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ABSTRACT Recently, a new algorithm named dynamic group optimization (DGO) has been proposed,
which is developed tomimic the behaviors of animal and human group socializing. However, one of themajor
drawbacks of the DGO is the premature convergence. Therefore, in order to deal with this challenge, we
introduce chaos theory into the DGO algorithm and come up with a new chaotic dynamic group optimization
algorithm (CDGO) that can accelerate the convergence of DGO. Various chaotic maps are used to adjust the
update of solutions in CDGO. Extensive experiments have been carried out, and the results have shown that
CDGO can be a very promising tool for solving optimization algorithms. We also demonstrated good results
based on real world data, where, in particular, solving multimedia data clustering problems.

INDEX TERMS Chaos, dynamic group optimization, convergence, heuristic algorithms.

I. INTRODUCTION
As optimization problems become more and more complex,
the use of traditional methods to solve such complicated
problems become inefficient. To cope with this problem,
many researchers focus onmimicking nature, which is always
a rich source of inspiration. Many kinds of heuristic opti-
mization algorithms have recently been proposed to solve this
kind of new problems. A series of different meta-heuristic
optimization algorithms were proposed, and most of them
are inspired by nature. Generally, all these algorithms can
be considered as stochastic approach. In comparison with
the deterministic approach, it does not need strict process
steps and constrains. In most cases, both approaches can be
found to churn out an acceptable solution. However, stochas-
tic approaches are much more flexible and universal than
deterministic approaches. Meta-heuristic optimization algo-
rithms can be divided into three categories: 1) Evolutionary
algorithm, which mimics evolution process. Genetic algo-
rithm (GA) [1], evolutionary strategy (ES) [2], and differen-
tial evolution (DE) [3], are the most popular algorithms in
this category. 2) Swarm intelligence (SI), algorithms in this
category are population based. Some famous algorithms in
this branch of algorithms include particle swarm optimiza-
tion (PSO) [4], ant colony algorithm (ACO) [5], wolf search

algorithm (WSA) [6], and cuckoo search algorithm (CS) [7].
3) Then finally, the other algorithms neither belongs to evo-
lutionary algorithm nor SI. One such example is the famous
algorithm based on computing systems of microbial interac-
tions and communications (COMIC) [8].

In most cases, the meta-heuristic algorithms have two
phases: exploration and exploitation. Simply put, the
exploration phase occurs when the algorithm discover
promising search area, and the exploitation phase refers to
searching the most promising solution obtained from the
exploration phase as quickly as possible [9], [22], [23].
Recently, a new algorithm named the dynamic group opti-
mization algorithm (DGO) [10] is proposed by Tang et al.,
which mimics the behaviors of animal and human in society.
There are three actions in this algorithm: 1) Intra-group
cooperation, 2) Inter-group communication, and 3) Group
variation. The main advantages of DGO are that it cre-
ates a new communication channel between search agents,
which accelerate the convergence and enhance the ability of
search. DGO is utilized swarm approach into the exploration
phase, and used the evolutionary approach into exploitation
phase.

Chaos theory is a novel approach that has been
wide applications [11], [17], [21]. One of the famous
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applications is the introduction of chaos theory into opti-
mization. Note that chaos theory is highly sensitive to initial
conditions and has a unique feature of randomness [9].
Numerous algorithms can be successfully combined with
chaos theory. Some popular chaotic hybrid optimization
algorithm includes PSO [12], GA [13] and krill search
algorithm [14]. In literature, all these hybrid algorithms
outperform the original versions and demonstrate better
performance. The choice of chaotic sequences is justified
theoretically by their unpredictability, non-periodic, complex
temporal behavior, and ergodic properties. However, it is
hard to estimate how good most chaotic random number
generator is in general by applying statistical tests as they
do not follow a uniform distribution. Yang et al. [24] states
that since the property of probability distribution can enhance
search speed in chaos optimization, the ergodicity of chaos
implies that chaotic sequences can traverse all the state
of strange attractor and search a whole range of search
space. As such, this basic property is utilized to search for
a global optimum for chaos optimization. The larger is the
chaotic sequences, the higher is the chaotic degree, and so
the faster is the speed of searching for the whole search
space.

