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ABSTRACT The work presented in this paper relates to the conceptual definition, simulation, and perfor-
mance analysis of a novel, 3-D graph theory-based routing algorithm. The proposed router is designed to
provide path planning with deconfliction, i.e., collision avoidance with other moving objects, for unmanned
aerial vehicles (UAV) applications in general and autonomous UAVmissions in particular. Thus, novel ways
for ‘‘sampling’’ 3-D operating spaces containing hazard areas and other moving objects are presented. The
router operates in a way that conforms to the commonly observed behavior of aircraft flying over relatively
long periods of time at constant speed and barometric height. Thus, flying is restricted to a number of possible
altitude bands, where changes in altitude and/or direction are restricted to values that ensure excessive
airframe stress is avoided. The paper attaches considerable emphasis on algorithmic complexity reduction
and develops a novel, adaptive, graph search scheme. The proposed router can also be used to support
manned aircraft operation, both for pre-flight planning and during the mission as a pilot aid. Computer
simulation results are indicative of a routing systemwhich generates realistic flyable routes while algorithmic
complexity is suppressed.

INDEX TERMS 3D UAV routing, adaptive cost function, deconfliction, dynamic graph-theoretic search.

I. INTRODUCTION TO UAV ROUTING
Mission planning in Unmanned Aerial Vehicles (UAVs)
requires the identification of a route from base to destination,
a route that balances operational factors like flight time, fuel
consumption and risks resulting from hazard areas and other
flying objects. The work presented in this paper relates to the
conceptual definition, simulation and performance analysis
of a novel, graph theory based routing algorithm which is
designed to provide path planningwith deconfliction for UAV
applications in general and autonomous UAV missions in
particular. The term ‘deconfliction’ refers to changing the
flight path in order to avoid a collision.

At an abstract level there are two possibilities for invok-
ing path planning [1], [2]. First, a route is determined at
the control or base station, using appropriate routing algo-
rithm(s). This is often referred to as global or static route
planning. Second, on-board route planning is needed dur-
ing flight time, that is able to take into consideration all

the latest task/mission related information, in which case
local/dynamic route planning is employed.

Thus global routing i.e. from starting location to desti-
nation encompasses solutions using a-priori known mission
related information. These route plans are generally of high
quality (in an optimization sense) since route plans are pro-
duced off-line and there are no severe algorithmic complexity
constraints. However during a real world scenario mission,
the environment often changes with time and this necessitates
‘‘local routing’’ to be performed. Local routing operates on a
much smaller scale, as compared to global routing and often
requires less information since only part of the whole mission
related environment is considered (see for instance [3]). Local
planning is also dynamic in nature as information is gathered
in real time and the remaining part of the route is optimized
accordingly.

Another interesting feature in UAV path planning is
Collision Avoidance (CA). Note that the success of
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FIGURE 1. A general path planning system design approach.

UAV collision avoidance depends on minimizing UAV
response times, since CA is viewed as a ‘‘last resort’’ action.
From a globalmission planning point of view, collision avoid-
ance is a different ‘‘much longer term’’ issue and one that can
be better described as Deconfliction.

Now, the design approach taken in vehicle (including aerial
vehicles) path planning often depends on the application
under consideration e.g. surveillance, fire fighting, rescue
missions. In general however there are some basic building
blocks and a possible, simplified, way to represent the process
of route planning is given in Figure 1.

‘‘Current world state’’ (CWS) includes the current position
of the vehicle, goal (destination) location and all the static and
moving objects and hazard areas in the relevant environment.
Given CWS, path planning algorithms generate path(s) which
are then refined according to UAV characteristics and nature
of application. For example, in the case of aerial vehicles,
the derived path must comply with the kinematic characteris-
tics and constraints of the specific vehicle. Note that in some
cases path refinement is effectively an integral part of the path
planning algorithm.

The remaining sections of this paper are organized as
follows. A review of route planning methodologies is pro-
vided in section II. The proposed novel 3D Routing algo-
rithm which ensures deconfliction with moving objects is
presented in section III. Emphasis is placed on its graph
theoretic implementation intricacies, which are specified in
a way that favours fast solutions for real time routing in
dynamic environments. Section IV deals with the Heuristic
component of the cost function used in the path optimization
search. Section V presents experimental results and examines
system complexity with respect to i) system parameters and
ii) the complexity of the given operating environment (world
state scenario). Furthermore, complexity reduction and thus
fast operation is the main driver behind the introduction
and application of a novel adaptive heuristic cost scheme
that is discussed in section V. Conclusions are presented
in section VI.

II. REVIEW OF ROUTE PLANNING METHODS
Numerous route planning techniques have been proposed
in the literature and these can be classified according
to their Discrete [4]–[7] or Continuous representation of
the operating environment (space) [8]–[10], see Figure 2.
In turn this representation often influences the Discrete or
Continuous nature of the path finding (optimization) method-
ology used to define one or several candidate routes

FIGURE 2. Route planning techniques in terms of operating space and
optimization methodology characteristics.

