness, performance and security.

To verify how the accumulation of grime in projects relates
to the levels of quality, we calculated the correlation between

4https://doi.org/10.5281/zenodo.1133552

VOLUME 6, 2018 23071



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

every pair of grime metric and quality indicator for each
project. The results are presented in Fig. 2 (which is inter-
preted as Fig. 1), from which we observe that the correlations
are noticeably different based on the projects. For example,
similar to the results observed for the general population,
P1 exhibits a strong correlation (i.e., above 0.6) between class
grime metrics and the correctness indicator (cor-viol). The
opposite is observed for P2, for which the data suggest a
correlation between pattern grime and the security indicator
(sec-viol), which have not been observed for the general
population.

FIGURE 2. Correlation between grime metrics (cg-∗, mg-∗, og-∗) and
quality attributes indicators (∗-viol) for individual projects (P∗).

However, we also noticed that higher values of accumu-
lated grime are related to higher depreciation of quality (i.e.,
higher number of violations), which is often reflected in
higher correlation coefficients. This evidence strengthens
our finding that the relationship between pattern grime
and quality attribute indicators is project-dependent. It also
suggests that the observed difference is connected to how
grime accumulates in the different projects. This finding is in
accordance to those of Vásquez et al. [33], which suggest that
other indirect quality indicators (such as anti-patterns or code
smells) vary among projects of different application domains,
as well as with Izurieta and Bieman [10], who observed varied
levels of grime and quality on the studied projects.

2) COMPARISON OF PATTERNS
During the data collection, we identified instances of eight
different patterns. From the 36,571 units of analysis, 14,074
regard the (Object) Adapter / Command (AC) patterns,
844 regard the Factory Method (FM) pattern, 432 regard the
Singleton (Si) pattern, 21,193 regard the State/Strategy (SS)
patterns, 21 regard the Observer pattern, six regard the Tem-
plate Method pattern, and one regards the Decorator pattern.

Due to the limited amount of units, we do not present results
concerning the last three patterns, which are available in the
supplementary material.

In Table 6, we present the descriptive statistics of all
variables for each pattern independently. We notice that this
factor also seems to influence the relations between pat-
tern grime and indicators of the studied quality attributes.
In particular, we observe that the means for every metric
varies considerably among patterns. Moreover, we could not
observe clear trends, i.e., patterns that consistently display
the highest or lower means. For example, Factory Method
displays the highest mean of security violations (sec-viol) but
one of the lowest of correctness violations (cor-viol).

TABLE 6. Descriptive statistics per pattern.

To verify our observations, we computed the ANOVA for
each variable and performed the post-hoc tests (i.e., 48 in
total). The results of the tests are available in the supple-
mentary material. We note that Singleton instances had no
variance with regards to number of packages (og-np) and
security indicator (sec-viol), and, thus, these variables were
not considered in the analyses for this pattern. The results
show that 93% of the tests are statistically significant.

To further investigate this factor, we calculated the correla-
tion between every pair of grime metric and quality indicator

23072 VOLUME 6, 2018



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

FIGURE 3. Correlation between grime metrics (cg-∗, mg-∗, og-∗) and
quality attributes indicators (∗-viol) for individual patterns (AC, FM, Si,
and SS).

for the investigated patterns. In Fig. 3 (which is interpreted
as Fig. 1), we present the results of the calculations, which
show clearly varying correlations depending on the pattern.
We notice that, as for projects, we could identify a pattern,
namely FactoryMethod, for which the accumulation of grime
is moderately correlated with the depreciation of quality indi-
cators. Again, we observed that the combination of higher
accumulation of grime and quality indicators often reflects
in higher correlation coefficients. All this information sug-
gests that the relationship between pattern grime and quality
attribute indicators also depends on the pattern type of the
instance. This finding is in accordance with the literature,
which suggests that different patterns have different effects
on the same quality attribute (e.g., [4], [34]).

