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ABSTRACT Aiming at the difficulty of extracting information for incipient fault symptoms from rolling
bearings with strong background noise, an improved incipient fault detection method based on modified
recursive least squares (RLS) adaptive equalization, and a local mean decomposition (LMD) algorithm is
proposed. First, an efficient RLS de-noising model is established by introducing a momentum factor together
with a forgotten factor to de-noise the incipient fault signal of the bearings. Then, the LMD algorithm is
used to decompose the pre-processed signal to obtain an effective PF component, and complete the envelope
demodulation to extract information from the incipient fault. Based on the above algorithm, an improved
RLS and LMD identifying algorithm for incipient faults can thus be achieved. Finally, some actual fault
signals of a large unit rolling bearing are used to simulate and verify the accuracy and efficiency of the
proposed algorithm. The experimental comparison indicated that our algorithm can not only improve the
de-noising effect, but also correctly extract the features of the incipient fault and identify them with good
engineering operability and expansibility.

INDEX TERMS Bearing mechanical signal, improved RLS, local decomposition algorithm, incipient fault
diagnosis, noise elimination.

I. INTRODUCTION

As one of the key components in mechanical equipment,
rolling bearings have been paid increasing attention by indus-
try and academia for safety monitoring. However, when an
exception, such as pitting or crack failure, occurs while bear-
ings are running, low amplitude bearing vibration accelera-
tion signals are always provided owing to the concealment
of unknown disturbances and noises. In terms of this phe-
nomenon, the fault features of the bearing vibration accelera-
tion signals are no longer obvious, leading to great difficulty
in monitoring bearing safety in the running state. Therefore,
aiming at the ambiguity of fault features for incipient fault
bearings, how to devise adaptive methods to extract fault
features in order to ensure accurate fault diagnosis and safety

monitoring has drawn much attention from scholars at home
and abroad [1]-[3].

In fact, fault features in the early stage are extremely
inconspicuous, as the incipient faults possess the charac-
teristics of concealment and randomness, making incipient
faults difficult to diagnose. To solve the aforementioned
problem, [4] proposed a multi-level incipient fault diagno-
sis method based on the PCA projection framework. This
method achieved good fault diagnoses results but limited the
noise to a Gaussian distribution by the PCA assumption,
which is not extendable for industrial systems in reality.
To eliminate the defect mentioned above, the reference [5]
used frequency domain ICA technology to realize the separa-
tion of the multi-dimensional vibration signals in the gearbox
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and combined the Morlet wavelet filter to obtain fault features
for the incipient faults. Although this method removed the
defects of the PCA, it simply ignored the temporal correla-
tions of the fault data. Reference [6] treated the features of
the fault signal extracted by discrete wavelet transform as the
input of the neural network and improved the incipient fault
diagnosis effect of the gearbox. Unfortunately, the method
in [6] overlooks the frequency distribution of fault signals
within the time domain and thus is not conducive to delving
deeper into the incipient fault feature information. Refer-
ence [7] designed a new continuous decision function for
the SVM classifier, which can not only identify the type of
faults but also monitor the severity of the fault. Incipient
fault detection technology based on SVM for solving small
sample, nonlinear and high dimensional fault pattern recog-
nition shows many advantages, but there is still a defect in
that the fault diagnosis accuracy depends largely on having
representative and complete fault samples. Although SVM
has good learning ability, it diagnoses the fault only from
the classification points and does not profoundly excavate the
structural information of the data. Owing to these defects,
existing bearing incipient fault diagnosis algorithms lack
adaptability and cannot meet the actual needs of the site
security environment.