Up to now, there are fewworks on hybridizing chaos theory
into DGO for improving the search capability. One of the
major drawbacks of the DGO is its premature convergence,
especially while handling problems with more local optima.
In this paper, sequences generated from chaotic systems sub-
stitute random numbers for the DGO parameters where it is
necessary to make a random-based choice. In this way, it is
intended to improve the global convergence and to prevent it
from hovering about a local solution. Although, chaos cannot
ensure DGO avoid local entirely because the randomness of
DGO, it can enhance the optimization’s ergodicity in phase
space.

In this paper, we propose using chaotic dynamic search
algorithm for the purpose of accelerating the convergence of
DGO in order to deal with benchmark functions and mul-
timedia data clustering problems. We integrated ten chaotic
maps into this algorithm in order to extensively investigate
the effectiveness of chaos theory for improving the search
capability. Specifically, our aim is to compare efficiency of
different one-dimensional maps as chaotic variable generator
in the DGO algorithms. The performance of the proposed
approach is tested on fourteen benchmark functions, which
are the CEC2009 competition testing functions, which con-
tain unimodal functions andmulti modal problems. To test the
performance of CDGO on solving the data clustering prob-
lems, a multimedia data processing application was carried
out for validating the efficiency of our algorithm.

The organization of this paper is as follows: Section II
presents the original version of DGO, overview of chaotic
maps and details of proposed CDGO. The investigation of
CDGO is presented in the Section III. Section IV states the
conclusion of this paper, which includes contributions and
future studies of CDGO.

II. METHODS
KEY NOTATIONS:

H Head
xGi,j The individual of jth member of the ith group at

Gth generation.
vGi,j The trial vector of jth member of the ith group at

Gth generation.
vGi,j,k The trial vector of kth dimension of jth

member of the ith group at Gth generation.
X (i, j) The individual of jth member of the ith group.
X (r1) The individual of r1th population.
f (x) The objective function value of x.
Mr1 Mutation 1 probability.
Mr2 Mutation 2 probability.
Rand Random number generator.
b Global best obtained so far.
bGk The value of kth dimension of global best at

Gth generation.

A. DYNAMIC GROUP OPTIMIZATION ALGORITHM (DGO)
DGO is a new type of meta-heuristic algorithm for solv-
ing optimization problems. This algorithm is inspired from
intra- and inter- social communications in nature. In this
strategy, vectors of solution are considered as members, they
are divided into different groups. Each group has a head to
record the group best solution. Members can leave a worse
group and join a better group, where better group means the
group has a better solution. Therefore, the number of mem-
bers is changing dynamically as iterations/generations grow.
It combines evolutionary approach and swarm approach
together to accelerate convergence. Moreover, it propose a
new structure of data, which divides the population into two
parts, heads and members. DGO can be summarized three
essential strategies by using different operators to realize a
solution.

1. Intra-group cooperation
2. Inter-group communication
3. Group variation
The population of the DGO hasmembers and eachmember

is divided into distinct groups. A group not only hasmembers,
but also has a head which stores the best solution obtained so
far from that group.

Fig. 1 illustrates the data structure of DGO,where xi,1 is the
first member of the ith group. The head stores the best solution
of the group, in the Fig. 1, we can see that the x(1, 1) is the first
member of the first group and it has n dimensional variables.
H(1) stores the best group solution of the first group.

B. INTRA-GROUP COOPERATION
The intra-group cooperation simulates the members updating
procedures. In this component, members of each group are
updated by searching information obtained from global best,
heads and some other members. In this action, two mutation
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FIGURE 1. Data structure of DGO.

operators are used. The formula is as follows:

vGi,j,k =

{
HG
i,k + µ

(
HG
r,k − b

G
k

)
if rand (0, 1) > Mr1

xGi,j,k else,

(1)

where the vGi,j,k is the vector of kth dimension of jth mem-
ber of the ith group, which is obtained randomly from the
whole population. HG

i,k is the kth dimension value of the
ith head. G is the generation. We note that b is the best
solution obtained so far. Here, r is the random number with
the range [0,1]. Then, rand is the random number generator,
and µ is drawn from normal distribution with mean 0 and
standard deviation 1.

The second operator can be formulated as:

vGi,j,k =

{
bGk + µ

(
xGr1,k − x

G
r2,k

)
if rand(0, 1) > Mr2

xGi,j,k else,

(2)

where r1 and r2 are indexes of two distinct individuals, which
are chosen randomly (exclude heads).

