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ABSTRACT A critical challenge in the energy management of hybrid electric vehicles is how to intelligently
distribute the power between engine and electric motor with a significant reduction in fuel consumption
and emissions. In this paper, iterative dynamic programming (IDP) and adaptive neurofuzzy inference
system (ANFIS)-based energy management strategy was proposed for a parallel hybrid electric bus. First,
IDP was used to obtain the optimal control trajectories for a specific driving cycle. During the iterative
process, a modified gear-shifting strategy was introduced to achieve a good tradeoff between the fuel
economy and the drivability performance. Next, multi-ANFIS networks were designed and trained to learn
the control law from the available optimal trajectories. Finally, the real-time energy management controller
based on the IDP-ANFIS was built to coordinate the output of the two power sources, which reduces the fuel
consumption and emissions. The simulation and experimental results reveal that the IDP-ANFIS is feasible,
and the performance is superior to that of the equivalent consumption minimization strategy and rule-based
method.

INDEX TERMS Energy management strategy, fuel consumption, iterative dynamic programming, ANFIS,
parallel hybrid electric bus.

I. INTRODUCTION
With increasing environmental pollution, global warming and
petroleum consumption, the development of new energy vehi-
cles has received considerable attention [1]–[4]. Hybrid elec-
tric vehicles (HEVs) equipped with an engine and an electric
motor is a practical and economical solution to alleviate the
above mentioned problems during the short term. Compared
with conventional vehicles, HEVs with multiple power paths
have the potential to significantly reduce fuel consumption
and emissions [5]–[9]. The power distribution between the
different power sources, which is determined by an energy
management strategy (EMS), is one of the crucial factors
affecting the vehicle performance. Therefore, optimizing the
EMS to achieve optimal fuel economy and emissions is an
important task for HEVs development.

It is well known that the function of an EMS is to deter-
mine the optimal power distribution, which ensures that
the vehicle is in a suitable operating mode under differ-
ent driving conditions [10]. In addition, the condition of

charge-sustainability can be regarded as a constraint, impos-
ing a zero deviation in the battery state of charge (SOC) over
the driving cycle. Currently, many control methods have been
proposed for HEVs to optimize the EMS. A classical rule-
based EMS whose logical rules are ‘if-then’ type is widely
used in the early stages [11], [12]. This method with a strong
real-timeliness and good reliability is easy to implement in
practice. However, the rules design depends on the engineers’
experience and experimental data. In [13] and [14], a fuzzy
algorithm is introduced to realize an online and suboptimal
power distribution for series HEV instead of using heuristics
rules. Actually, this is only an extension of the rule-based
EMS. To obtain an optimal EMS, Pérez et al. [15] proposed a
dynamic programming (DP) approach to solve the power dis-
tribution problem for a parallel HEV. However, this approach
is impossible in reality, since it requires the entire driving con-
dition to be known in advance. To overcome this issue, a new
rule-based strategy whose rules are derived from DP results
is proposed by Bianchi et al. [16] for a series-parallel HEV.

23806 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0001-5032-3885


X. Tian et al.: Design of an EMS for a Parallel Hybrid Electric Bus

An obvious reduction of the computational time can be easily
achieved during its online implementation. Some researchers
focused on using the state transfer matrix of the driver’s
power demand to predict the future power demand sequence.
Lin et al. [17] proposed a stochastic dynamic programming to
generate the control law, which can be implemented online .
However, the state transition probabilities are associated with
the driving cycles, which may severely worsen the compu-
tational burden. The equivalent consumption minimization
strategy (ECMS) is a powerful online approach to reduce
fuel consumption in a hybrid system, as initially presented
by Paganelli et al. [18] . The equivalent factor is introduced to
weight the electrical power in [19] and [20], and it represents
the conversion relation from electricity consumption into
equivalent fuel consumption. With appropriate regulation of
the equivalent factor, the ECMS can generate results close to
the optimum. In [21], a particle swarm optimization algorithm
is used to optimize the equivalent factor at each segment of
the specific cycle, and a 2-dimensional table regarding the
optimum factor is obtained for realizing a real-time adaptive
EMS for plug-in parallel HEV. Musardo et al. [22] developed
an adaptive ECMS for a parallel HEV that can estimate the
equivalent factor through an on-the-fly algorithm according
to the trip information . However, these algorithms with
adaptive tuning of the factor are the lack of the capability of
reasoning and learning, which are very sensitive to the driving
cycle information. Furthermore, a model predictive control
method is introduced to devise the EMS for a parallel HEV
that can obtain a reasonable power distribution [23].