(see for instance [11]–[13]). Furthermore, resulting routes
must be traceable by the specific UAV under consideration
and therefore a route post-processing scheme often follows
that produces a ‘‘realistic’’ and ‘‘traceable by theUAV’’ route.

Initially path/route planning research was conducted in
the field of ground or two dimensional (2D) robotic sys-
tems, see [14], [15] and many of the routing techniques
currently used in various UAV applications are based on such
2D related work. Vian andMoore [8] and Hebert [16] applied
these robotic path planning concepts to aerial vehicles. Path
planning for under water autonomous vehicles is presented
in [17]–[19]. Furthermore, ground based robotic path plan-
ning concepts also have been applied to space applications;
see for example [20], [21].

Commencing with Discrete space representations, a 2- or
3-Dimensional environment can be modelled by uniformly
sampled 2- or 3-Dimensional grids. For instance, in [22],
a world modelling technique is adopted in which the environ-
ment is represented by a 3D cubic grid. This technique can
be used for route planning and although in this case only a
static environment is considered, the method can be modified
to operate on applications involving dynamic environments.
This 3D cubic grid technique is based on earlier 2D grid
models given in [23] and has been applied in robotics related
route generation, see [24], [25]. In these techniques, grid
nodes are classified as ‘‘free’’ or ‘‘occupied’’ and a Discrete
route that consists of free nodes is then defined according
to a) simple and predefined node to node motion rules and
b) a search process that yields a minimum cost route solution.

In general and for Discrete or Continuous environment
type of routers, motion rules may relate to one or a combi-
nation of the following cases:
(i) UAV kinematic characteristics,
(ii) simple rules relating to allowable directions of motion,

provided that route deconfliction with moving/static
objects or hazard areas is observed and

(iii) simple rules based on the distance from objects and
hazards.

VOLUME 6, 2018 21537



S. Razzaq et al.: 3-D UAV Routing With Deconfliction

Type (i) UAVmotion specific characteristics are employed
usually in continuous environment type routers whose design
is based on control theory [26]–[28]. Continuous optimiza-
tion methods seek an optimal route by defining one or more
continuous path curves using a system of nonlinear equa-
tions, see [16], [29]. Here, the application of continuous path
finding models is considered under multiple optimization
constraints and the routing problem is reduced to one of
solving path integrals.

Note that Discrete environment routing schemes often
employ relatively simple sequential, feed-forward route for-
mulation techniques which cannot backtrack and thus are
unable to reconsider other route options. This limitation,
although key for achieving low algorithmic complexity, gives
rise to suboptimal route solutions. Path formulation schemes
which allow backtracking and generate a plethora of possi-
ble routes are often combined with efficient route optimi-
sation/selection algorithms. Typical here are graph theoretic
based routers and associated optimization techniques [30]
with the A∗ (A star) search algorithm [31], [32] being opti-
mal and many other sub-optimal methods [33]–[35] offering
computationally efficient path solutions.

Naturally, alternatives to graph theoretic optimization tech-
niques can be used and evolutionary optimization algo-
rithms have been employed in path planning and collision
avoidance in [36]–[38]. The use of evolutionary algorithms
for path planning can also be found in [39]–[42]. Another
example is integer linear programming [43]. Mixed inte-
ger programming is also implemented for path optimization
in [44]–[47].

Furthermore motion rules adopted for route formulation
may include a degree of randomness [48]–[50]. Follow-
ing this concept, a random tree search approach is used
in [51], [52] where new tree branches are selected randomly.
ARapidly-exploring RandomTree (RRT) based routing algo-
rithm has been applied to UAV path planning in [53]. Posi-
tional uncertainty as related to cells of hazardous areas is dealt
in [54]. Uncertainty related to cells being free or occupied is
taken into consideration in [22] and [23].

Note that the novel routing work presented in this paper is
Discrete in terms of both a) its modelling of operating space
and associated type (ii) of motion rules and b) its route finding
optimization process.

A typical example of type (iii) motion characteristics,
which can be used in conjunctionwith Continuous or Discrete
environments, employs a ‘‘potential field’’ representation of
the operating environment. At each point the field poten-
tial is the sum of an attractive and repulsive force with the
attractive force being proportional to distance from destina-
tion and the repulsive force being inversely proportional to
the nearest obstacle or hazard area [55]. The method may
not work properly if arc shaped obstacles are present in
the environment and modifications have been introduced in
order to enhance performance and reduce computational cost,
see [56]. A variation of this scheme is presented in [57] in
conjunction with genetic search algorithms. Also a potential

field based algorithm is proposed in [58] and used to control
a multiple UAV mission and path planning.