C. INTER-GROUP COMMUNICATION
Heads as the groups delegate communicate with the other
groups in this phase. The head can update. The movement
uses the levy flight random walk. The mathematical update
equation of levy flight walk is formulated by Yang and
Deb [7] as follows:

H k+1
i = H k

i + α ⊕ Lévy(λ), (3)

α = α0 × (H k
i − b), (4)

The ⊕ is the entry-wise multiplications. H k+1
i and H k

i
mean the ith group in the k + 1 and k generations. Lévy(λ)
is a random number, which is drawn from Lévy distribution.
Here, α0 is a scaling factor, the b is the global best solution.
Equation (3) and (4) are the equations for head updating.

FIGURE 2. Flowchart of group variation.

Heads move towards global best by using Lévy flight walk.
The exponential form of probability function is:

Lévy ∼ µ = t−λ, ∀1 < λ ≤ 3 (5)

Mantegna R. proposed the Lévy search equation in 1992
as follow:

s =
∅ × µ

|v|1/β
, (6)

Here, λ = 1 + β, β ∈ (0, 2]. In the cuckoo search
algorithm, we note that β = 1.5, which is a constant num-
ber. Then, µ and v represent the normal distribution random
numbers.

∅ =

[
0(1+ β)× sin(πβ/2)

0( 1+β2 )× β × 2(β−1)/2

]1/β
, (7)

From Equations (5)-(7), we see that s is decided by two
normal distribution number µ and v.

D. GROUP VARIATION
Group members are changed by ranking the fitness. The
better the fitness, the more members we have. In order to
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FIGURE 3. Members transfer from the worst group to the other groups.

avoid wastage of computing resources, DGO sets the group
variation component so as to control the size of groups. The
flow chart demonstrates what we meant:

Fig. 2 shows the procedure of group variation. Firstly,
the algorithm determines whether the member of a group is
improved or not. If it shows improvement, it will perform an
ordinary search. Otherwise, it determines whether it reaches
the given number of attempts, which is set by the user. For
example, 100 runs are used here. If so, the member cannot
jump out of the local optimum, so the member is transferred
randomly to another group. This action helps the algorithm
to avoid local optima and avoid wasting resource.

Fig. 3 illustrates a snapshot of members transfer in group
variation action. We assume that group 1 holds the worst
solution and cannot improve itself within the given times
attempts. Then, the group variation action is hereby triggered.
The member x(1,mk ) is transferred randomly from group 1
to another group.

E. CHAOTIC MAPS
Most meta heuristic optimization algorithms belong to
stochastic algorithms. The property of randomness is
obtained by using probability distribution, such as uniform
and Gaussian method. There is a randomness method in
optimization field called chaotic optimization (CO) [19].
We note that CO has the property of dynamical, non-
repetition and ergodicity. The dynamical property ensures
that solutions are produced by the algorithm can be diverse
to search all different modal objective search space, even on
the complex multimodal landscape. Moreover, by having the
ergodicity property of CO, it can perform searches at higher
speeds compared to the stochastic algorithmswith probability
distribution. Becasue chaos theory has the feature of random-
ness and dynamic, it is easy to accelerate the optimization
algorithm convergence and enhance the capability of diver-
sity. In order to achieve such goal, we use one-dimensional
and non-invertible maps to produce the chaotic sets. Fig. 4
shows the visualization of these ten chaotic maps. The initial
value of a chaotic map has impacts on the fluctuation pattern,

but in order to get an unbiased result, we set the initial point
as 0.7 for all of which is suggested on [9].

The first is the Chebyshevmap, which is a common chaotic
map and widely used in digital communication and neural
network. It can be defined as follows:

xk+1 = cos(kcos−1(xk )) (8)

where the range is (−1, 1). Note that xk is the kth chaotic
number, with k denoting the iteration number.
Circle map is a simplified model for both driven mechan-

ical rotors. Furthermore, it is a one-dimensional map which
maps a circle onto itself. Circle map is presented as follows:

xk+1 = xk + b−
( a
2π

)
sin (2πxk)mod (1) , (9)

where a = 0.5 and b = 0.2, the range is (0, 1), the
parameters b and a can be regarded as strength of nonlinear-
ity and externally applied frequency, separately. The Circle
map produces much unexpected behavior with the change of
parameters.