As mentioned above, many intelligent algorithms have
been used to design the EMS for HEVs. Among them,
dynamic programming, as a global optimization technique,
is suitable to obtain the optimal EMS through a recursive cal-
culation. Considering the limitation of online application for
the dynamic programming, this paper presents an innovative
approach to design the EMS for a parallel hybrid electric bus.
First, due to the regular and relative fixed route of a city bus,
the energymanagement control problem can be formulated as
a nonlinear optimization problemwith hard constraints over a
specific driving cycle. The cost function is concerned within
three parts, i.e., fuel consumption, emissions and battery
SOC. To avoid the phenomena of the dimensionality curse,
iterative dynamic programming (IDP) is employed to solve
the above optimization problem using coarse grids and a mul-
tistep iterative strategy, which ensures the calculation accu-
racy. Meanwhile, the optimization process should take the
gear-shifting strategy correction into consideration to main-
tain the vehicle dynamic performance. Therefore, an adaptive
factor λ is applied to correct the gear-shifting strategy, whose
value is determined by the fuzzy control algorithm. Finally,
an adaptive neuro-fuzzy inference system (ANFIS) is applied
to set up a real-time energy management controller, and the
optimal control trajectories produced by IDP approach are
taken as the training data. Taking advantage of both the
fuzzy system for its reasoning capability and neural network
for its learning capability, the multi-ANFIS networks have

a superior ability to extract the control law from the opti-
mal trajectories. The simulations and experiments results are
evaluated to reveal the advantage of proposed method in fuel
economy and emissions improvement.

This paper is organized as follows. In the next section,
a model of the parallel hybrid electric bus is described, and
Section III presents the IDP-based EMS step by step. Then,
the obtained results form the foundation for the real-time
energy management controller discussed in Section IV. The
control results are revealed in Section V where the perfor-
mance is represented in terms of fuel consumption and emis-
sions. Finally, the conclusions are presented in Section VI.

FIGURE 1. Configuration of the parallel hybrid electric bus.

II. HYBRID POWERTRAIN MODEL
A. VEHICLE POWERTRAIN CONFIGURATION
This section outlines a parallel hybrid electric bus studied
in this paper. The configuration is shown in Fig. 1, which
consists of an engine, an electric motor and an automated
mechanical transmission (AMT). The AMT is located on
the same axis between the engine and the electric motor.
The electric motor is mechanically connected to the drive
shaft, then the regeneration of braking energy with high-
efficiency becomes possible. Table 1 lists main parameters
of the powertrain components.

TABLE 1. Main parameters of powertrain components.

B. VEHICLE MATHEMATICAL MODELS
To analyze the internal energy flow and model the energy
management of the hybrid system, it is necessary to build
the models of the critical powertrain components. Due to the
complexity of the components, the modelingmethod combin-
ing experimental data and theoretical analysis is applied in
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this section. Obviously, all of the component models can be
integrated to form the entire system model. The optimization
of the EMS for the hybrid electric bus is also based on this
system model.

FIGURE 2. The engine torque characteristic map.

1) ENGINE MODEL
Due to the nonlinear characteristics, the engine model can be
established based on experimental data. The engine torque
characteristic map is shown in Fig. 2. Considering the time
delay in the dynamic response of the engine, a first-order
inertia transfer function with time constants τe is introduced.
The engine torque can be written as

Te =
1

1+ τes
f (ωe, αe) (1)

where Te and ωe represent the engine torque and speed,
respectively, and αe is the throttle opening. Note that the
throttle opening is provided by the vehicle control unit (VCU)
in practice.

Then, the engine fuel consumption and emissions can be
calculated by using a lookup table or fitting parameters.
The relevant data are acquired from the engine bench test.
Therefore, the model of fuel consumption and emissions are
expressed as

ṁf = ffuel (Te, ωe) (2)

bCO = BSCO
(
Te,ωe

)
(3)

bHC = BSHC (Te, ωe) (4)

bNOx = BSNOx (Te, ωe) (5)

where ṁf is the brake specific fuel consumption; bCO, bHC
and bNOx represent the brake specific emission of CO, HC,
and NOx, respectively. The engine BSFC map is presented
in Fig. 3.

2) ELECTRIC MOTOR MODEL
An electric motor has two modes, motoring mode (electric
motor) and generating mode (electric generator). While the
electric motor operates in the generating mode, the chemi-
cal energy or braking energy can be converted into electric

FIGURE 3. The engine BSFC map.

energy and stored in the battery. In this section, an electric
motor model with an efficiency modeling method is con-
structed, and the electric motor torque Tm is obtained by

Tm =
1

1+ τms
min

(
Tmd,

Pmax

9549ωm

)
(6)

Pm =


Tmωm

ηm
, (Tm ≥ 0)

Tmωmηm, (Tm < 0)
(7)

Im =
Pm
VB

(8)

where ωm, Pm and Im are the speed, power and current of
the electric motor, respectively. ηm and τm are the efficiency
and time constant for the electric motor, respectively. Tmd and
Pmax are the command torque and peak power, respectively.
VB is the DC bus voltage. The electric motor efficiency model
is shown in Fig. 4.

FIGURE 4. The electric motor efficiency model.

3) BATTERY MODEL
The battery functions as a secondary energy source to stim-
ulate the electric motor and regenerate the braking energy.
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FIGURE 5. The equivalent circuit model of the battery.