Returning back to Discrete space type of routers, the UAV
operating space can be divided uniformly or non-uniformly
into cells which in turn are classified as free or occupied.
Cells including part(s) of obstacles or hazard areas aremarked
as occupied whereas remaining cells are marked as free.
Possible routes then pass through adjacent free cells. Thus a
search (optimization) algorithm can be applied that examines
possible routes and determines a minimum cost route which
passes through adjacent free cells. When cells are made
strictly non-overlapping, the method is called Exact Cell
Decomposition. There are also examples of routers where
the non-overlapping condition is relaxed, see [59], [60], and
where the Discrete environment representation is the Octree
scheme. 2D Quadtrees [61] and Octrees [62] can be used to
produce distance based cost maps and corresponding mini-
mum cost path(s). This approach is different from the previ-
ouslymentioned cubic gridmethods [22] in that a hierarchical
structure is used to represent the environment effectively at
multiple resolutions. The technique is relatively computation-
ally efficient as it allows the route to be calculated relatively
quickly over large and ‘‘free from objects’’ segments of the
environment. Note that the environment under consideration
is assumed to be static in [61] and [62] but the general
Octree/Quadtree approach can be extended in principle to
operate in dynamic environments [63].

In addition to the above techniques, alternative route plan-
ning schemes based on Discrete, non-uniformly modelled
environment (problem) spaces have been proposed. The Road
Map methods of modelling the environment are typical of
such schemes. They are based on a network of straight lines
connecting the ‘‘start’’ and ‘‘destination’’ (or goal) locations,
with lines not intersecting obstacles and hazard areas. Exam-
ples include ‘‘Visibility’’ graphs and ‘‘Voronoi’’ diagrams.

Visibility graphs [64] generate a line of sight route through
a given environment. The route is formed by a connectivity
graph network. Obstacles and hazard areas are represented by
vertices and only visible vertices, in the sense that each vertex
can be seen from the other, are included. A graph search opti-
mization algorithm is often employed to find an appropriate
route from start to goal (destination) passing through vertices.
Note that such methods may not be appropriate in safety
critical applications since the route includes the vertices of
‘‘high risk’’ hazardous areas.

Voronoi diagrams [65]–[69] compute a network of line
paths within the specified environment with straight line seg-
ments in 2D (or planes in 3D) located at the middle distance
between hazard areas. Given this network of interconnecting
segments, an appropriate and often graph based path search
algorithm follows which yields a minimum cost route. How-
ever Voronoi diagram based schemes are in principle inca-
pable of trading-off hazard related risks with respect to route
length. Note that most of the reported work using Voronoi
diagrams is based on 2D diagrams and corresponding route
solutions.
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Finally trajectory based path planning methods have been
proposed in [70] that involve spatial Dubins paths. Shan-
mugavel used Pythagorean hodographs and 2D clothoids
for trajectory based planning [71]. Also, simple trajec-
tories have been used in robotic applications in [72]
and [73] and the authors in [74]–[76] used Dubins paths
in aerial centered applications. Parametrically described
trajectory curves have been employed in path plan-
ning and within a discrete optimization framework,
in [41] and [77].

III. THREE-DIMENSIONAL ROUTING ALGORITHM WITH
DECONFLICTION (3D-RAD)
For an unmanned air vehicle (UAV) to operate in a dynamic
environment safely and autonomously of a ground controller
(whether by design or circumstance) the aircraft will require
an ability to operate within a sense-plan-act type of loop
framework, in order to adapt and modify its route plan in a
three-dimensional space independently of any ground station
support or supervision.

The plethora of path planning techniques presented in
section II is indicative of considerable variability in terms
of applications and also ensuing limitations, which often
characterize such techniques, and thus of the need for
improvements. Continuous models which use mainly vari-
ational calculus are complex and time consuming. Discrete
solutions have the potential to offer high quality, minimum
cost routes, but as the size of the problem (search space)
grows, they can become computationally very expensive.
An approach is therefore required that offers viable trade-offs
between computational complexity and ‘‘acceptable for the
application domain’’ route plans on one hand and a deconflic-
tion capability on the other. Deconfliction here relates to a rel-
atively long term route planning capability which in addition
to negotiating static hazard areas, can also deal with moving
objects. A novel 3D-RAD which is underpinned by informed
graph theoretic search concepts is therefore presented in this
section.

A. GENERAL INFORMED GRAPH THEORETIC APPROACH
The routing problem can be stated in geographical notion as:
to produce a route between two points in space defined by
their latitude, longitude and altitude, while using a ‘‘field’’ of
values that defines the ‘‘cost’’ of moving between any two
points. The required route is the one that satisfies some set
of pre-defined constraints whilst at the same time minimiz-
ing the total cost of traversing the route. Thus the resulting
three-dimensional route is defined by a set of points, again
represented by latitude, longitude and altitude, which define
the required route as a series of segments or ‘‘legs’’. Note that
more dimensions may be added to the time- space compo-
nents representing a routing solution e.g. tolerance windows
with respect to distance and time of arrival to route points and
destination nodes.