Gauss/Mouse map can be described as follows:

xk+1 =

0 xk
1

xkmod(1)
otherwise,

(10)

This map also generates chaotic sequences in (0, 1).
Iterative map is one with infinite collapses, which can be

presented as follows:

xk+1 = sin(aπ/xk ), (11)

where a = 0.7 and the chaotic sequence in (−1, 1).
Logistic map can be written as follows:

xk+1 = axk (1− xk ), (12)

where a = 4 and the range is (0, 1), it is the simplest map
that appears in nonlinear dynamics of biological population
evidencing chaotic behavior is logistic map.
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FIGURE 4. Visualization of employed ten chaotic maps on one dimensional space.

Piecewise map is governed by the following equation

xk+1 =



xk
P

0 ≤ xk < P
xk − P
0.5− P

P ≤ xk < 1/2

1− P− xk
0.5− P

1
2
≤ xk < 1− P

1−xk
P

1− P ≤ xk < 1,

(13)

where P = 0.4 and the range is (0, 1).
The Sine map belongs to a unimodal map and is similar to

the Logistic map, which can be described as follows:

xk+1 = a/4sin(πxk ), (14)

where a = 4 and the chaotic sequence in (0, 1).
Singer map is a one-dimensional system as given below as:

xk+1 = µ(7.86xk − 23.31x2k + 28.75x3k − 13.3x4k ), (15)

where µ = 1.07 and the range is (0, 1).
Sinusoidal map can be defined as follows:

xk+1 = ax2k sin(πxk ), (16)

where a = 2.3 and the range is (0, 1).
Tent chaotic map is very similar to the logistic map, which

displays specific chaotic effects [25]
Tent map can be described as follows:

xk+1 =


xk
0.7

xk < 0.7
10
3
(1− xk) otherwise,

(17)

In order to get an unbiased results, we set the initial point
is 0.7 for all chaotic maps in this work.

F. PROPOSED CHAOTIC DYNAMIC GROUP
OPTIMIZATION ALGORITHM
In this section, we used the chaotic maps in two ways
to combine with DGO and to improve its performance.
We employed the chaotic maps for manipulating the intra-
group cooperation and the inter-group communication of the
DGO.Chaotic intra-group cooperation improves the exploita-
tion whereas the chaotic inter-group enhances the capability
of exploration.

1) CHAOTIC INTRA-GROUP COOPERATION
As it is presented in Eq. (1), the parameter rand (0, 1) is
the key parameter to control the mutation operator process,
the value of the parameter is vitally important to decide the
convergence speed. In our work, we employed the chaotic to
redefine the probability. The rand is replaced by chaotic map,
the new chaotic equation is shown as follows:

vGi,j,k =

{
HG
i,k + µ

(
HG
r,k − b

G
k

)
if C(t) > Mr1

xGi,j,k else,
(18)

where C(t) is the value of the chaotic map in the tth
iteration. In the original DGO, the value is totally random.
And when comparing with the chaotic method, it is lacking
different exploitation patterns. It is worthwhile to mention
that the range of some chaotic maps are (−1, 1), so we
normalize them into (0, 1).

2) CHAOTIC INTER-GROUP COMMUNICATION
As can be seen in Eq. (6), the parameterµ is the random num-
ber draw from normal distribution, andµ is the key parameter
to produce the new step size. We utilized the chaotic map
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FIGURE 5. Flowchart of CDGO.

calculates the s as follows:

s =
∅ × C(t)
|v|

1/β

, (19)

where the C(t) is the value of the chaotic map of the t-th
iteration. Eq. (19) shows that the chaotic maps are allowed
to define the chaotic inter-group communication and chaotic
maps are responsible for producing the new step size of
movement.

The tuning of parameters when using chaotic maps not
only improves the ability of speed of convergence, but it also
improves the ability of avoiding local optima. The following
shows the advantage of this chaotic method. Chaotic intra-
group cooperation improves CDGO to control the process
of mutation, which improves the exploitation. Chaotic intra-
group cooperation helps CDGO to produce new step size
with a chaotic pattern, which improves the exploration. Since
the chaotic maps show the chaotic behaviors, the chaotic
algorithm can assist the DGO to exit the local optima. Fig. 5
shows the flowchart of CDGO.

TABLE 1. Computer environment setting.