Considering the complex chemical reaction inside the bat-
tery, an equivalent circuit model is adopted in this study.
As shown in Fig. 5, the equivalent circuit model contains an
ideal voltage source and an internal resistance, both of which
are affected by the temperature and SOC. The power of the
battery PB can be expressed as

PB = VCIB (9)

where VC and IB are the terminal voltage and charge/
discharge current of the battery, respectively. On the basis of
Kirchhoff’s voltage law, the terminal voltage of the battery
can also be defined as

VC = VOC − IBRB (10)

According to (9) and (10), the charge/discharge current of
the battery IB can be rewritten as

IB =
VOC
2RB
−

√(
VOC
2RB

)2

−
PB
RB

(11)

where RB and VOC are the internal resistance and open-
circuit voltage of the battery, respectively. The current bat-
tery SOC can be derived by the ampere hour algorithm
shown as

soc =
1
QI

(
Q0 −

1
3600

∫ t

0
IBdt

)
(12)

whereQ0 andQI represent the initial and total capacity of the
battery, respectively.

4) AMT MODEL
For the AMT, both the clutch operation and gear selection
are automatically controlled by the control unit according to
the predefined procedure. However, the clutch torque with
nonlinear characteristics influences the vehicle drivability
during the slipping phase. The dynamics of the clutch can be
expressed as

Tc =


0, unlock
2Ncuc

(
R3 − r3

)
Pcsgn (1ω)

3
(
R2 − r2

) , slip

Ti, lock

(13)

where Tc is the torque transferred by the clutch, Ti is the AMT
input shaft torque, uc is the friction coefficient of the friction
plate, Nc is the number of friction plates, Pc is the pressure

of cylinder used to manipulate the disengagement or engage-
ment of the clutch. R and r are the outer and inside radius
of the diaphragm spring, respectively. 1ω denotes the speed
difference between the two sides of the clutch.

The AMT consists of two statuses, i.e., the engaged and
neutral statuses. When the AMT is in a neutral status, the
engine torque is isolated from the hybrid powertrain. There-
fore, the output torque of the AMT can be expressed as

Ta =

{
0, neutral status
Tcig (n) , engaged status

(14)

where ig(n) represents the current gear ratio.

III. ITERATIVE DYNAMIC PROGRAMMING-BASED
ENERGY MANAGEMENT STRATEGY
For a parallel HEV, energy management is a global optimiza-
tion problem whose objective is to determine the power dis-
tribution between engine and electric motor, minimizing fuel
consumption and emissions [24]. As well known, the engine
operating points should be concentrated in the high efficiency
region as much as possible, so that a sound fuel economy
can be achieved. Alternatively, the supernumerary dynamic
energy of the vehicle must be used to charge the battery to
improve the system energy efficiency. Moreover, the state
variables and control variables must satisfy the constraints
that are determined by the normal operation range of the
powertrain components. Hence, the energy management of
the hybrid electric bus can be converted into a class optimal
control problem with hard constraints, and its discrete-time
form is defined as

min J =
N∑
i=k0

L [x (i) , u (i) , i]

x (k + 1) = f [x (k) , u (k) , k] , k ∈ [k0,N ]

S.t.


x (k0) = x0
xmin ≤ x (k) ≤ xmax

umin ≤ u (k) ≤ umax

(15)

where J is the cost function, L is the instantaneous cost value,
u(k) and x(k) are control and state vectors, respectively, and
x0 is the initial value of the state vector.

A. ENERGY MANAGEMENT IN THE HYBRID
ELECTRIC BUS MODELING
Based on the vehicle configuration shown in Fig. 1, the
relationship between the coupling torque produced by the two
power sources and the drive torque can be formulated as

Tw =
[
Te · ig (nAMT)+ Tm

]
i0ηT (16)

where Tw is the drive torque (acting on the wheel), Te and
Tm are the engine and electric motor torque, respectively,
ηT is the transmission efficiency, i0 and ig(nAMT) are the gear
ratio of the final drive and AMT, respectively. According to
the vehicle dynamics equation, the drive torque can also be
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expressed as

Tw =
∑

F · rw

=

(
mgfr cos θ + mg sin θ +

1
2
CDAρv2 + δm

dv
dt

)
· rw

(17)

where rw is the wheel radius,m, g, θ and fr denote the vehicle
mass, gravity acceleration (9.8 m/s2), road slope and rolling
friction coefficient, respectively. v, ρ, CD and A denote the
velocity, air density, air drag coefficient and frontal area,
respectively. δ is the equivalent moment of inertia.
Once the vehicle acceleration is determined, the drive

torque of the vehicle can be assumed by (17) in advance.
Thus, only two variables should be chosen from (16) as the
control variables because of the causation relations between
them. Accordingly, the commands of the electric motor
torque and gear shifting are regarded as the control variables.
Besides, the accelerator pedal travel, brake pedal travel, vehi-
cle velocity, battery SOC and current gear status are used as
the input signals of the vehicle control unit. The independent
signals among them, including battery SOC and current gear
status, are taken as state variables. Consequently, the state
vector and control vector at phase k are defined as{

x (k) = {nAMT (k) , soc (k)}

u (k) =
{
nAMT_cmd (k) ,Tm_cmd (k)

} (18)

where soc represents the battery SOC, Tm_cmd is the torque
command of the electric motor, and nAMT_cmd and nAMT are
the gear shifting command and current gear, respectively.