To solve these defects mentioned above, the empirical
mode decomposition (EMD) algorithm has been proposed by
some scholars [8], where the incipient bearing fault vibration
signals are decomposed into the sum of multiple components
(MF) and residuals, and the time frequency distribution of
the signals is identified by the envelope spectrum analysis of
the components. Therefore, the EMD algorithm has greater
advantages and a high signal-to-noise ratio for addressing
nonlinear and non-stationary signal sequences. Because of
these advantages, the EMD algorithm makes up for the short-
comings of existing incipient fault diagnosis algorithms, such
as a lack of adaptability, and is widely used in incipient
fault diagnosis of mechanical equipment. However, the EMD
algorithm still has its shortcomings, such as mode confusion,
end effects, under envelope, and low decomposition accuracy.
To solve these problems, some scholars have constructed a
new adaptive local mean decomposition (LMD) algorithm
based on local signal scale parameters [9]-[11]. Thankfully,
the algorithm can adaptively decompose the signal into a
finite number of product function (PF) components and each
PF component is a single component AM-FM function that is
composed of an envelope signal and pure FM function. It is
noteworthy that the envelope signal represents the instanta-
neous amplitude information of the PF components, and fre-
quency components of PF components can thus be obtained
by the derivation of pure FM function directly.

The LMD algorithm can primarily make up for the short-
comings of EMD and effectively address nonlinear and non-
stationary signals, so it is widely used in the field of incipient
fault diagnosis. However, in practice, the bearing fault signals
are often obscured by background noise, which seriously
affects the accuracy of the LMD decomposition. This is
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because the LMD algorithm decomposes signals according
to the characteristic scale determined by the extreme points
of discrete signals. More precisely, due to the characteris-
tics of this algorithm, even low noise will impose a strong
negative impact on the decomposition and create obstacles
and difficulties to its implementation for incipient fault diag-
noses [12]-[17]. To weaken the effect of the strong back-
ground noise in the bearing vibration signals and extract
the feature information of the vibration signals precisely,
many de-noising algorithms have been proposed in recent
years, and good results have been achieved. Among existing
de-nosing algorithms, recursive least squares (RLS) algo-
rithm is widely used because of its fast convergence and
good de-noising effect. Unfortunately, the traditional RLS de-
noising method cannot guarantee the convergence speed and
stability simultaneously. In the past decades, some scholars
have proposed improvement as following. Reference [18]
has proposed an improved RLS algorithm which com-
bined the advantages of RLS algorithm and square root
Kalman algorithm with variable forgetting factor. In addition,
Reference [19] has proposed an improved RLS algorithm
which combined the advantages of RLS algorithm and LMS
algorithm to obtain a better stability when the convergence
is fast enough. Unfortunately, the tracking performance of
the fixed forgetting factor RLS algorithm didn’t satisfy
the real demand in certain degree. So, an improved RLS
algorithm was proposed by combining the advantages of
variable forgetting factor RLS algorithm and disturbance
RLS algorithm to improve the tracking performance in [20].
In fact, the improved algorithm may also overcome the imbal-
ance between tracking speed and parameter maladjustment.
Next, a further discussion was implemented for the dynamic
selection of forgetting factor dynamic selection in RLS algo-
rithm [21]. By recovering the system noise in the error sig-
nal of the algorithm, we dynamically calculated the value
of forgetting factor to solve the problem that traditional
RLS algorithm is difficult to take account of both steady-
state accuracy and parameter tracking ability. Although the
improvements mentioned above have solved the imbalance
between convergence and stability, the de-nosing effect is still
affected by noise because these algorithms merely refer to the
current time error. So, a new improved algorithm needs to be
proposed to solve the problems discussed above.

Based on the facts mentioned above, the layout of this
paper is organized as follows: First, the RLS algorithm is
improved by introducing a momentum term and variable
forgetting factor, and the improved RLS de-noising model
is constructed to improve the signal-to-noise ratio of the
incipient fault signals and weaken the interference of strong
background noise. Second, the bearing vibration signals
de-noised in the first step are subsequently decomposed to
PF component signals by means of the LMD algorithm.
In addition, an envelope signal demodulation model is estab-
lished based on the Hilbert transformation to obtain the fea-
tures of envelope spectrum signals. After the previous steps,
an improved model for incipient bearing fault diagnosis with
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strong background noise was achieved. Finally, a simulation
comparison of bearing fault vibration signals is constructed
to verify the effectiveness of the proposed algorithm.