III. EXPERIMENTAL RESULTS
To fully evaluate the performance of the DGO without a
biased conclusion, we carried out different experiments.
Fourteen benchmark functions were employed in our experi-
mental studies. These functions are widely used in numerous
studies [15], [16]. All experiments are performed using the
same PC, and the details setting is shown in Table 1:

In our experiments, we use the average and standard devi-
ation of the function value to compare the performance of
algorithms. The maximum number of fitness evaluations that
we allowed for each algorithm to minimize this value was
1000∗D, whereD is the dimension of the problem. The fitness
evaluation criteria is shown as follows:

Function value: The minimum function value of each algo-
rithm is recorded in 50 runs, and the average and the standard
deviation of the value are calculated. The average and the
standard deviation are recorded in our experiment.

P-value: Wilcoxon’s rank sum test. The 0.05 significant
level is used to assess significance between two algorithms.
P-value is calculated, which is a number in the range [0, 1]
and it is the probability of observing the value under the null
hypothesis.

The initial population of testing algorithms is generated
uniformly at random in the search space. In all experiments,
the same population size, and mutation probability is used.
There are some parameters are important to DGO andCDGO:
the number of groups, which decides the centroid, is 9 in our
experiment. The probability of mutation pm is 0.2. Population
size P is 30, and the dimension of testing function is 30.
The marks—CDGO1, CDGO2,. . . , CDGO10 in the follow-
ing paper are abbreviated for the ten corresponding chaotic
maps in Section II.

A. CHAOTIC INTRA-GROUP COOPERATION
The performance of CDGOs with intra-group cooperation
phase was compared with classical DGO on benchmark func-
tions. Table 2 lists themean, standard deviation and p-value of
function values respectively, which are obtained from testing
benchmark functions. The results show CDGO outperforms
the original DGO in terms of the average function value at
all functions except f1, f4 and f14. In the unimodal function
f1-f7, CDGOs outperforms DGO on 5 out of 7 functions.
In multimodal function, CDGOs outperforms DGO on 6 out
of 7 functions. The result of standard deviation function
values is similar as the mean function value. Compared to
classical DGO, we can see that most results of CDGO are a
significant improvement in terms of p-value.
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TABLE 2. The comparison between DGO and different CDGOs using chaotic maps at intra-groups action.
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TABLE 2. (Continued.) The comparison between DGO and different CDGOs using chaotic maps at intra-groups action.

B. CHAOTIC INTER-GROUP COMMUNICATION
Chaotic maps are used into inter-group communication to
tune the exploration of DGO. Table 3 shows the result. From
Table III, in terms of the average function values, CDGOs per-
forms better than DGO on f1, f2, f5, f6, f7, f9, f10, f11 and f12,
and they all found the global optimum. Moreover, compared
to DGO. CDGOs get 8 times best result. We can know more
information about Wilcoxon’s rank sum test from Table 3.
Our proposed CDGOs have achieved a significant improve-
ment over the original algorithms. It can be observed that
the CDGOs perform better than the classical DGO when
the DGO is combined to chaotic maps of inter-groups
actions.

C. CHAOTIC DGO COMBINED WITH CHAOTIC INTER AND
INTRA GROUP ACTIVITIES
Results of the CDGO algorithms pertaining to both intra and
inter group activities operators are provided in Table IV. It can
be observed that the results of all CDGO algorithms are much
better than the original DGO. All of the CDGO algorithms
provide superior results compared to the DGO algorithm
except f 4 and f 9. The p-value in Table 4 also indicates
that the DGO algorithm provides the worst rates. Accord-
ing to Table IV, CDGO2 uses the circle map to enhance
the performance of the DGO algorithm remarkably. Since
CDGO2 provides the best results for the 4 tests’ functions,
such as unimodal and multimodal functions. It can be stated
that the combination of a circle map and two operators
improve the exploration and exploitation of the DGO algo-
rithm significantly.

D. PERFORMANCE TEST AND ANALYSIS
OF CHAOTIC MAPS
The unstable and chaotic sequence can produce non-
repetition and dynamical search pattern, which is helpful to
enhance the capability of exploration phase and capability of
jumping out of local optimum. Therefore, in this section, our
goal is to compare DGO and CDGO using different chaotic

maps described above as Lyapunov exponent λ to measures
the average exponential divergence or convergence rate. We
distinguish 3 cases of λ. The first is λ < 0: A negative λ
is characteristic of dissipative or non-conservative system.
This kind of system exhibits asymptotic stability. The second
case is λ = 0: A Lyapunov exponent of zero indicates that
the system is in a steady-state mode or near the transition
to chaos. The third one is λ > 0, the orbit is unstable and
chaotic, in our comparison, the λ is greater the search pattern
is better.