Note that the optimization process for the power distribu-
tion must take consider the deviation in the battery SOC over
the entire cycle. The SOC balance problem is presented as
a hard constraint, which achieves a fair comparison between
different methods in simulation and avoids battery depletion
in real driving situation. Hence, the penalty function is intro-
duced, and the cost function is given by

J =
M∑
k=1

{∫ tk

tk−1
LC [x (t) , u (t) , t]dt + α |bCO (k)− BCO|

+β |bHC (k)− BHC| + χ
∣∣bNOx (k)− BNOx

∣∣}
+ δ [soc (M)− soc (0)]2 (19)

where M is the number of time stages. LC represents the
fuel consumption function. BCO, BHC and BNOx represent the
desired values for the brake specific emissions of CO, HC and
NOx, respectively. α, β, χ and δ are the weighting factors
for the corresponding terms. Moreover, some constraints are
fulfilled due to the operating range of the powertrain compo-
nents. The constraints are shown as
socmin ≤ soc (k) ≤ socmax

ωe,min ≤ ωe (k) ≤ ωe,max, Te,min ≤ Te (k) ≤ Te,max

ωm,min ≤ ωm (k) ≤ ωm,max, Tm,min ≤ Tm (k) ≤ Tm,max

(20)

where Te(k), ωe(k), Tm(k), ωm(k), soc(k) and represent the
engine torque, engine speed, electric motor torque, electric
motor speed and battery SOC at phase k , respectively.

FIGURE 6. Gear-shifting curves of the economy and dynamic schedule.

B. GEAR-SHIFTING STRATEGY CORRECTION
In this study, the gear-shifting strategy is mapped as a
lookup table of the vehicle velocities and pedal accelera-
tions, as shown in Fig. 6. The gear-shifting logic between
3 and 4 is taken as an example. The gear-shifting strategy,
divided into the economic and dynamic modes, is applied
to obtain the different performance. From Fig. 6, it can be
observed that the economical gear-shifting strategy tends to
downshift later and upshift earlier in comparison with that
of the dynamic gear-shifting strategy. Thus, the economical
gear-shifting strategy ensures an obvious improvement in the
fuel economy, while the vehicle drivability apparently deteri-
orated [25]. In addition, the same is true for the dynamic gear-
shifting strategy. The economical gear-shifting strategy will
be selected to obtain the best fuel economy, which results in
the deterioration in the drivability performance. To solve this
issue, an adaptive factor λ is introduced to correct the gear-
shifting strategy for achieving a good tradeoff between the
fuel economy and the drivability performance. The modified
gearshift points (the upshift point vua and the downshift point
vda) can be defined as{

vua = (1− λ) vu1 + λvu2
vda = (1− λ) vd1 + λvd2,

λ ∈ [0, 1] (21)

where vu1 and vu2 represent the economic and dynamic
upshift points, respectively. The parameters vd1 and vd2 rep-
resent the economic and dynamic downshift points, respec-
tively. The adaptive factor λ =1 represents the economical
gear-shifting strategy, and λ = 0 represents the dynamic gear-
shifting strategy.

In practice, the driver’s intention can be reflected by a
variation in the accelerator pedal. It is indicated that a large
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variation in the accelerator pedal in a short time is the goal for
vehicle drivability. Similarly, a small variation is the goal for
vehicle fuel economy. Alternatively, the influence of vehicle
acceleration on the gear selection of the AMT cannot be
ignored. Thus, the vehicle acceleration (aveh) and rate of
change in the accelerator pedal (αap) are two critical parame-
ters to determine the gear selection. In this study, fuzzy logic
control (FLC) is applied to obtain the value of the adaptive
factor for modifying the gear-shifting strategy according to
the driver’s intention. The aforementioned parameters with a
normalized value of [0, 1] are set as the input variables of the
FLC, and the adaptive factor λ is set as the output variable.
The membership functions (MFs) of the FLC input variables
and output variable are shown in Fig. 7. As shown, the ‘S’,
‘M’, and ‘B’ represent the small, medium and big input
value, respectively. The ‘S’, ‘MS’, ‘MB’, and ‘B’ represent
the small, medium-small, medium-big and big output value,
respectively. The FLC rules are shown in Table 2.

FIGURE 7. The membership functions (MFs) of the FLC.

TABLE 2. Fuzzy rules of the FLC.