Il. IMPROVED RLS DE-NOISING MODEL AND
ALGORITHM FOR BEARING VIBRATION SIGNALS

WITH STRONG BACKGROUND NOISE

A bearing vibration signal is a typical non-stationary pro-
cess signal, and it is the direct information source of the
actual engineering problems for bearing equipment, includ-
ing running state, fault monitoring, fault modes, and so on.
However, the vibration signals obtained in practical engineer-
ing inevitably contain strong background noise, which makes
the fault signal submerged, and thus, the fault features are
not obvious. In this context, taking an effective de-noising
algorithm to address the incipient fault feature signal is of
great theoretical and practical significance for incipient fault
identification and diagnosis.

However, we should note that the vibration signal de-
noising model must achieve both convergence and stability.
Therefore, the basic theory of the recursive least squares
(RLS) algorithm will be introduced later. On this basis,
an improved RLS de-noising model and algorithm was pro-
posed by introducing the momentum factor and variable for-
getting factor to ensure the convergence and stability of the
de-noising algorithm.

A. BASIC THEORY OF THE RLS ALGORITHM
To improve the convergence, an error measure function J(n)
and a weighting factor X (also called a forgetting factor) have
been introduced in the RLS algorithm, where n represents the
variable range of the data. Seeking the minimum sum of the
exponentially weighted squared error is the basic principle of
the RLS algorithm. The expression is described as follows:
n
Ty =) A" e M
i=0

Where e(n) is the error signal and the range of L is 0 < A < 1.
To improve the sensitivity of the adaptive equalizer to input
data, a new method A"~ has been introduced to distinguish
new and old data and assign corresponding weights.

The error signal e(n) in formula (1) is calculated as follows:

e(n) = d(n) — W(n)" X(n) = X (n)W (n) 2

Where the desired signal is expressed as d(n); the equalized
signal is represented as y(n) and y(n) = WT(n)X(n); the
weight coefficient W (n) and input signal X (n) are expressed
as follows:

X(n) = [x(n),x(n—1),....xn—M—DIT  (3)

W(n) = [wo(n), wo(n), ..., wy—1(n)] “
Where M is the number of tap coefficients of the adaptive
equalizer.

The inverse matrix is defined as follows:

1
Py (n) = X[PMM(n — 1) = KX (m)Pyum(n — 1] (5)

VOLUME 6, 2018

Where K (n) is known as the gain vector and is expressed as
follows:

Pyy (n — )X (n)
2+ XT()Pyp(n — )X (n)
The weight coefficient is updated according to the follow-
ing formula:

Kn) =

(6)

Wmn)=Wmn —1)+ K(n)e(n) @)

In conclusion, the steps for designing the RLS algorithm
are presented as follows:

Step 1: Set W(n) = [wo(n) wi(n), - -+, wy—1(n)] = 0 and
the inverse matrix Py as an M*M unit matrix to complete
the parameter initialization;

Step 2: When n = n + 1, the parameters are updated as
follows:

e(n) = d(n) — WT'X(n)
K Py (n — 1)X(n)
(n) =
A+ XT(m)Pyy(n — DX (n)
1
Pum(n) = X[PMM(” — 1) = KX (n)Pypr(n — 1)]
Wm) = W(n— 1)+ K(n)e(n)

Unfortunately, although the algorithm can address noise
mixed with vibration signals, to de-noise the vibration signal
under strong background noise, the convergence is slow and
stability is poor. Therefore, it is difficult to meet the demand
for incipient fault diagnosis with strong background noise and
it is a nontrivial problem to design an improved algorithm
based on the existing RLS algorithm to meet the actual needs.