3) COMPARISON OF DEVELOPERS
The case study involved 16 developers, here referred to as
D1 to D16, which account for various amounts of units of
analysis.5 Due to the low number of data points, we did not
include D4, D7, D8 and D10 in our analyses. In Table 7,
we show the mean value of all variables, for each developer.
We note that we do not present the complete descriptive
statistics, which are available in the supplementary material.
Similar to the previous factors, we observe thatmean values
regarding all variables differ among developers, i.e., they
exhibit different characteristics. For example, both D11 and
D15 show higher tendency to pollute pattern instances with
alien methods (i.e., higher cg-napm values) than other devel-
opers. However, D11 seems much less prone to pollute
instances with external dependencies (i.e., lower mg-ce).

To validate the differences observed in the measurements,
we performed ANOVA on all variables, followed by the post-

5The number of units by each developer is: D1 - 810; D2 - 5662; D3 -
1535; D4 - 8; D5 - 470; D6 - 5368; D7 - 21; D8 - 62; D9 - 1464; D10 - 11;
D11 - 811; D12 - 1648; D13 - 3565; D14 - 6748; D15 - 7825; D16 - 563.

TABLE 7. Descriptive statistics per developer.

hoc tests (583 in total), which are all available in the supple-
mentary material. We note that no variance in the security
indicator (sec-viol) was observed for D9 and, thus, we dis-
carded this variable for analyses regarding the developer. The
results show that 80% of the tests are statistically significant.
The majority of the comparisons that were not significant,
concern the number of packages, which is intuitive, as pattern
instances do not tend to be spread across multiple pack-
ages/namespaces.

We also calculated the correlation between variables,
which are shown in Fig. 4 (which is interpreted as Fig. 1). The
results suggest that developers accumulate grime differently
and that this may reflect on the quality indicators. We also
observed that although we found that correlations differ
among developers, they are mostly consistent in the sense
that more grime is correlated with more violations (i.e.,
depreciated quality). In summary, all collected information
strengthens our finding that developers comprise a factor to
how the accumulation is related to the depreciation of cor-
rectness, performance and security in pattern instances. Our
results are in accordancewith those byAmanatidis et al. [17],
who studied the accumulation of technical debt and observed
an imbalance regarding the number of violations among
developers.

V. DISCUSSION
In this section, we revisit the findings of our study and present
their connection to related work. Next, we elaborate on the
main implications to researchers and practitioners.

A. INTERPRETATIONS OF RESULTS
1) CORRELATION BETWEEN GRIME AND ATTRIBUTES
The findings discussed in this paper suggest that, as pat-
tern grime accumulates, classes that participate in pattern
instances become more prone to quality depreciation.
In particular, such classes are more susceptible to source
code that violates good practices that promote correctness,
performance and security of software systems. These findings
corroborate those by related work that analyzes the relations
between grime and quality [10], [11], [13], in the sense that
we also found that grime goes hand in hand with diminished
quality.

VOLUME 6, 2018 23073



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

FIGURE 4. Correlation between grime metrics (cg-∗, mg-∗, og-∗) and
quality attributes indicators (∗-viol) for individual developers (D∗).

In our study, we noticed that three metrics, namely
number alien attributes (cg-naa), number of alien public
methods (cg-napm) and instance efferent coupling (mg-
ce), were the most likely to be appropriate indicators of
bad quality; these same metrics have shown similar rele-
vance in the related work. Moreover, these metrics corre-
spond to structural characteristics of pattern instances (e.g.,
efferent coupling), and similar metrics (at class level rather
than instance level) have been largely explored in the lit-
erature (e.g. [6]–[9]) and found to be good estimators of
the benefit (or harmfulness) of pattern instances to quality
attributes. In a previous study, we found that the degra-
dation of certain well-known design metrics can be used
as hints of the accumulation of pattern grime [15], as it

is assessed based on design propertied of pattern partici-
pants. In particular, we investigated the metric suits pro-
posed by Chidamber and Kemerer [35], Li and Henry [36],
and Bansiya and Davis [20]. Results of that study showed
that the metrics data abstraction coupling (DAC) [36] and
measure of aggregation (MOA) [20] may help identifying
accumulation of cg-naa; the metrics weighted methods per
class (WMC) [35] and class interface size (CIS) [20] may
help identifying accumulation of cg-napm; and the metrics
coupling between object classes (CBO) [35] and response
for a class (RFC) [35] may help identifying accumulation
of mg-ce.