Based on these definitions, the FLC is devised to dynam-
ically adjust the value of λ, and the block diagram of FLC
is shown in Fig. 8. As is well known, the center of the
gravity method is widely utilized for defuzzification in many
areas [26]. This method is also selected to apply in this study,

FIGURE 8. The block diagram of FLC.

and it can be expressed as

u =

∑
i gi
∫
ui∑

i
∫
ui

(22)

where u denotes the output value, gi represents the center of
the MFs as a consequence of the rules and ui is the value of
ith output level.
Here, the accelerator pedal αap can be determined by

αap =
Tw · Kmd (soc)
Ttol_m · i0

(23)

where Ttol_m denotes the modified total torque and Kmd( soc)
is the correction factor as a look-up table function of the
battery SOC. The correction factor Kmd( soc) is related to
the accelerating performance of the vehicle. When the battery
SOC is low, the discharging trend is suppressed and this
results in a decline of motor torque. Hence, this correction
factor is applied to dynamically adjust the parameter αap on
the basis of battery SOC. In Fig. 9, the curve with the purple
color represents the maximum torque of the electric motor,
and the curve with the green color represents the maximum
torque of the engine at the output side of the AMT.

FIGURE 9. The total torque at output side of the AMT.

C. SOLUTION OF THE ENERGY MANAGEMENT
FOR THE HYBRID ELECTRIC BUS
Compared with conventional approaches, dynamic program-
ming method can generate a globally optimal policy using
the recursive calculation, and it is suitable to address the
complex, nonlinearity and constraint problems. However, the
accuracy of theDPmethod is based on fine grids for variables.
For high dimensional problems, the DP method requires very
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FIGURE 10. Illustration of the iterative dynamic programming algorithm.

large amounts of memory space and calculation time, which
results in the curse of dimensionality. To solve this issue,
Luss [27] proposed iterative DP (IDP) method in 1990. The
iterative technology is applied to compensate for the error
incurred by variables discretization. Even the utilize of rel-
atively coarse girds for variables can also ensure achieving
the global optimum. The illustration of the IDP method is
shown in Fig. 10, and main steps can be summarized as
follows.
Step 1: The time interval [t0, tf] is divided into P time

stages with the same length L. In addition, the length L can
be calculated using

L =
tf − t0
P

(24)

Step 2: The number of allowable value for control vector u
denoted by N is chosen and N is odd. Then, an initial control
vector u0 is set at each time stage. Taking the initial control
vector u0 as the midpoint, N control trajectories are produced
at each time stage, represented by{

u0 ±
[

H
N − 1

]
· r i,H = 0, 2, 4, · · · ,N − 1

}
(25)

where r0 denotes the initial region size, and i represents the
iteration number index. Thereafter, N×P-dimensional matrix
of the initial control UN×P is available.
Step 3: The initial state vector denoted by x0 is chosen, and

the state vector with N × P dimensions (grid points for the
state vector) is produced by using the matrix UN×P, which is
integrated in the state equation.
Step 4: Starting at stage P, corresponding to time tf-L,

the performance index is calculated at each grid point for
the state vector by using the control vector; the differential
equations from tf–L to tf is integrated; and the control vector
that provides the minimum performance index to store u(P-1)
is selected.

Step 5: After stepping back to stage P-1, corresponding to
time tf-2L, the performance index in this stage is calculated.
In the event that the resulting state vector is not equal to
the above grid points for the state vector, the corresponding
control vector is chosen to calculate the performance index in
stage P, which is the closest neighbor to the above grid points.
Likewise, the control vector that provides the minimum per-
formance index from tf–2L to tf is selected to store u(P-2).
Step 6: The procedure is continued until stage 1, and the

best control vector in stage 1 is chosen to store u( 0). Hence,
the one iteration is completed.
Step 7: The region of the permissible control is reduced by

r i+1 = (1− ζ ) · r i (26)

where ζ is the region contraction factor. It is applied to reduce
the permissible control region during each iteration. Then,
the best control vector from step 6 is used as the midpoint.
Step 8: Increment the iteration index i by 1 and jump to

step 2. Continue the procedure for a specified number of
iterations and then check results.

FIGURE 11. The China typical city bus driving cycle.

FIGURE 12. The driver torque demand for the CCBC cycle.

As is noted in the preceding context, IDP still employs the
inversely recursive calculation to solve the optimal control
problem, which relies on prior and complete knowledge of
future scenarios. Considering the regularity of city bus routes,
vehicle velocity can be gathered in advance. Thus, the optimal
EMS for the hybrid electric bus can be obtained by the IDP
method. For the sake of simplicity, the China typical city bus
driving cycle (CCBC) is selected as the test cycle, as shown
in Fig. 11. The driver torque demand for the CCBC cycle is
shown in Fig. 12, which can be calculated according to the
vehicle parameters as listed in Table 3.