B. AN IMPROVED RLS ALGORITHM WITH VARIABLE
FORGETTING FACTOR
In fact, the vibration signals of bearings are affected by many
factors, such as the testing environment, testing methods and
so on. As is well known, the characteristic signals amplitude
of incipient fault is low. Furthermore, the incipient fault
vibration signals contain strong background noise, so .the
characteristic signals amplitude of incipient fault is so low
that easily to be covered by background noise. In brief, strong
background noises have brought great obstacles for diagno-
sis of incipient fault. To solve this problem, in this paper,
an improved variable forgetting factor adaptive equalization
algorithm is proposed for de-noising incipient fault signals
with strong background noise, and the momentum is used to
ensure the convergence and stability of the algorithm.

The traditional improved RLS algorithm based on variable
forgetting factor is expressed as follows:

b(m+ 1)

M) = (m + elaetny T € ®)

Where the range of b and c is 0-1, a and m are constants.
However, there are still many defects in this improved algo-
rithm mentioned above. In formula (8), the updating of the
forgetting factor is only related to the current time error e(n),
which results in serious noise interference. To solve this
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problem, e(n)e(n — 1) is introduced to adjust the step size,
so that the step size is only related to the input signal; thus,
the influence of noise on the signal is reduced. The new
improved forgetting factor model is shown as follows:

N bm+ 1) 9
0= ot elavemeaT, T € ®
Furthermore, in order to improve the overall performance
of the algorithm and accelerate the convergence, the momen-
tum term is introduced to improve updating of the weight
coefficient, which is expressed as follows:

W) =Wm—1)+ Kmnen) + p(n) (10)

Where p(n) is known as the momentum term, which is
expressed as follows:

p(n) =r x (W(n) —Wn—1)) Y

Herein, r is called as momentum coefficient, and it is a
constant.

In conclusion, the improved RLS algorithm can not only
decrease the noise sensitivity but also improve the conver-
gence performance. It is precisely because of the improve-
ment mentioned above that the improved algorithm has the
advantages of fast convergence rate and small stabilization
error. Therefore, we can make use of the improved algorithm
to de-noise bearing vibration signals with strong background
noise, and finally realize the diagnosis and recognition of
incipient faults [22]-[25].

1Ill. A MODEL AND ALGORITHM FOR BEARING INCIPIENT
FAULT DIAGNOSIS BASED ON AN IMPROVED RLS
ALGORITHM AND LMD ALGORITHM

A. LOCAL MEAN DECOMPOSITION ALGORITHM (LMD)
The de-noised vibration signal y(#), which is equalized by
the improved RLS algorithm, is decomposed subsequently by
the LMD algorithm. The pure FM signal and the envelope
signal are isolated from the original signal by the LMD
algorithm and by multiplying the two phases to obtain a PF
component that is an instantaneous frequency with physical
meaning. The step mentioned above will be repeated until all
the PF components are separated from the original signal. For
arbitrary y(¢), the basic decomposition steps are designed as
follows:

Step 1: Determine all of the local extreme points N of the
original signal y(#) and compute the mean values of the two
extremes N; and N;4 1, i.e.,

_ Ni+Niq
2

Based on above result, the average values of all pairs of
adjacent extreme points /; are connected by a straight line, and
the moving average method is used for smooth processing.
Then, the local mean function /,;(¢) is finally obtained.

Step 2: Compute envelope estimation value a; by using
local extreme point N;.

IN;i — Nit1]
a4 =—
2

l; 12)

(13)
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Again, by using the moving average method, the envelope
estimation value is smoothed to obtain the envelope estima-
tion function ap;(?).

Step 3: The local mean function [,;(¢) is then separated
from the original signal y(¢), shown as below:

hyi(t) = y(1) — Lpi(1) (14)

Step 4: The demodulation of the envelope estimation func-
tion ap;(t) is obtained by the following formula:

$pi(t) = hyi(t)/api(t) 15)

Step 5: The envelope signals are obtained by multiplying
all the envelope estimation functions generated in the iterative
process and the formula is expressed as follows:

L
ap(t) = ap (Dap()...ap () = [ [ap)  (16)
g=1

Step 6: The pth PF component of the original signal can
be obtained by multiplying the envelope signal a,(t) with the
pure frequency modulation signal sp;(t) and is expressed by
following formula:

PF,(1) = ap(t) * spi(t) (17)

Obviously, the PF components contain the highest fre-
quency component of the original signal, which is the ampli-
tude modulation and FM signal of the single component,
where the instantaneous frequency can be obtained by the
following formula:

2 dt

Step 7: Similarly, the original signal is decomposed into
many PF components and can be expressed as follows:

f@ = (18)

k
Y6) =Y PFy(t) + w(t) (19)

p=1

Obviously, the original signal can be decomposed into
many PF components by the LMD algorithm, and then the
incipient fault diagnosis can be carried out.

B. A NOVEL MODEL AND ALGORITHM FOR INCIPIENT
FAULT DIAGNOSIS OF BEARINGS

Based on the above analysis, combining the improved RLS
noise elimination model with the LMD algorithm, the design
of the incipient fault diagnosis algorithm for rolling bearings
with strong background noise can be expressed in detail as
below:

Step 1: The de-noised incipient fault vibration signal x(¢)
of the rolling bearing is obtained using the improved RLS
de-noising model. Thus, the equalized signal y(¢) is obtained;

a) Training stage: the optimal weight coefficient W can be
obtained by using (2) - (7) to train the weight coefficients of
the adaptive equalizer;
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Initialize the equalizer weight coefficient matrix
and assign the length and regularization factor

v

error signal is obtained to update weight
coefficient and step factor

training length is achieved?

The vibration signal of the bearing is equalized and
denoised by means of the weight coefficients
obtained by training

v YES
The local extremum and its mean value of the
denoised bearing vibration signal are obtained

!

obtain the PF components

The Hilbert transformation of the PF
component is used to obtain the
envelope spectrum

s the frequency at the peak of the envelope
spectrum approximately equal to k*162?

NO

Not inner race

Inner race fault
fault

End

FIGURE 1. Fault diagnostic flowchart.

FIGURE 2. Bearing vibration data acquisition device.

b) Equalization stage: the optimum weight coefficient W
obtained by the training stage is used to carry out equalization
and noise elimination for bearing vibration signals.

Step 2: The de-noised signals are decomposed by LMD,
and a series of PF components and their instantaneous ampli-
tudes (i.e., envelope signals) are obtained.

a) All the extreme points N of the equalized and de-noised
signal are obtained by using (12), and then the local mean
value 1,;(¢) is calculated; the local mean value is separated
from the original signal to obtain ;(?) by using (14);
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FIGURE 3. Bearing vibration inner race fault.

b) In terms of (13) - (16), the envelope value a; is obtained
and the envelope mean value a,;(¢) is obtained by smoothing
the envelope value. The envelope signal a,(¢) is obtained by
multiplying all the envelope mean values, and the pure fre-
quency modulation signal s,;(¢) is obtained by demodulating
the envelope mean values;

c) The pure frequency signal and the envelope signal are
multiplied, and the component can be obtained by using (17);

d) Repeat steps 1-2 until the signal can no longer be decom-
posed, and the final decomposed result is expressed as (18).

Step 3: The envelope signal is demodulated by using the
Hilbert transformation, and then the envelope spectrum is
obtained according to the analysis of the frequency spectrum.
Based on this, the fault diagnosis can be carried out based on
the peak frequency displayed in the envelope spectrum. If the
peak frequency of the envelope spectrum is approximaely K
times the characteristic frequency, the inner circle fault can
be diagnosed; if not, it is not an inner circle fault.

The fault diagnostic flow chart is shown as Figure 1.