In general, the first step when applying a graph the-
oretic search technique to a continuous search space

problem is to sample the space in order to produce
a set of discrete sample points; this sampled space is
then searched to find a route between the start and
goal points that meets mission requirements. Sample
points (or nodes) Nj are thus defined as Njlat, lon, alt
where:
• lat is the latitude of the sample point (North
positive)

• lon is the sample point longitude (East positive)
• alt is the altitude of the sample point
Pairs of nodes (points) in this sampled search space

can be joined by edges; a list of edges (i.e. node pairs)
defines node connectivity of a possible route and there-
fore the following information is required by the search
process:
• a list of nodes N (lat i, loni, alt i)
• a list of edge connections between possible route
nodes,

• a cost function; the way the cost function is calculated
allows for route deconfliction between the UAV and
moving hazards

• a start node and
• a goal (i.e. destination) node
The proposed system employs an A∗ type Graph-Theoretic

search technique that effectively determines an ordered node
list i.e. a route from the start to goal node. A∗ search
is an informed best-first search algorithm that reduces
the number of graph nodes to be explored by the search
process, using an appropriate application specific cost
function f(N).

The value of the cost function at each node Nj is:

f
(
Nj
)
= g

(
Nj
)
+ h

(
Nj
)

(1)

where g(Nj) is the actual cost attached to a path
N1,N2, . . .Nj connecting the start node N1 with node Nj and
h(Nj) is a cost estimate of getting from node Nj to the goal
node.

Providing this estimate is a lower bound on the actual
cost, then the route produced is guaranteed to have the low-
est cost function value of all possible routes and is, in this
sense, optimal. This estimate of the cost between the current
node and the goal (the heuristic) is thus used to focus the
search.

Very briefly, the A∗ algorithm [31] starts by examining
each ‘‘valid’’ node directly connected to the start node. For
each of these nodes (its child nodes – the successor set) it cal-
culates the cost {g(N)} of moving to that node and the heuris-
tic value for that node {h(N)}. This set of nodes is retained
(and called the OPEN set). The node in the OPEN set with the
lowest value of f(N) is then selected (the new parent node),
removed from theOPEN set and expanded (i.e. its child nodes
identified) to produce its successor set which is then added to
theOPEN set. The best node in theOPEN set (i.e. the onewith
the lowest value of f( ) is again selected, removed from the
OPEN set and expanded. The process repeats until either a)
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the goal node or b) a node sufficiently close to the goal node is
reached.1

Note that each child node maintains a record of those zone
labels that have caused the chosen route to be different to
a direct path from parent to goal; these records are then
used to annotate the final route nodes with the reasons for
this particular node choice. Also note that node expansion
is applied within the UAVs operational space which often
contains ‘‘zones’’ of hazard areas and moving objects to be
avoided, the later type is included due to the deconfliction
requirement. Most of the underlying calculations are made
using NED coordinate system after applying geodetic to
NED transformation. The resulting route nodes are trans-
formed back into geodetic form.

The definition of the cost field, how nodes are expanded
and validated and the way the heuristic is calculated are dealt
with in the following sub-sections.

B. ALGORITHMIC DETAILS
1) EXCLUSION ZONES
A node is defined to be valid if it does not lie within a ‘‘zone’’
and the path leading to it from its parent node does not cross
any zone boundary. Only valid nodes are allowed to be part of
a route; the special cases of the start and goal nodes are dealt
with separately, see section III.B.4.

A zone is defined by a set of points {lat, lon, alt} lying
within the boundaries of one (or more) of the following
3D objects:

Cylinder: is defined by a center point, a radius and upper
and lower altitude bounds.

Moving Object safety (exclusion) area: is defined by the
object position, a radius (the horizontal safety distance) and
a height interval defined by the vertical safety distance.

Polygon: is defined by the positions of the set of vertices
and the upper and lower altitude bounds.

Corridor: is defined by the positions of the corridor end-
points, its width and the upper and lower altitude bounds.
Corridors are converted to polygons with four vertices.

2) COST FIELD
A ‘‘cost field’’ is defined using cost function values f(N);
for valid nodes and throughout experimentation in this paper,
cost field values are simply calculated as:

f
(
Nj
)
=

j−1∑
i=1

D (Ni,Ni+1)+ h
(
Nj
)

(2)

where D(Ni, Ni+1) is the Euclidean distance between the two
node points. For invalid nodes the cost field value is infinite.

1In some implementations of the A∗ algorithm, a second set (the CLOSED
set) is maintained. This CLOSED set keeps a record of all nodes expanded so
far; at each expansion checks are carried out to see if the new node has been
visited in the past and compares the old value of f( ) with the new value. This
check prevents loops from forming during the search. The way that nodes are
expanded in the current algorithm produces a ‘‘tree’’ and ensures that nodes
will not be revisited; a CLOSED set is therefore not necessary and this results
in considerable savings in calculation time.

FIGURE 3. Arc type of node expansion.

In order to reflect better application requirements and thus
improve route quality, additional components can be taken
into consideration. These usually take account of risk, due
to the presence of hazard zones and other application spe-
cific issues, see [68], and can be incorporated into the cost
function.

3) NODE EXPANSION
Expanding the node structure on a rectangular grid (the usual
case) means that the position of moving objects must be
updated for every child node; by expanding in an arc around
the parent, this update of positional information is done only
once per parent node.

Implementation details of node expansion are given next
for a two-dimensional space. The inclusion of the third
dimension can then be presented conveniently and in a way
that relates to flying aircraft.

a: EXPANSION ARC IN TWO-DIMENSIONAL SPACE
There are two options when expanding a node and create
its children; either to expand in the goal direction or in the
parent heading. Both cases have their own advantages and
disadvantages.