We extracted sequences from classical DGO and CDGO
with different chaotic maps under the same initial condition to
record the Lyapunov exponent.Moreover, we set a hypothesis
testing to further check whether the sequences are chaotic or
not based on a confidence level 0.5. The test hypothesis H are:
null hypothesis H0: λ > 0, which indicates the presence of
chaos; and alternative hypothesis H1: λ < 0, which indicates
the absence of chaos. All the initial value is set to be 0.7 and
the results are reported.

From Table 5, it can be shown that Lyapunov exponent λ
of random variable is −0.496 and the P = 4.35e-11. Hence,
the hypothesis H1 indicating the absence of chaos is accepted
at 5% confidence level. The random variable is therefore
stochastic. The other CGDO algorithm with chaotic maps
had positive Lyapunov exponent λ, and the hypothesis H0
indicating the presence of chaos were accepted at 5% con-
fidence level. The CDGO with Circle map obtained the
highest Lyapunov exponent, which means that CDGO with
Circle maps can produce the most unstable chaotic sequence.
It also means that the Circle map is the most suitable chaotic
map for applying into DGO. Chaotic sequences influence the
behavior of all operators (mutation, crossover), not because
new operators are introduced, but because all the existing
standard operators work following the outcomes of a chaotic
sequence instead of a standard random generator. The proper-
ties of chaos guarantee solutions produced by algorithms can
be sufficiently diverse to search all different landscapes of
search space, and the ergodicity and non-repetition enhance
the speed of search.
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TABLE 3. The comparison between DGO and different CDGOs using chaotic maps at inter-groups action.
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TABLE 3. (Continued.) The comparison between DGO and different CDGOs using chaotic maps at inter-groups action.

In order to fully investigate the performance of our pro-
posed CDGO, we also carried out a comparison between
CDGO and two optimization algorithms and two well-known
swarm intelligence optimization algorithms, which includes
CPSO [11], CKH [14], WSA [6] and PSO [4]. We choose
CDGO2 as our representative of CDGO.

The results are reported in Table 6, which clearly shows
that the CDGO algorithm overall yields better results
than the other algorithms on all functions. For example,
on function f1, CDGO2 reached 1e-16, but the other algo-
rithms merely obtained solution at 1e-5. From Table 6, we
can draw the similar conclusion that our proposed CDGO is
useful tool for solving the optimization problems.

E. CHAOTIC DGO SOLVING REAL WORLD
CLUSTERING PROBLEM
In order to fully investigate the performance of CDGO, we
employed CDGO to solve real world multimedia data set
clustering problems. The multimedia data are, unstructured,
loose and dynamical, and they are difficult to cluster. We
note that k-means is a simple but powerful algorithm for
clustering. Objects that are similar in the same group, but
different in the other groups is a characteristics of k-means. It
starts with K initial cluster centroids and assigns each object
to the nearest centroid conveniently. The core of k-means
algorithm is updating centroids and reassignment of group
objects. The mathematical equations are shown as follows:

clamt = mink∈K {| |xi − cenk | |}, (20)

Here, x represents objects (x1, x2, . . . , xn), where each
object is a D-dimensional real vector. cenk is the mean of
points in the kth cluster. Now, k-means is computationally
difficult (which makes it a NP-hard problem). Many studies
show it converges quickly to a local optimum that does not
achieve the best clustering result. Therefore, it quite natural to
apply the heuristic optimization algorithm to k-means for the
aid of searching the global optimum in each computational
iteration. Wolf search clustering (Cwolf) [6], cuckoo search

clustering (Ccuckoo) [18] and PSO clustering (CPSO) [18]
are well-known algorithms in hybrid k-means algorithms.
In order to test the performance of CDGO on multimedia
data clustering, we also hybridized k-means with CDGO
(CCDGO). There are three actions in CCDGO, initialization,
exploration and cluster assignment. Each search agent in
CCDGO holds a set of centroids (cen1, cen2, . . . , cenK ) with
K×D dimension, which is computed iteratively. In the initial-
ization, each search agent selects K objects randomly from
whole data set to take as the initial centroids, then the rest
objects are assigned to the nearest cluster based on Eq. (20).
The second action is exploration. CDGO plays an important
role here. Due to the search agent during each iteration is
always tending to update a better solution so as to find the
optimal combination of centroids, which is the goal of each
search agent in CCDGO. The update centroid equations are
shown as follows:

wi,j =

{
1, xi ∈ cluter j
0, xi /∈ cluter j,

(21)

cenj,v =

∑S
i=1 wi,jxi,v∑S
i=1 wi,j

, j = ..K , v = 1..K ∗ D, (22)

where S is the solution space has several xi solutions, i is the
index of the solution. cenj,v is the centroids at the jth cluster
and the vth attribute. The objective function can be described
as follows:

F (cen) =
∑K

j=1

∑S

i=1
wi,j

∑K∗D

v=1
(xi,v − cenj,v)2, (23)

To measure the distance between each x and the centroid,
the calculation process loops K × D times to consider the
values of all the attributes of x in every dimension v. It is
worthwhile to mention that each centroid cen is required to
be split into K segments from every search agent. The last
action is the cluster assignment. CCDGO ranks search agents
based on (23), which finds the best solution as the centroids
and reassigns all objects to the nearest cluster. The flowchart
of CCDGO shows in the Fig. 6.
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TABLE 4. The comparison between DGO and different CDGOs using chaotic maps at intra and inter-groups action.
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TABLE 4. (Continued.) The comparison between DGO and different CDGOs using chaotic maps at intra and inter-groups action.

TABLE 5. The comparison results between DGO and different CDGOs using chaotic maps.

We used CCDGO, k-means and an EA-based algorithm-
Cwolf to compare the performance. The parameter setting of
DGO is the same as the Section III, k-means and Cwolf are
set as suggested in [17]. We ran the experiments 50 times
to obtain an average result of each algorithm. In order to
fully investigate the performance of CDGO on real world data
clustering problems, we employed the evaluation metrics:
accuracy, precision, recall and F-measure. Three multimedia
datasets are used in our comparison. They all have the prop-
erty of high-dimensional space, noise and polluted data.

Parkinson Speech dataset with multiple types of sound
recordings data set is employed in this experiment. This data
set is a well-known multimedia data set. It records the voices
of 40 people in the real world. Types of voice include vowels,
numbers, words and sentences. The data set has 28 attributes
and 1040 instances, which is very hard to cluster. Numerous
experts choose this dataset to test clustering performance of
methods on this data set.

Web Page dataset is multimedia content, were separated
from graphic areas of the web page. There are 5473 instances
and 10 attributes, which come from 54 different documents.
One of the dataset’s application is to cluster the data objects
to separate groups of text, graphics and pictures depending
on the attributes values.

LibraMovement dataset is extracted 45 frames from videos
to cluster the hand movement. It contains 360 instances and
91 attributes.

Fig. 7 shows the result of comparison on three datasets,
with the numerical result listed in the Table 7. We can clearly

find that the CCDGO outperforms the other two methods.
For the Parkinson Speech dataset, although the accuracy
of CCDGO is lower than k-means, the F-measure is sig-
nificantly better than K-means, which indicates the overall
performance of CCDGO is the best. Precision of CCDGO is
significantly better than both k-means and Cwolf. For Web
Page dataset, CCDGO obtains the best result on all evalu-
ation metrics. The recall value of CCDGO is significantly
higher than k-means, which means CCDGO finds much
more correct clustering objects. For Libra Movement dataset,
CCDGOC exhibits its global optimum finding ability in the
task of clustering. In general, the results demonstrate that
our proposed CCDGO is promising to solve multimedia data
clustering problems in comparisons to k-means and Cwolf.

F. DISCUSSION
As mentioned in Section I, there are many methods to
enhance search capability. Although many of them show
a great contribution to improving optimization algorithm,
but chaotic optimization is the relatively suitable method to
hybridize.

Technically, a metaheuristic algorithm has three compo-
nents in the stochastic search process. The first is global
exploration. It explores the entire search space to scout
the vicinity of the promising solution. The second is local
exploitation, which is the convergence towards the most
promising solutions in the area obtained from the global
exploration phase. The third is mutation or crossover. The
current solution is transformed into a new solution and varied
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FIGURE 6. Flowchart of CCDG.

slightly. Many approaches are used to improve these com-
ponents, such as sub-swarm and hybrid populations. How-
ever, balancing global exploration and local exploitation is

still difficult, better global exploration capability is usually
accompanied by worse local exploitation, and vice versa.
DGO lends itself strongly to exploration and exploitation.
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FIGURE 7. Comparison of CCDGO,Cwolf and K-means.