2) CONTRIBUTING FACTORS
The way pattern grime builds up in pattern-participant classes
can depend on several factors. Our empirical investigation
confirmed that three such factors indeed play a role: project,
pattern and developer. With regard to projects, we observed
that the difference may be related to two sub-factors. The
type of the project seems relevant on determining the rela-
tion between grime and quality. Two of the studied projects
(P1 and P4) provide services to other applications (e.g.,
libraries or API’s) and showed to be more prone to grime and
violations; this aligns with the suggestion by Evans et al. [31]
that parameters such as application domain can be relevant.
However, we also noticed that these projects hadmore pattern
instances (i.e., a bigger pattern code base) and that a sec-
ond sub-factor, namely lines of code was also correlated
with both grime and quality indicators; this has also been
discerned by Izurieta and Bieman [10].

A similar observation also holds for developers: those that
wrote more code (i.e., provided more units of analysis) were
more prone to incur both grime and violations. Finally, our
main observation concerning the difference among patterns
is that those using more complex mechanisms (e.g., State,
Strategy and Factory Method, which have polymorphic
calls) tend to accumulate both more grime and violations;
this is intuitive given that more complex designs are less
understandable and harder to maintain.

Investigating the factors in isolation allowed us to observe
that the correlations in different groups (based on factors)
differ from the ones concerning the entire dataset. However,
although the differences may look random at first, we noticed
a recurrent motif. In particular, we observed that the majority
(approx. 80%) ofmoderate or strong correlations (i.e., more
than 0.4) [31] have been identified when grime and qualities
metrics are at a similar level. For example, projects that
on average concentrate few violations and have low levels
of accumulated grime, or the opposite. Among those, 56%
regard higher values on both grime and quality indicators.

3) ANALYSIS OF VIOLATIONS
Finally, since we estimated the levels of quality attributes
through the number of violations of good coding practices,
it is relevant to dig deeper into these violations. In Table 8,
we present the most recurrent violations, assessed according

23074 VOLUME 6, 2018



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

TABLE 8. Most recurrent violations.

to the addressed research questions, i.e., the overall dataset,
per project, per pattern and per developer. We note that some
developers have not violated any rules for certain quality
attributes in pattern-participant classes; those aremarkedwith
‘‘-’’. We observe that this list of violations comprises issues
that are clearly harmful to the respective quality attributes,
e.g., calling unsafe methods in a multithreaded context can
lead to race conditions or unpredictable states.

Thus, if these violations are among the recurrent ones, they
can pose a serious threat to the system. Furthermore, the top
issues vary among projects, patterns and developers. The
differences that we observe between developers is aligned
with the findings by Amanatidis et al. [17], who not only
observed an imbalance on how developers accumulate vio-
lations but also a difference on the recurrence. Nevertheless,
it is possible to discern the connection between groups. For
example, the two recurrent performance issues that appear for
the most among developers (i.e., ‘‘Comparison of different
types’’ and ‘‘Possible null pointer dereference’’), also appear
frequently among projects and patterns, and one of them is
the most recurrent in the entire dataset.

B. IMPLICATIONS TO RESEARCHERS AND
PRACTITIONERS
GoF patterns are popular among practitioners as established
and valuable design solutions. However, the consequences
of using them often become a matter of concern, espe-
cially regarding quality. This paper sheds some light on this

respect, suggesting the following implications to practition-
ers. We encourage the conscious usage of GoF patterns,
in the sense that knowledge about the patterns being applied,
as well as the pattern instances in the system under develop-
ment, should be disseminated within the team of developers.

In addition, monitoring the pattern instances is of
paramount importance to maintain desired levels of quality,
especially correctness, performance and security. Moreover,
practitioners can take advantage of the tool spoon-pttgrime
in order to track the accumulation of grime and plan main-
tenance activities. Conversely, if practitioners already use
FindBugs within their development process, the number of
violations (for correctness, performance and security) can be
used as indicators of grime accumulation, helping the team
on identifying pattern instances with potentially deteriorated
design.