The entire CCBC cycle is discretized to 1315 stages during
the calculation process. The grid points for both nAMT_cmd
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TABLE 3. Parameters of the hybrid electric bus.

and nAMT are set to 5. It should be emphasized that zero
values for both the nAMT_cmd and nAMT represent the neutral
status of the transmission. Otherwise, the transmission is in
the engaged status. During the engaged status, the gear status
is dependent on the vehicle velocity and pedal acceleration
according to the gear-shifting strategy described before. The
grid points for both soc and Tm_cmd are set to 15. The contrac-
tion factor is selected to be 0.2, and the initial battery SOC is
set to be 0.55.

FIGURE 13. The fitness value over the CCBC of each iteration.

Fig. 13 illustrates the fitness value over CCBC of each
iteration. After 10th iteration, the fitness value converges to
the final value. Compared with the DP method while getting
equal accuracy, the number of memory space and computa-
tion time requirement for the IDP method are approximately
reduced by 7 times and 5 times, respectively. The calculation
results of the CCBC cycle are presented in Fig. 14. It can be
observed from the figure that the engine and electric motor
are coordinated to operate together during the entire cycle.
The engine is regulated to operate in a high-efficiency area,
and this will result in a reduction in both fuel consumption
and emissions. The fuel economy obtained by IDP approach
is 24.29 L/100 km, and the HC, CO and NOx production are
0.005 g/km, 1.612 g/km, and 3.257 g/km, respectively.

IV. REAL-TIME ENERGY MANAGEMENT STRATEGY
DEVELOPMENT BASED ON IDP-ANFIS
From Fig. 14, it is derived that the optimal control law from
the IDP minimizes the fuel consumption and exhaust emis-
sions. However, the obtained control law is associated with
the time horizon, which assumes that the deviation of actual
vehicle velocity to the reference value is unchanged. Actually,
the above control law cannot be implemented online because
of the uncertainty in the state at a definite time. Hence,
the ANFIS approach is proposed to fit the offline optimal
operating points as the control laws that provide guidance
for the real-time control. Taking advantages of both reasoning

FIGURE 14. Calculation results of the CCBC cycle. (a) Gear. (b) Electric
motor torque. (c) Engine torque. (d) Battery SOC and fuel consumption.
(e) Emission mass.

capabilities of fuzzy logic and learning capabilities of a neural
network, the ANFIS model based on the Sugeno fuzzy infer-
ence system is an effective method to model the relationship
between the input and target values [28], [29]. The general
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FIGURE 15. The ANFIS general architecture.

ANFIS architecture with four inputs is used to elaborate its
basic principle, and the demonstration is illustrated in Fig. 15.
As is well known, the fuzzy rules of Sugeno type can be
summarized as

Rule i: If x1 is Ai, x2 is Bj, x3 is Ck , and x4 is Dl ,
then fi = pix1 + qix2 + rix3 + mix4 + ni
where x1, x2, x3 and x4 are the input of the fuzzy model;

fi denotes the output of the fuzzy model; Ai, Bj, Ck and Dl
are the fuzzy sets; pi, qi, ri, mi and ni are the consequent
parameters.

In fact, the ANFIS is a fuzzy model that is configured in
the framework of an adaptive system. This structure achieves
the desired performance using learning and adaptation [30].
There are five layers in the ANFIS architecture. The nodes
in layers 1 and 5 represent the training and predictive values,
respectively. Other nodes in the hidden layers are functioned
as the membership functions and fuzzy rules. The parameters
in layer 1 called the premise parameters are associated with
the input membership function, whereas the parameters in
layer 4 correspond to a first-order polynomial. As a result,
layers 1 and 4 are the adaptive layers in this structure. The
modifiable parameters of layers 1 and 4 can be updated by the
learning algorithm to facilitate matching between the ANFIS
output and the training data. The output of each layer for the
ANFIS can be expressed as [31]

O1
i = uAi (x1)

O2
i = ωi = uAi (x1)× uBj (x2)× uCk (x3)× uDl (x4)

O3
i = ω̄i =

ωi
i∑

j=1
ωi

O4
i = ω̄ifi = ω̄i (pix1 + qix2 + rix3 + mix4 + ni)

O5
i = f =

j∑
i=1

ω̄ifi =

∑
i
ωifi∑
i
ωi

(27)

where O1
i , O

2
i , O

3
i , O

4
i and O5

i represent the output values
for the ith node in layers 1, 2, 3, 4 and 5, respectively.

The parameters uAi ,uBj , uCk and uDl represent the mem-
bership function of the linguistic label Ai, Bj, Ck and Dl ,
respectively. ωi denotes the firing strength of a rule for the
ith node and ω̄i denotes the normalized firing strength for the
ith node.

FIGURE 16. The multi-ANFIS model for real-time energy management of
the hybrid electric bus.

TABLE 4. The pass way for the ANFIS.