IV. PERFORMANCE ANALYSES

To verify the effectiveness and reasonableness of the designed
algorithm, the standard data of the bearing database from
American Case Western Reserve University is adopted as the
experimental object [26]. In this database, the fault diame-
ter of bearing inner race fault including » = 0.1778 mm,
r = 0.3556 mm, r = 0.5334 mm, r = 1.016 mm. According
to the related knowledge, the smaller the fault diameter is,
the smaller the corresponding characteristic amplitude is, so it
can be considered to be an incipient fault. Therefore, the drive
end bearing inner race fault data named ““105_IR007_0.mat”
is regarded as the incipient fault data source, which con-
tains a total of 121,256 data, where the sampling frequency
of the data is f = 12 K and the bearing rotation speed
v = 1797 rpm, whereas the fault diameter and the char-
acteristic frequency of the inner fault are r = 0.1778 mm
and 162.1852 Hz, respectively. The characteristic frequency
is obtained as following formula.

f = (D x RPM)/60
= 5.4152 x 1797/60
= 162.1852 (20)
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FIGURE 4. (a) Adaptive equalization algorithm error curve. (b) Superimposed noise signal. (c) Signal after noise
reduction. (d) Superimposed noise signal spectrum. (e) Signal spectrum after noise reduction.

Bearing vibration data acquisition device and bearing inner
race fault shown as Figure 2 and Figure 3.

First, noise is added into the original signal to simulate the
incipient fault signal with strong background noise, which is
provided with inconspicuous fault features. Second, in order
to highlight the fault feature, the improved RLS algorithm is
used in adaptive equalization de-noising. Finally, the equal-
ized signal is decomposed by the LMD algorithm, and the
fault diagnosis results are obtained according to the analysis
of the envelope spectrum.

A. IMPROVED BEARING INCIPIENT FAULT SIGNAL RLS
NOISE CANCELLATION ALGORITHM VALIDATION

To test the effectiveness of the improved algorithm, the tra-
ditional adaptive equalization algorithm is carried out in the
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simulation. In the traditional RLS algorithm, the length of
the training data is 100, the regular factor is 0.001, and the
forgetting factor is 0.89. In the improved RLS algorithm,
b =02 c¢c =08 m=140,r = 2, and a = 40. The
simulation results are shown as Figure 4.

Figure 4(a) illustrates both the error curves of the tra-
ditional and improved RLS algorithms. It is obvious that
the convergence of the traditional RLS algorithm is slower
than the improved RLS algorithm, and the stability of the
improved RLS algorithm is not affected. Figure 4(b) indicates
the incipient fault vibration signal with strong background
noise, whereas Figure 4(c) shows the equalized results of
Figure 4(b). Comparing Figure 4(b) and 4(c), we can find that
the signal before equalizing was almost drowned by noise,
so the equalized signal almost overlaps the original signal.
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de-noised by improved RLS.

A conclusion can be obtained from the comparison, namely,
the de-noising effect is preferable. Figure 4(d) and 4(e) show
the frequency spectrums of signals with strong background
noise and the equalized signal, respectively. Compared to the
noisy signal spectrum, the impact signal (the noise signal
is shown as a shock signal) in the equalized incipient fault
vibration signal spectrum greatly decreased. As we know,
the fault feature signal is almost shown as an impact signal,
so strong background noise brings great challenges to the
incipient fault diagnosis and affects the accuracy. Therefore,
de-noising is an essential step in incipient fault diagnosis.
After de-noising by the improved RLS algorithm, we find
that the peaks of the frequency spectrum greatly decreased.
More importantly, equalizing noisy signals can eliminate the
interference brought by strong background noise to highlight
the fault feature and greatly improve the signal to noise ratio
of the incipient fault signal, which is conducive to further fault
diagnosis.