The findings in this paper can also benefit researchers. Our
work joins the small pool of studies that investigate pattern
grime, especially its relation to quality attributes, and further
demonstrate the relevance of researching this phenomenon
and the underlying relations. In particular, we provide evi-
dence that encourages the investigation of other quality
attributes, as well as factors related to it. The presented infor-
mation also builds up on the body of knowledge on pattern
grime, and we hope it will support future research. Particu-
larly, we envisage confirmatory studies to seekmore evidence
to explain the observed variations in the relationship between
grime and the studied quality attribute, as well as others.
We also demonstrate that the usage of static analysis tools

VOLUME 6, 2018 23075



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

such as FindBugs can provide valuable information regarding
the accumulation of grime. Finally, the design of our case
study and used tools used can be exploited for future research
efforts.

VI. THREATS TO VALIDITY
In this section, we discuss threats to the validity of the study
reported on this paper; in particular, construct validity, reli-
ability and external validity. Construct validity concerns to
what extent the objects of the study are connected to the
research questions. Reliability regards the extent to which
the study can be replicated with the same observed results.
External validity pertains to the limitations to generalize our
findings to the entire population. We note that we do not ana-
lyze internal validity, as we empirically study the correlation
between variables without establishing causal relations.

Regarding construct validity, we identified the following
threats. First, the DPD and FindBugs tools are limited by
their precision and recall, which may bias our results due
to false positives and negatives. We note that, to the best of
our knowledge, these tools have adequate performance and
good reputation (see Sections III.C.2 and III.C.4). Neverthe-
less, to mitigate this threat, we randomly selected 50 pattern
instances and verified the output from each tool manually.
In addition, we acknowledge that the list rules provided by
FindBugs is by no means exhaustive and additional rules
could affect our results. However, we reiterate that the diverse
list of bug patterns (i.e., 252 rules) and evidence provided
by other studies that used FindBugs to estimate quality
attributes [27], [30] suggest that the tool is adequate for
the purpose used in this study. Finally, concerning the tools
developed in our group (SSA+ and spoon-pttgrime), which
although perform deterministic tasks, may contain bugs and
bias the results of the study. To mitigate this threat, we
also checked their output for 50 randomly selected pattern
instances. In addition, our tools have been used in previous
studies, where they were also validated.

To address reliability threats, at least two researchers were
involved in both data collection and analysis. Samples of
the output were checked by both researchers and the veri-
fication followed a checklist to avoid irregularities. Further-
more, most tasks were automated by the tools referenced
in this paper, which are all publicly available. Despite our
effort, we acknowledge that non-disclosure agreements do
not allow us to share the collected dataset. However, repli-
cations studies can be carried out to attempt to replicate our
results.

Concerning external validity, the main threat is that we
explored projects from the same company, from which
three were developed by the same team. Such uniformity
(e.g., developers subject to same company practices) may
lessen the generalizability of our findings to other compa-
nies or teams. However, we note that the accumulation of
grime that we observed alignswith the results of other studies,
e.g., class and modular grime are the main indicators of
grime. Moreover, we also aimed at identifying variations in

the relationship between pattern grime and quality attributes
based on project and developer, which we identified suc-
cessfully despite the ‘‘uniformity’’ of our subjects. The other
threats regard limitations of our study design. In particular,
we investigated a limited number of patterns and subjects,
and we acknowledge that additions to the population may
affect our findings. Furthermore, we investigated projects
developed in Java and our observations cannot be general-
ized to other languages without additional analyses. Finally,
the grime metrics and quality indicators are estimators, and
the usage of different variables may affect the observed
results. Specifically, the inclusion of metrics based on sub-
types of grime could provide more refined observations.

VII. CONCLUSIONS
In this paper, we reported on an exploratory case study with
five industrial software systems, in which we examined the
relationship between the accumulation of pattern grime and
the levels of three quality attributes, namely correctness,
performance and security. For that, we considered six metrics
regarding the three forms of grime (i.e., class, modular and
organizational), and one indicator of each studied quality
attribute, estimated by the amount of violations of coding
practices in pattern-participant classes. We investigated the
evolution of 2,329 pattern instances over 1,422 commits,
totalizing 36,571 units of analysis, in which we assessed the
correlations between the grimemetrics and quality indicators.
Moreover, we sought to analyze factors that might influ-
ence the observed correlations, in particular, projects, pattern
types, and developers.

The results suggest that pattern grime is related to the
depreciation of correctness, performance and security in pat-
tern instances. These findings are based on both class and
modular grime, whilst no strong evidence is observed based
on organizational grime. The results also suggest that all
three examined factors can influence the relationship between
pattern grime and quality attributes.