Expanding in the parent heading has two advantages:
Estimated route is smoother,
Computational complexity is reduced, particularly near to

objects.
On the other hand, expansion in the goal bearing has the

potential to produce shorter routes at the cost of increased
complexity. The parent heading option has been selected and
used here, mainly due to the complexity issue.

Node expansion takes place by calculating (child) node
positions at a range of angles with respect to the parent head-
ing, see Figure 3. Furthermore by making the angle variations
symmetrical around the parent heading, change in actual
UAV route direction can be restricted to values which relate
to maximum aircraft turn rates and thus excessive turning
airframe stress is avoided.

An example set of angles used in two-dimensional expan-
sion is given in Table 1.
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TABLE 1. Arc type of node expansion.

Note that the inclusion of very large expansion angles
doesn’t mean that the resulting route can change so abruptly.
Instead it allows the graph search process to be more flexible
and often more efficient.

Increasing the number of nodes in the expansion and
decreasing the time step between the parent and the child
node improves in general overall route quality (in terms of
smoothness, distance etc.); this can be at the expense, how-
ever, of increasing route calculation time i.e. a trade-off exists
between route quality and route estimation time. Experimen-
tal results and performance assessment for three dimensional
routers are provided in later sections; however it can be men-
tioned at this point that for two-dimensional routers, using
a Time Step (TS) value of 60 seconds for the time interval,
an aircraft speed of 100m/s, and the expansion angles of
Table 1, reasonable performance is obtained with ‘‘typical’’
100 Km length routes requiring 0.1 to 5 seconds computa-
tion time (experiments run on an Intel(R) Core(TM)2 Duo,
2.4 GHz processor based PC). This wide range of estimation
times which has been produced using a conventional A∗
type search, is an undesirable search characteristic and is
addressed later in the paper.

The {lat, lon} position of each expanded node is deter-
mined using the set of equations employed in the follow-
ing section that deals with updating the position of moving
objects.

Other node information (the NED Cartesian coordinates,
range and bearing to the goal node etc.) is calculated in
Cartesian coordinates after transformation using a Geodetic
to Cartesian transformation routine.

b: UPDATING THE POSITION OF MOVING OBJECTS
As each node is expanded, the position of moving objects
must be updated to the time the UAV will reach a node
on an expansion arc. Let the time period required by the
UAV to travel from parent to child node be τ ; the position
of moving object will be updated according to this time.
Given that the position, speed and heading of an object
is known at the time the aircraft is at the start node, this
information can be propagated through the node structure so
that the object’s position is calculated as required. Assuming
that the Earth can be approximated with a sphere over the
distances of interest and assuming that the moving object
is following a Great Circle path with speed ν and head-
ing hdg at the parent node (i.e. the one being expanded),
the object is at position A in Figure 4 with coordinates
lat, lon. At any position on the expansion arc, τ seconds
later, the object will have moved through d radians, where
d = ντ/Re and Re is the Earth radius, to position C with new
coordinates latn, lonn.

FIGURE 4. Updating moving object position.

Application of the cosine rule for spherical triangles [78],
triangle ADC yields the new latitude (latn):

latn = sin−1 (sin (lat) cos (d) cos (lat) sin (d) cos (hdg))

(3)

Using the same triangle also yields the change in longitude
and hence the new longitude:

δlon = sin−1
(
sin (hdg) sin (d)

cos (lat)

)
(4)

which implies

lonn = lon−sin−1
(
sin (hdg) sin (d)

cos (lat)

)
(5)

Note that the above equations apply for d < π/2 and are
appropriate to be used here as d is very small compared
to π/2.

c: THREE-DIMENSIONAL NODE EXPANSION
In general, aircraft fly at constant height abovemean sea level.
This can be approximated as flying at a constant barometric
height (given constant air pressure over a region, which in
turn equates to a constant distance from the center of the
Earth). For this reason, it is better to consider three concentric
spheres around the Earth with the middle sphere containing
the parent node. Children nodes can be located on the same
sphere with the parent, or on one of the other two (i.e. upper
and lower) spheres. These two spheres, see Figure 5, are
equidistant from the middle one which implies that the UAV
can continue flying from node to node without changing its
barometric height or that it can change by the same amount
of altitude up or down.

Now there are three options available to expand nodes in
three dimensions (keeping in mind the necessity of constant
barometric height for an aircraft):
(i) Expanding on spheres centered on the parent node

keeps the distance travelled constant (and thus the cal-
culation of moving object positions needs to be done
only once per parent node). This offers an advantage in
terms of calculation time. However, the disadvantage is
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FIGURE 5. Upper (blue) and lower (red) concentric with Earth spheres.
Small (green) sphere is centered at parent node.

that the position of nodeswithin the spacewill not lie on
constant altitude spheres centered on the Earth, so the
resulting route will probably require some considerable
post-processing to make it flyable.