In this paper, multi-ANFIS networks are used to gener-
ate the control law. For each control variable, one ANFIS
is dedicated, leading to the architecture of the model as
shown in Fig. 16. Note that each ANFIS has the same input
including the vehicle velocity v, the driver’s demand torque
Tdem, the battery SOC, and the current gear status nAMT.
The output of the ANFIS#1 and ANFIS#2 are the electric
motor torque command Tm_cmd and gear-shifting command
nAMT_cmd, respectively. Here, a hybrid algorithm is selected
as the learning algorithm for the ANFIS, which consists of
the gradient descent approach and least squares method. The
pass way for the ANFIS is listed in Table 4, and the training
procedure can be summarized as [32]

1) When the premise parameters are fixed, the consequent
parameters are tuned in the forward pass using the least
squares method.

2) According to error signals of feedback, the gradient
descent approach is applied to update the premise
parameters in the backward pass with the fixed conse-
quent parameters.

The available training data sets are chosen from the optimal
results derived by the IDP method. Considering the normal
operating range for the battery, the data sets with different
initial battery SOCs ( soc= 0.45, 0.5, 0.6, 0.65) are applied to
train the ANFIS network, and the data sets with initial battery
SOC value of 0.55 are used to cross validate. The error in the
aforementioned training can be defined as

E =
1
N

N∑
k=1

(
fk − f ′k

)2 (28)
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where N is the number of the training data, fk and f ′k are the
desired and predicted values, respectively.

TABLE 5. Performance indices for the models.

Once the training procedure has been completed, the adap-
tive parameters are determined and remained unchanged. The
performance of the designed models is listed in Table 5.
The outputs of multi-ANFIS networks sufficiently match
the training data. The MSE and R-squared values of the
ANFIS#1 are 0.068 and 0.946, respectively. For ANFIS#2,
the values correspond to 0.093 and 0.921. It is clear that
multi-ANFIS networks with certain parameters can be imple-
mented for real-time energy management control of the par-
allel hybrid electric bus.

FIGURE 17. The simulation model for the hybrid electric bus.

V. RESULTS AND DISCUSSIONS
A. SIMULATION COMPARISON
To verify the effectiveness of the proposed method, the sim-
ulation model of the hybrid electric bus has been set up in
the MATLAB platform, as shown in Fig. 17. The simulation
model contains the hybrid powertrain model, the vehicle
dynamics model, the control module, and etc. The simulation
is executed on a computer with 8 GB RAM and 3.0 GHz of
i5 processor, and the initial battery SOC is set at 0.55.

Fig. 18 illustrates a comparison of the simulation and
reference velocities of the hybrid electric bus as determined
by the CCBC cycle. As shown in Fig. 18, the deviation in the
velocity is less than 3%, and it is indicated that the proposed
method can maintain the velocity to the reference value over
the entire cycle.

The simulation results over the CCBC cycle are shown
in Fig. 19. Under low-speed driving conditions, the electric
motor with the characteristics of a large torque output and
fast response can provide the total drive torque for the bus
running. With the assistance of the electric motor, the further
optimization of the engine operation point becomes possible.
As shown, the engine torque is basically greater than 200 N.m

FIGURE 18. The simulation velocity over the CCBC cycle.

FIGURE 19. The results of the hybrid electric bus over CCBC cycle.

with the speed exceeding 1000 rpm, which means that engine
operating points are almost distributed in the high-efficiency
area. It is indicated that the engine only provides the power
under a high load or highway driving conditions, which can
result in greatly improved fuel economy. In addition, the elec-
tric motor can function as a generator to sustain the battery
SOC level. Fig. 20 shows the battery SOC curve over the
CCBC cycle with an initial value of 0.55. It is clear that the
battery operates at a shallow cycle with small change in the
battery SOC. Therefore, the battery will be maintained in a
normal operating range without the formation of irreversible
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FIGURE 20. The curve of the battery SOC over the CCBC cycle.

damage, which is beneficial for improving the lifetime and
reliability of the battery.

FIGURE 21. The comparison of the fuel economy over the CCBC cycle.

For analyzing the control performance of the proposed
method, Fig. 21 provides the fuel consumption per hundred
kilometers for the hybrid electric bus with different meth-
ods. IDP is chosen as the benchmark for the comparison.
From Fig. 21, it is observed that the fuel economy obtained
by the IDP-ANFIS, rule-based method, IDP and ECMS are
25.22 L/100 km, 29.67 L/100 km, 24.29 L/100 km, and
26.15 L/100 km, respectively. It is clear that the IDP obtains
the lowest fuel consumption. However, this result is just
the theoretically optimal value, which provides the empirical
knowledge and evaluation criterion for other methods. Due
to excellent reasoning and learning capabilities, the IDP-
ANFIS is suitable to be utilized for the online control of
hybrid electric bus. When compared to the optimum, the fuel
consumption increment is approximately 3.83%. For the IDP-
ANFIS, the offline training will miss several optimization
values because of errors between the desired value and actual
value. As for the ECMS, the fuel consumption is determined
to a great extent by the equivalent factor. When compared to
the IDP, the ECMS achieves 7.65% increase in fuel consump-
tion. Furthermore, the rule-based EMS achieves the worst
value regarding fuel economy. In short, for the EMS based
on the IDP-ANFIS, the fuel consumption is much better than
that of both the ECMS and rule-based methods.