Based on our findings, we envisage several opportunities
for future work. Confirmatory empirical studies could inves-
tigate one or more of the explored factors in more details, and
seek evidence to explain the observed variations in the rela-
tionship between grime and quality attributes. Furthermore,
a replication study with open-source systems could increase
the external validity of the results reported on this paper.
Finally, investigation of additional grime metrics and factors
could enhance the understanding over the consequences of
accumulating pattern grime. In particular, metrics regarding
subtypes of grime have been proposed in the literature and
it would be interesting to investigate the interplay between
indicators of the types and subtypes of grime in similar study
settings.

REFERENCES
[1] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software (Addison-Wesley Profes-
sional Computing Series), vol. 206. Reading, MA, USA: Addison-Wesley,
1995.

23076 VOLUME 6, 2018



D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

[2] B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, ‘‘The state of the art
on design patterns: A systematic mapping of the literature,’’ J. Syst. Softw.,
vol. 125, pp. 93–118, Mar. 2017, doi: 10.1016/j.jss.2016.11.030.

[3] F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, ‘‘Playing roles in design
patterns: An empirical descriptive and analytic study,’’ in Proc. 25th IEEE
Int. Conf. Softw. Maintenance (ICSM), Edmonton, AB, Canada, Sep. 2009,
pp. 83–92, doi: 10.1109/ICSM.2009.5306327.

[4] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P. Avgeriou,
‘‘The effect of GoF design patterns on stability: A case study,’’ IEEE
Trans. Softw. Eng., vol. 41, no. 8, pp. 781–802, Aug. 2015, doi: 10.1109/
TSE.2015.2414917.

[5] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, ‘‘Research state of
the art on GoF design patterns: A mapping study,’’ J. Syst. Softw., vol. 86,
no. 7, pp. 1945–1964, Jul. 2013, doi: 10.1016/j.jss.2013.03.063.

[6] B. Huston, ‘‘The effects of design pattern application on metric scores,’’
J. Syst. Softw., vol. 58, no. 3, pp. 261–269, Sep. 2001, doi: 10.1016/S0164-
1212(01)00043-7.

[7] T. Muraki and M. Saeki, ‘‘Metrics for applying GOF design patterns in
refactoring processes,’’ in Proc. 4th Int. Workshop Principles Softw.
Evol. (IWPSE), Vienna, Austria, 2002, pp. 27–36, doi:
10.1145/602461.602466.

[8] N.-L. Hsueh, P.-H. Chu, and W. Chu, ‘‘A quantitative approach for eval-
uating the quality of design patterns,’’ J. Syst. Softw., vol. 81, no. 8,
pp. 1430–1439, Aug. 2008, doi: 10.1016/j.jss.2007.11.724.

[9] S. Charalampidou, A. Ampatzoglou, P. Avgeriou, S. Sencer,
E.-M. Arvanitou, and I. Stamelos, ‘‘A theoretical model for capturing
the impact of design patterns on quality,’’ in Proc. 32nd ACM SIGAPP
Symp. Appl. Comput. (SAC), Marrakech, Morocco, 2017, pp. 1231–1238,
doi: 10.1145/3019612.3019781.

[10] C. Izurieta and J. M. Bieman, ‘‘A multiple case study of design pattern
decay, grime, and rot in evolving software systems,’’ Softw. Quality J.,
vol. 21, no. 2, pp. 289–323, Jun. 2013, doi: 10.1007/s11219-012-9175-x.

[11] C. Izurieta and J. M. Bieman, ‘‘Testing consequences of grime buildup
in object oriented design patterns,’’ in Proc. 1st Int. Conf. Softw. Test.,
Verification, Validation (ICST), Lillehammer, Norway, 2008, pp. 171–179,
doi: 10.1109/ICST.2008.27.

[12] M. R. Dale and C. Izurieta, ‘‘Impacts of design pattern decay on sys-
tem quality,’’ in Proc. 8th ACM/IEEE Int. Symp. Empirical Softw. Eng.
Meas. (ESEM), Turin, Italy, Sep. 2014, pp. 37:1–37:4, doi: 10.1145/
2652524.2652560.