The search strategy employed in CDGO is mainly based
on random walks, which includes Lévy flight in innergroup
cooperation and uniform distribution in intergroup commu-
nication. These two randomness have distinct advantages
and disadvantages. For Lévy flight, the step size is obeyed
the heavy-tailed distance distribution, it expanses the scope
of search, but the new solution tends to accumulate along
the previous movement. For uniform distribution, it has the
simple structure and easy to use, but it may produce duplicate
solution. Introducing chaos is the most suitable approach to
solve those problems. It has the property of the non-repetition,
ergodicity and dynamic. The dynamic property ensures the
solutions produced by algorithms can be diverse to search all

TABLE 6. The comparison results between DGO and different CDGOs
using chaotic maps.

TABLE 7. The comparison of CCDGO, Cwolf and K-means.

different landscapes of search space, and the ergodicity and
non-repetition enhance the speed of search. Therefore, it is
natural to employ the chaos into DGO to enhance the search
ability of DGO.

The convergence properties of DGO are strongly related to
its stochastic nature and DGO uses a random sequence for
its parameters during a run. Generating random sequences
with a long period and good uniformity are very important for
easy simulating complex phenomena, sampling, numerical
analysis, decision making and especially in heuristic opti-
mization. Its quality determines the reduction of storage and
computation time to achieve a desired accuracy [25]. Chaos
has properties of randomness, non-repetition and ergodicity,
it is perfectly matched the stochastic feature of meta heuristic
optimization algorithms. Chaotic optimization not only accel-
erates the speed of algorithm, but can also enhance the variety
of movement pattern. From the experiments conducted in
Section III on the benchmarks, it is demonstrated that CDGO
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performs better than the classical DGO. Moreover, it is also
interesting to compare the capability between CCDGO and
the EA-based clustering algorithms on multimedia cluster-
ing problems. Multimedia data are loose, unstructured and
dynamical, which are the tough problems to solve are. The
comparison between CCDGO and other algorithms shows
that CCSGO could generate better results on real world data
clustering problems.

Although benchmark functions is the most wildly used
way to evaluate the performance of the heuristic algorithms,
it still not a perfect approach. Most heuristic optimization
algorithms have randomness and parameters. And therefore,
the different tuning parameters may result in a significant
difference in their performance. In our work, we used same
experiment environment to obtain the unbiased results. How-
ever, our benchmark evaluationmay generate different results
if we change the population size or termination condition. In
spite of these caveats, the benchmark results show that CDGO
is promising optimization tool.

IV. CONCLUSION
Chaos has been widely observed in various applications.
In this paper, we used chaos theory combined with the
latest algorithm DGO to perform two activities: improve-
ment of intra-group cooperation and inter-group commu-
nication. The first advantage of CDGO is using fewer
chaotic maps to enhance the searching capability. Sec-
ondly, chaotic optimization performs search at higher speed
compared to the stochastic searches rely on probabil-
ity [20]. Moreover, CDGO is a simple structure and easy to
implement.

In order to investigate the performance of CDGO in this
study, fourteen benchmark functions are utilized into com-
parison. The experimental results showed that our proposed
algorithm outperforms the other algorithms in different test-
ing conditions. Furthermore, the CDGO2 which utilizes the
circle map enhances the performance of the DGO algorithm
remarkably.

The main contributions of this paper are as follows. (1)
Because the chaotic maps used into intergroup phase, the
convergence in local exploitation is accelerated. (2) The inter-
group communication enhances the global exploration ability
by using chaotic sequences. It provides variety in the popu-
lation. (3) Local exploitation and global exploration are both
improved in the CDGO algorithm, so the balance between
global exploration and local exploitation is coordinated by
itself in a self-adaptive way. (4) We use the sequence genera-
tor at a variable (bit) level, rather than on a vector (individual)
level. (5) The algorithm is easy to hybrid into the other data
mining tools.

From the comparison among CCDGO and the other two
well-known algorithms on multimedia data clustering prob-
lems, it can be shown that the applicability of CCDGO
for multimedia data clustering problem solving is feasible.
For future studies, it may be worthwhile to employ CDGO
algorithms for solving real-world engineering problems.

In addition, other chaotic maps are also worth applying onto
DGO [26]–[28].
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