B. INCIPIENT FAULT DIAGNOSIS VERIFICATION BASED
ON THE RLS AND LMD BEARING ALGORITHM

The LMD algorithm is an effective method for addressing
nonlinear signals. Using the LMD algorithm to decompose
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the vibration signal, and then using the Hilbert transforma-
tion to obtain the envelope spectrum, can show the fault
characteristic frequency effectively for bearing incipient fault
diagnosis. The simulation results are shown as Figure 5.
Figure 5(a) shows the results of LMD decomposition.
According to correlation analysis, envelope demodulation
of the first two PF components, PF1 and PF2, will be
obtained by the corresponding algorithm and applied to
the diagnosis, and then envelope spectrum analysis will
be carried out. Figures 5(b) and 5(c) show the envelope
spectrum of a signal with strong background noise. Fig-
ures 5(d) and 5(e) show the envelope spectrum obtained
by LMD decomposition after the signal is de-noised by
the traditional RLS algorithm. Figures 5(f) and 5(g) show
the envelope spectrum obtained by the LMD decomposi-
tion after the signal is de-noised by the improved RLS
algorithm. Comparing Figures 5(b), 5(d), and 5(f), we can
find that the fault characteristic frequency of the envelope
spectrum obtained by the traditional RLS de-noising algo-
rithm combined with the LMD algorithm is more obvious
than that only obtained by the LMD algorithm. But, we can
discover that the traditional RLS algorithm has eliminated
useful information while eliminating noise. Again, the fault
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PF2 envelope after denoising by traditional RLS
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FIGURE 5. (Continued.) (a) LMD decomposition signal. (b) PF1 envelope spectrum with noise. (c) PF2 envelope spectrum
with noise. (d) PF1 envelope spectrum of signal de-noised by traditional RLS. (e) PF2 envelope spectrum of signal
de-noised by traditional RLS. (f) PF1 envelope spectrum of signal de-noised by improved RLS. (g) PF2 envelope spectrum

of signal de-noised by improved RLS.

characteristic frequency of the envelope spectrum obtained
by the improved de-noising RLS algorithm combining with
the LMD algorithm is more obvious than the traditional de-
noising RLS algorithm combining with the LMD algorithm.
More importantly, the improved de-noising algorithm has
kept the useful information to the maximum while eliminat-
ing noise. From Figure (f), we can clearly see that there are
obvious peak values of at fy = 80.85Hz in the envelope spec-
trum of the PF1 component, and in 2 and 3, the doubling rate
also has an obvious peak. Equally, from Figure 5(g) there are
several peak values at the fault characteristic frequency, but
it is not obvious. In conclusion, the characteristic frequency
has shown in the figure accords with the frequency of bearing
inner ring incipient faults, which is equal to 162.1852HZ,
so the simulation results can accurately react to the 12K drive
end bearing inner race faults.

V. CONCLUSION

As we know, there are great difficulties in diagnosing bearing
incipient faults since the fault features of the bearing fault
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signal with strong background noise are weaker. To solve this
problem, an improved bearing fault diagnosis algorithm is
proposed based on the combination of improved RLS and
LMD. First, an improved RLS algorithm with a variable
forgetting factor is proposed, and the incipient fault signal
of the bearing with strong background noise is used to verify
the validity of the improved algorithm. The simulation results
illustrate that the improved RLS algorithm has faster conver-
gence speed with little influence on stability, and the effect
of reducing background noise is obvious. Second, the LMD
algorithm is used to decompose the signal that is equalized
by means of the improved RLS algorithm. The envelope of
the decomposed signal is demodulated by the Hilbert trans-
formation to obtain the envelope spectrum. The experimental
results show that the LMD algorithm can adaptively be used
to decompose the de-noised incipient fault vibration signals
of bearings, and the frequency components of the fault fea-
tures can be accurately and effectively separated. Through the
comparison and analysis of bearing incipient fault diagnosis
results, it was noticed that in the traditional fault diagnosis
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model, there still are interferential impact components, result-
ing in ambiguity of features of the bearing incipient fault
to some extent, and it is not conducive to the diagnosis of
incipient faults. A cooperative incipient fault model based on
RLS and LMD is constructed in this paper, and the diagnosis
results obtained by the incipient fault model can clearly react
to characteristic frequency peaks and absolutely ensure the
efficiency and accuracy of bearing incipient fault diagnosis
under strong background noise. But in this bearing incipient
fault diagnosis model, the characteristic frequency in the
envelope spectrum of the PF2 component is not obvious. This
improvement will be done in the next step.
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