[13] I. Griffith and C. Izurieta, ‘‘Design pattern decay: the case for class grime,’’
in Proc. 8th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM),
Turin, Italy, Sep. 2014, pp. 39:1–39:4, doi: 10.1145/2652524.2652570.

[14] T. Schanz and C. Izurieta, ‘‘Object oriented design pattern decay: A tax-
onomy,’’ in Proc. 4th ACM/IEEE Int. Symp. Empirical Softw. Eng.
Meas. (ESEM), Bolzano-Bozen, Italy, 2010, pp. 7:1–7:8, doi: 10.1145/
1852786.1852796.

[15] D. Feitosa, P. Avgeriou, A. Ampatzoglou, and E. Y. Nakagawa, ‘‘The evo-
lution of design pattern grime: An industrial case study,’’ in Proc. 18th
Int. Conf. Product-Focused Softw. Process Improvement (PROFES), Inns-
bruck, Austria, 2017, pp. 165–181, doi: 10.1007/978-3-319-69926-4_13.

[16] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. Hoboken, NJ, USA:
Wiley, 2012.

[17] T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and I. Stamelos,
‘‘Who is producing more technical debt? A personalized assessment of TD
principal,’’ in Proc. 9th Int. WorkshopManag. Tech. Debt (MTD), Cologne,
Germany, 2017, pp. 4:1–4:8, doi: 10.1145/3120459.3120464.

[18] C. Izurieta and J. M. Bieman, ‘‘How software designs decay: A pilot study
of pattern evolution,’’ in Proc. 1st Int. Symp. Empirical Softw. Eng.
Meas. (ESEM), Madrid, Spain, 2007, pp. 449–451, doi:
10.1109/ESEM.2007.55.

[19] A. Ampatzoglou, O. Michou, and I. Stamelos, ‘‘Building and mining
a repository of design pattern instances: Practical and research bene-
fits,’’ Entertainment Comput., vol. 4, no. 2, pp. 131–142, Apr. 2013,
doi: 10.1016/j.entcom.2012.10.002.

[20] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002, doi: 10.1109/32.979986.

[21] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, ‘‘Goal
question metric (GQM) approach,’’ in Encyclopedia of Software Engi-
neering. Hoboken, NJ, USA: Wiley, 2002, pp. 528–532, doi: 10.1002/
0471028959.sof142.

[22] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
‘‘Design pattern detection using similarity scoring,’’ IEEE Trans. Softw.
Eng., vol. 32, no. 11, pp. 896–909, Nov. 2006, doi: 10.1109/TSE.2006.112.

[23] G. Kniesel and A. Binun, ‘‘Standing on the shoulders of giants—A data
fusion approach to design pattern detection,’’ in Proc. IEEE 17th Int. Conf.
Program Comprehension (ICPC), Vancouver, BC, Canada, May 2009,
pp. 208–217, doi: 10.1109/ICPC.2009.5090044.

[24] N. Pettersson, W. Löwe, and J. Nivre, ‘‘Evaluation of accuracy in design
pattern occurrence detection,’’ IEEE Trans. Softw. Eng., vol. 36, no. 4,
pp. 575–590, Jul./Aug. 2010, doi: 10.1109/TSE.2009.92.

[25] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
‘‘SPOON:A library for implementing analyses and transformations of Java
source code,’’ Softw. Pract. Exp., vol. 46, no. 9, pp. 1155–1179, Sep. 2016,
doi: 10.1002/spe.2346.

[26] D. Hovemeyer and W. Pugh, ‘‘Finding bugs is easy,’’ ACM SIGPLAN
Notices, vol. 39, no. 12, pp. 92–106, 2004, doi: 10.1145/1052883.1052895.

[27] H. Khalid, M. Nagappan, and A. E. Hassan, ‘‘Examining the relationship
between FindBugs warnings and app ratings,’’ IEEE Softw., vol. 33, no. 4,
pp. 34–39, Jul./Aug. 2016, doi: 10.1109/MS.2015.29.

[28] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, ‘‘On the value of static analysis for fault detection in soft-
ware,’’ IEEE Trans. Softw. Eng., vol. 32, no. 4, pp. 240–253, Apr. 2006,
doi: 10.1109/TSE.2006.38.