(ii) An alternative approach would be to have concentric
spheres centered at the Earth center and to expand on
arcs centered on the parent node and its projection onto
the spheres above and below it. The disadvantage of
this approach is that the distances to each node are
no longer constant, resulting in increased calculation;
the advantage is that it keeps sets of nodes at constant
altitude which is more natural in terms of aircraft flight
and anyway the number of possible altitude bands will
generally be restricted.

(iii) A combination of the two above approaches, i.e. find-
ing child nodes that lie on the intersection of the upper,
middle and lower spheres (centered on the Earth) with
the sphere centered on the parent node is another quite
powerful option. In this case one would be able to
simultaneously maintain a constant distance from par-
ent to child and keep the altitudes at a set of predeter-
mined levels.

The choice among (i), (ii) and (iii) is down to route calcula-
tion time, which in the 2D case and for certain route scenarios
can already be too long. Thus, it is necessary to constrain
the search space in order to achieve acceptable calculation
times and this is easier with either option (ii) or (iii). Option
(iii) however gives the best proposition to have constant
distance from parent to child as well as discrete altitudes and
for this reason, option (iii) has been adopted throughout the
experimental work of this paper.

In this case 3D node expansion can be conveniently
explained using the three circular plane cuts formed between
the upper, middle and lower spheres with the small sphere
of radius r centered on the parent node P, see Figure 6. First
consider the middle plane circular cut. Here the previously
described 2D node expansion is applied with radius r; see
Figure 3 and Table 1. Given these nodes NM, expansion
nodes at the circumferences of upper or lower circular cuts
are defined by shifting NM nodes to a circumference of

FIGURE 6. 3D node expansion.

TABLE 2. Node expansion angles in new arcs (degrees).

radius ‘‘a’’ and then shifting them up or down by ‘‘h’’ or ‘‘-h’’
respectively.

Furthermore:

h = r sin(θ ), a = r cos(θ ) (6)

The two angles θ and ϕ in figure 6 are linked via ϕ = 2θ
and relate to two possible node expansion strategies:
(i) The maximum angle of altitude change is θ , which

means that if a parent node P was the child of a node
in the upper or lower planes (i.e. P1 or P3) then the
expansion nodes cannot lie on the same plane with
P1 or P3. Alternatively, if P was the child of P2 then
expansion nodes can be located in any of the three
planes.

(ii) The maximum angle of altitude change is ϕ which now
allows larger than θ altitude changes and thus a parent
node P resulting from P1 or P3 can now expand into
nodes placed in upper or lower planes respectively.

Note that the number of expansion nodes placed at the
upper or lower planes can differ from that used in the middle
plane containing the parent node. An example scheme of node
expansion angles as applied to upper and lower planes is given
in table 2.

4) NODE VALIDATION
As mentioned earlier in section III.B.1, a node is invalid if

i) it lies within an exclusion zone (condition 1) or
ii) the path from the parent node to the node under consid-

eration crosses zone boundaries (condition2)
When a node is declared invalid it is marked as such and is

not considered further in the search process.
Also recall that there are two special node cases, i.e. when

the node under investigation is either a i) start or ii) goal node.
In the case of a start node the system need only to consider

if the node is inside a zone, for all zone types. If the start
node is inside a zone then a simple search algorithm finds the
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FIGURE 7. Crossings number approach. The direction is that of travel and
in this example a horizontal line to the right is employed.

nearest point to the node that is outside the zone and the route
is then calculated from this new node.

In the second case, i.e. when a goal node is found to be
inside a zone, it is assumed that this zone can be entered and
a flag is set so that this zone is ignored in future examinations.

The specific way node validation is performed for different
types of hazard area shapes and also for moving objects is
discussed next.

a: NODE INSIDE MOVING OBJECT AND CYLINDER TYPE OF
ZONES (CONDITION 1)
A node is inside such zone if all of the following are true:

Range to Object ′s centre < Zone radius

Node altitude < Zone upper altitude limit

Node altitude > Zone lower altitude limit

b: NODE INSIDE POLYGON ZONE, INCLUDING AIR
CORRIDORS (CONDITION 1)
A crossings number approach is used to determine if the
node lies within a polygon zone. Figure 7 illustrates this
approach; an infinite half line is projected from the point
being examined and the number of times the line crosses
the zone boundary are counted. An odd number of crossings
indicates that the node is inside the zone, an even (or zero)
number that it is outside; hence point A is outside the star
(2 crossings), whilst points B (1 crossing) and C (3 crossings)
are inside it.

In addition to the above node location tests required with
respect to condition 1, the system also needs to ascertain that
the path from the parent node to the node under consideration
will not infringe upon a zone (i.e. condition 2). Here a node is
declared always valid when its altitude is outside the altitude
band of the zone. Specific condition 2 test cases for cylinders,
moving objects and polygons are described separately below.

c: CYLINDERS (CONDITION 2)
The minimum distance between the cylinder center (in the
horizontal plane) and the line segment [A1, A2] defined by
the parent and child nodes is calculated; when this distance
Ra is less than the cylinder radius the node is invalid.

FIGURE 8. Cylinder Zone Infringement.

FIGURE 9. Moving object zone avoidance (deconfliction).