Fig. 22 illustrates the emissions results with different meth-
ods over the CCBC cycle. It is observed from Fig. 22 that
NOx and CO production are the major pollutants expended
into the air by the hybrid electric bus and have caused serious
harm to the atmosphere. Since diesel engine always operate in
oxygen-rich conditions, HC production is relatively low. For
the IDP-ANFIS, the HC, CO and NOx production values are

FIGURE 22. The comparison of emissions over the CCBC cycle.

0.009 g/km, 1.752 g/km, and 4.023 g/km, respectively. Like-
wise, the IDP-ANFIS achieves suboptimal emissions results
over the CCBC cycle.

B. EXPERIMENTAL RESULTS
To validate the feasibility of the EMS based on the IDP-
ANFIS, an experimental validation is carried out on the
hybrid electric bus over the CCBC cycle. The aforementioned
control strategy constructed in the MATLAB can be easily
converted into C code using the Targetlink tools for the
microcontroller programming. An exhaust acquisition device
is directly connected to the exhaust pipes of the vehicle,
as shown in Fig. 23(a). A freeway around the Yangcheng
Lake is selected as the testing route, as shown in Fig. 23(b).
The initial battery SOC is consistent with the simulation. The
experimental results are illustrated in Fig. 24 and Table 6.

FIGURE 23. The arrangement of the experimental validation. (a) Exhaust
acquisition device. (b) Testing route.

FIGURE 24. The fuel consumption curves over the CCBC cycle.

Even though the results do not exactly correspond with
the simulation results, they present the advantage of the
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TABLE 6. Experimental results for a comparison over the CCBC cycle.

FIGURE 25. Engine operating points over the CCBC cycle. (a) Rule-based
method. (b) IDP-ANFIS.

proposed method in comparison with other approaches. The
deviation can be attributed to two aspects: one aspect is over-
looking the instantaneous characteristic of the power sources
and the other is due to model error. As shown in Fig. 24,
the fuel consumption for the IDP-ANFIS is less than that
of the ECMS and rule-based method. Compared with the
rule-based method, for the ECMS, the reduction in the fuel
consumption is approximately 10.55%. Because the control
law produced by the ECMS based on an instantaneous state,
the accuracy is not guaranteed. Nevertheless, the IDP-ANFIS
achieves a 14.36% reduction in the fuel consumption. It is
indicated that the IDP-ANFIS renders better decisions for
the power distribution between the power sources, which
fully utilize both chemical and electrical energy. The HC,

FIGURE 26. The results of the hybrid electric bus over C-WTVC cycle.

CO, and NOx production for the rule-based method, ECMS
and IDP-ANFIS in units of gram per kilometer are described
in Table 6. Compared with the rule-based method, the reduc-
tion in HC, CO, and NOx are approximately 10.89%, 9.34%,
and 4.22%, respectively, for ECMS results. Furthermore,
the reduction in HC, CO, and NOx for the IDP-ANFIS are
2.57%, 3.35%, and 2.33% higher than the reduction using the
ECMS, respectively. It is demonstrated that the IDP-ANFIS
can also effectively reduce the emissions of the hybrid electric
bus to alleviate detrimental effects to the environment.

To further analyze why the proposed method can achieve
better fuel economy, the engine operating points with two
methods are drawn in Fig. 25. As shown, engine operat-
ing points in the high-efficiency area (be < 210 g/kW.h)
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TABLE 7. Experimental results over the C-WTVC cycle.

for rule-based method is approximately 20.8%. For the
IDP-ANFIS, the distribution proportion of operating points
is up to 45.1%. Consequently, it can be derived that the
IDP-ANFIS can achieve better fuel economy than that of the
rule-based method.

In addition, the proposed method is evaluated over a
section of C-WTVC cycle (0∼1153s) to verify its effec-
tiveness with respect to driving cycle changing. After train-
ing process, the multi-ANFIS with optimized parameters
presents the sound control performance. The results are
demonstrated in Fig. 26 and Table 7. The given velocity
can be tracked strictly, and the zero SOC change is also
achieved when the driving cycle is completed. Furthermore,
the fuel economy, HC, CO and NOx production of the pro-
posed method can be reduced by 15.96%, 19.33%, 10.37%
and 7.26% compared to that of the rule-based method,
respectively.

VI. CONCLUSION
This paper presented an EMS based on the IDP-ANFIS
with satisfied performance for a parallel hybrid electric bus
running in city bus route. The optimal control trajectories
over a specific driving cycle can be obtained by the IDP
approach. The gear-shifting strategy was corrected by the
FLC according to the vehicle acceleration and rate of change
in the accelerator pedal, which combines both economic and
dynamic gear-shifting strategies. Then, multi-ANFIS net-
works were designed and trained to learn the control law from
optimal trajectories obtained before. The results of the simu-
lations and experiments indicate that the control performance
using the IDP-ANFIS-based EMS is better than that of both
the ECMS and rule-based methods.
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