[29] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
‘‘Using static analysis to find bugs,’’ IEEE Softw., vol. 25, no. 5,
pp. 22–29, Sep. 2008, doi: 10.1109/MS.2008.130.

[30] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa, ‘‘Inves-
tigating quality trade-offs in open source critical embedded systems,’’
in Proc. 11th Int. ACM SIGSOFT Conf. Quality Softw. Archit. (QoSA),
Montréal, QC, Canada, 2015, pp. 113–122, doi: 10.1145/2737182.
2737190.

[31] J. D. Evans, Straightforward Statistics for the Behavioral Sciences.
Pacific Grove, CA, USA: Brooks/Cole Pub. Co., 1996.

[32] A. Field, Discovering Statistics using IBM SPSS Statistics, 3rd ed.
Thousand Oaks, CA, USA: Sage, 2009.

[33] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané, D. Poshyvanyk,
and Y.-G. Guéhéneuc, ‘‘Domain matters: Bringing further evidence of the
relationships among anti-patterns, application domains, and quality-related
metrics in Java mobile apps,’’ in Proc. 22nd Int. Conf. Program Com-
prehension (ICPC), Hyderabad, India, 2014, pp. 232–243, doi: 10.1145/
2597008.2597144.

[34] D. Romano, P. Raila, M. Pinzger, and F. Khomh, ‘‘Analyzing the
impact of antipatterns on change-proneness using fine-grained source code
changes,’’ in Proc. 19th Work. Conf. Reverse Eng. (WCRE), Kingston, ON,
Canada, 2012, pp. 437–446, doi: 10.1109/WCRE.2012.53.

[35] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994,
doi: 10.1109/32.295895.

[36] W. Li and S. Henry, ‘‘Object-oriented metrics that predict maintainability,’’
J. Syst. Softw., vol. 23, no. 2, pp. 111–122, 1993, doi: 10.1016/0164-
1212(93)90077-B.

DANIEL FEITOSA received the B.Sc. degree
in computer science and the M.Sc. degree in
computer science and computational mathematics
from the University of São Paulo, Brazil. He is cur-
rently pursuing the Ph.D. degree with the Group
of Software Engineering andArchitecture, Univer-
sity of Groningen, The Netherlands. His research
interests include software design, software quality
management, and embedded systems.

VOLUME 6, 2018 23077

http://dx.doi.org/10.1016/j.jss.2016.11.030
http://dx.doi.org/10.1109/ICSM.2009.5306327
http://dx.doi.org/10.1109/TSE.2015.2414917
http://dx.doi.org/10.1109/TSE.2015.2414917
http://dx.doi.org/10.1016/j.jss.2013.03.063
http://dx.doi.org/10.1016/S0164-1212(01)00043-7
http://dx.doi.org/10.1016/S0164-1212(01)00043-7
http://dx.doi.org/10.1145/602461.602466
http://dx.doi.org/10.1016/j.jss.2007.11.724
http://dx.doi.org/10.1145/3019612.3019781
http://dx.doi.org/10.1007/s11219-012-9175-x
http://dx.doi.org/10.1109/ICST.2008.27
http://dx.doi.org/10.1145/2652524.2652560
http://dx.doi.org/10.1145/2652524.2652560
http://dx.doi.org/10.1145/2652524.2652570
http://dx.doi.org/10.1145/1852786.1852796
http://dx.doi.org/10.1145/1852786.1852796
http://dx.doi.org/10.1007/978-3-319-69926-4_13
http://dx.doi.org/10.1145/3120459.3120464
http://dx.doi.org/10.1109/ESEM.2007.55
http://dx.doi.org/10.1016/j.entcom.2012.10.002
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.1109/ICPC.2009.5090044
http://dx.doi.org/10.1109/TSE.2009.92
http://dx.doi.org/10.1002/spe.2346
http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1109/MS.2015.29
http://dx.doi.org/10.1109/TSE.2006.38
http://dx.doi.org/10.1109/MS.2008.130
http://dx.doi.org/10.1145/2737182.2737190
http://dx.doi.org/10.1145/2737182.2737190
http://dx.doi.org/10.1145/2597008.2597144
http://dx.doi.org/10.1145/2597008.2597144
http://dx.doi.org/10.1109/WCRE.2012.53
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://dx.doi.org/10.1016/0164-1212(93)90077-B