Referring to Figure 8 the distance between the line segment
A1 to A2 is Ra>R and is clearly ‘‘safe’’; However Rb, Rc<
R, and hence both possible paths B1 to B2 and C1 to C2 are
not safe.

d: MOVING OBJECTS (CONDITION 2)
The case of moving objects is not quite so simple since,
during the movement of the ownship from parent to child,
the object itself will also be moving. In this situation, we con-
sider the relative velocity of the aircraft with respect to the
moving object and compare this with the cone angle formed
by the range to the object and the diameter of the safety zone,
see Figure 9.

If the relative velocity vector is within the cone (e.g. Va)
then a collision between the aircraft on this node heading and
the object is possible; the time to collision is then calculated
and if this time to collision is less than the time step τ the
node is declared invalid.When the relative velocity vector lies
outside the cone (see Vb) the situation is safe and the node is
declared valid.

e: CORRIDORS AND POLYGONS (CONDITION 2)
For polygon zone type, the line segment defined by each
vertex pair (V1–V2, V2–V3, V3–V4, V4–V5, V5–V1
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FIGURE 10. Polygon zone avoidance.

in Figure 10) is examined in turn to determine if there is an
intersection with the line segment defined by the parent to
node path. Any such intersection indicates that the child node
is either inside, or on the opposite side of a zone and the node
is declared invalid. In Figure 10 therefore, node A2 is valid,
whilst B2 and C2 are not.

IV. HEURISTIC COST COMPONENT
The heuristic h( ) is one component of the cost function value
f( ) = g( ) + h( ) attached to a node and is an estimate of
the cost from that node to the goal node. As stated earlier,
providing that h( ) is always less than or equal to the actual
value of the cost from the node to the goal (i.e. is an under
estimate) then the route found will always be optimal in a
minimum cost sense. Note that the closer this underestimate
cost is to the actual cost, the computational complexity of the
node search process tends to decrease. Moreover, significant
reduction in route calculation time can be achieved when,
at the expense of optimality, this constraint is relaxed. The
search algorithm used in this paper is based on true, bounded
heuristic values and then applies a weight so that overall
complexity is considerably reduced (and cost optimality sac-
rificed). The cost function thus becomes:

f ( ) = g( )+ ωh( ) (7)

where ω is the fixed heuristic weight. A value between 1.1
< ω < 1.5 for the heuristic weight has been empirically deter-
mined to give for the majority of input scenarios ‘‘accept-
able’’ routes within reasonable/realistic calculation times. ω
is an input system parameter.

Note that search complexity can become prohibitively high
when a large static object is in the way of the developing
route to the goal. This problem can be avoided by prioritising
nodes away from static objects and ω is used to achieve this.
Allocating a higher heuristic weight to nodes located near
static objects forces the search to show preference to nodes
that are relatively far from the objects. This, in turn, reduces
search complexity and yields smoother routes. The introduc-
tion of ω in the cost function and its effect on algorithmic
complexity is further discussed in the Experimental Results
section.

FIGURE 11. (a) Calculation of cylinder zone heuristic. (b) Calculation of
cylinder zone heuristic.

hi( ) is calculated with respect to all zones (i) which
are intersected by the line ‘‘current node to goal’’ and
h( ) = MAX (hi( ))

A. CYLINDER ZONE RELATED HEURISTIC
hi( ) can be defined as the direct distance between the
node and the goal, and is given by the range to the goal
(i.e. NG in Figure 11a). This distance will always be less than
the actual distance and is therefore a heuristic which for cylin-
der type zones and moving objects preserves optimality in an
A∗ sense.
Of course in order to reduce algorithmic search complex-

ity, the ω factor is introduced in f( ) which may violate
the ‘‘underestimate’’ constraint for h( ). Thus an alternative
h( ) value has been used that is formed as the sum of two
distances, i.e. hi( ) = d1 + d2, see Figures 11a and 11b.
It is assumed here that both current and goal nodes are

located on a 2D cut plane of the cylindrical zone.

fig 11a, triangle NAC d1 =
√
Rc2 + R2 (8)

fig. 11b, triangle NBD x = d3sin (θ − ∅)

≈ d1 sin (θ − ∅) (9)
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FIGURE 12. Calculation of polygon heuristic.

FIGURE 13. A typical scenario with different type of hazards and a
generated route.

fig. 11b, y = Rg − xcos (θ − ∅) (10)

fig. 11b, triangle BGD d2 =
√
x2 + y2 (11)

B. POLYGON & CORRIDOR RELATED HEURISTIC
In the case of polygons and corridors the heuristic is calcu-
lated by finding the two vertices that are at the extreme angles
from the node to goal path (V1 and V3 in Figure 12) and the
one with the smaller angle ( θ< ∅, hence V3) is chosen. The
heuristic is then the distance required to get from the node to
the goal via that vertex i.e. hi( ) = d1 + d2.