D. Feitosa et al.: Correlating Pattern Grime and Quality Attributes

APOSTOLOS AMPATZOGLOU received the
B.Sc. degree in information systems, the M.Sc.
degree in computer systems, and the Ph.D. degree
in software engineering from the Aristotle Uni-
versity of Thessaloniki, in 2003, 2005, and 2012,
respectively. From 2013 to 2016, he was an Assis-
tant Professor with the Department of Computer
Science, University of Groningen, carrying out
research and teaching in software engineering,
where he is currently a Guest Researcher. He has

published over 60 articles in international journals and conferences. His
current research interests are focused on technical debt, reverse engineer-
ing, software maintainability, software quality management, open source
software engineering, and software design. He is/was involved in over
15 research and development projects in Information and Communication
Technologies with funding from national and international organizations.
Finally, he serves as a reviewer in numerous leading journals of the software
engineering domain, and as a member of various international conference
program committees.

PARIS AVGERIOU was a Post-Doctoral Fellow of
the European Research Consortium for Informat-
ics and Mathematics. He is currently a Professor
of software engineering with the Johann Bernoulli
Institute for Mathematics and Computer Science,
University of Groningen, The Netherlands, where
he has been leading the Software Engineering
Research Group, since 2006. He has published
over 130 peer-reviewed articles in international
journals, conference proceedings, and books. His

research interests lie in the area of software architecture, with strong empha-
sis on architecture modeling, knowledge, evolution, patterns, and link to
requirements. He has participated in a number of national and European
research projects directly related to the European industry of Software-
intensive systems. He has co-organized several international conferences and
workshops (mainly at the International Conference on Software Engineer-
ing). He sits on the Editorial Board of Transactions on Pattern Languages
of Programming (TPLOP), Springer. He has edited special issues in the
IEEE SOFTWARE, the Journal of Systems and Software, Elsevier, and TPLOP,
Springer.

ELISA Y. NAKAGAWA received the Ph.D. degree
from the University of São Paulo, Brazil, in 2006.
She conducted Post-Doctoral research with the
Fraunhofer Institute for Experimental Software
Engineering, Germany, from 2011 to 2012, and
also with the University of South Brittany, France,
from 2014 to 2015. She is currently an Associate
Professor with the Department of Computer Sys-
tems, University of São Paulo, São Carlos, Brazil.
She has coordinated international and national

research projects in the areas of software architecture, reference architec-
tures, and systems-of-systems, and she has been member of a number of
research projects. She has also organized national and international events.
She is currently an Editor of a special issue in the Journal of Systems and
Software, Elsevier.

23078 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	DESIGN PATTERN GRIME AND QUALITY ATTRIBUTES
	COMPARISON TO STATE OF THE RESEARCH

	STUDY DESIGN
	OBJECTIVES AND RESEARCH QUESTIONS
	CASE SELECTION AND UNIT OF ANALYSIS
	VARIABLES AND DATA COLLECTION
	STEP 1: CHARACTERIZE COMMITS
	STEP 2: COLLECT PATTERN INSTANCES
	STEP 3: ASSESS PATTERN GRIME
	STEP 4: ASSESS QUALITY ATTRIBUTES

	ANALYSIS PROCEDURE

	RESULTS
	RQ1 – CORRELATION BETWEEN GRIME AND QUALITY ATTRIBUTES
	RQ2 – ANALYSIS OF FACTORS
	COMPARISON OF PROJECTS
	COMPARISON OF PATTERNS
	COMPARISON OF DEVELOPERS


	DISCUSSION
	INTERPRETATIONS OF RESULTS
	CORRELATION BETWEEN GRIME AND ATTRIBUTES
	CONTRIBUTING FACTORS
	ANALYSIS OF VIOLATIONS

	IMPLICATIONS TO RESEARCHERS AND PRACTITIONERS

	THREATS TO VALIDITY
	CONCLUSIONS
	REFERENCES
	Biographies
	DANIEL FEITOSA
	APOSTOLOS AMPATZOGLOU
	PARIS AVGERIOU
	ELISA Y. NAKAGAWA