V. EXPERIMENTAL RESULTS – SEARCH COMPLEXITY
ISSUES
Experiments have been carried out in order to investigate
system performance as applied to different input scenarios
(configurations of UAV operating space). Thus experiments
were initially conducted having only one cylindrical zone
located somewhere between the start and goal points and
these have shown the potential of the system to produce viable
route paths, see for example Figures 13 and 14.

FIGURE 14. Example of 3D-RAD estimated route in a single cylindrical
hazard zone (15000 m radius, 0 to 10000 m altitude) input scenario. Fixed
ω = 1.25, constant UAV speed 100m/sec, TS = 60secs. Route is defined in
terms of 39 segments (legs).

FIGURE 15. 3D-RAD/ ODHW system estimated route. Constant UAV speed
100m/sec, TS = 60secs.

However, it became apparent that algorithmic complexity
and of course execution time often increased considerably
and rapidly to prohibiting levels when the start point is located
near to the zone area, or when the route search optimization
process considers expanded nodes which are again located
too close to the zone. This problem arises as the search algo-
rithm backtracks each time node expansion cannot provide
valid or reasonable cost nodes and the search process may
iterate (oscillate) back and forth and until a viable path is
found. This undesirable behavior and the fact that the heuris-
tic weight ω can be used to bias the search process away from
zone areas, (and possible oscillatory search behaviors) led to
the development of the following ‘‘Object/Zone Dependent
Heuristic Weight’’ scheme.

A. NEW OBJECT DEPENDENT HEURISTIC WEIGHT
(ODHW) SCHEME
Asmentioned in section IV, allocating a high heuristic weight
to nodes located near static objects forces the search pro-
cess to show preference to nodes that are further away from
such exclusion zones. This in turn reduces the algorithm’s
tendency towards the previously mentioned oscillatory type
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FIGURE 16. 3D-RAD/ODHW versus 3D-RAD complexity characteristics as a function of ‘‘start point’’ to ‘‘cylindrical
zone’’ distance in the single zone input scenario of figure 13. Quoted complexity is represented by number of
expanded nodes.

FIGURE 17. 3D-D RAD/ ODHW system estimated route in a 10 hazard areas and two moving
objects input scenario.

of search behavior and therefore contains search complexity
within acceptable levels. However under normal conditions
and when expanded nodes are relatively far away from zones,
placing emphasis on the heuristic component of f( ) gives the
search a predominately depth-first character, at the expense
of breadth-first behavior, and this can prove computationally
costly. Thus an ODHW scheme has been developed that
switches the value of ω between ω1 and ω2 where 1 <
ω1 < ω2, with i) ω2 used for ‘‘near zone’’ nodes located
within a volume surrounding cylindrical hazard zones uni-
formly i.e. a hollow type cylinder whose width is X% of
the zone radius R, and ii) ω1 used for all other valid nodes.

Note that in the case of non-cylindrical zones a minimum
R sphere that completely covers the zone is determined and
used in the same way as with cylindrical or spherical zones.
The values of ω1, ω2 have been defined experimentally
as 1.25 and 1.4 respectively. A value of X=10% of the
nearest zone’s R has been used in experiments. Note that
the value of X is also related to input scenario configu-
rations and application (mission) requirements. An exam-
ple of the type of route that is produced by the proposed
3D-RAD/ ODHW system operating in a space containing
several static hazard zones and moving objects is shown
in Figure 15.
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FIGURE 18. 3D-RAD/ODHW complexity characteristics as a function of ‘‘start point’’ to first ‘‘cylindrical zone’’ distance in the
multi zone input scenario of figure 15.

FIGURE 19. (a) top and (b) bottom scatter graphs correspond to 3D-RAD/ODHW and 3D-RAD complexity values measured
over 100 different, 10 zones, input scenario experiments.

Figure 16 illustrates the search related computational com-
plexity benefits realized by allowing the heuristic weight to
adapt its value according to the proximity of a valid node
to an exclusion area i.e. by incorporating ODHW. In this
figure search complexity is measured in terms of number
of expanded nodes. Here an (example) upper limit (UL)
of 300,000 nodes is taken as cut-off value (infinity) and used
to terminate the search process on the basis that the time
taken to estimate the required route is too long for the system
to be of practical use. Of course, the actual value of UL
depends on the application domain characteristics and the
hardware realization of the router. Furthermore, search com-
plexity in figure 16 is measured as the start point moves closer
to the hazard zone of figure 13, for both 3D-RAD (fixed
heuristic weight) and 3D-RAD/ODHW (adaptive heuristic

weight) systems. Note that the computational complexity of
both schemes is almost the same up to a specific ‘‘start point’’
to ‘‘hazard zone’’ distance. When this distance is further
reduced 3D-RAD search complexity becomes prohibitively
large very rapidly, whereas 3D-RAD/ODHW continues to
perform at the same average complexity level. Also note that
although Figure 15 experimentation is based on a specific
input scenario, is nevertheless indicative of the general search
complexity behavior of the two systems.

An example route generated by 3D-RAD/ODHW operat-
ing in amulti Hazard zones andmoving objects input scenario
is shown in Figure 17. Figure 18 illustrates 3D-RAD/ODHW
system search complexity as the start point location moves
closer to the first zone encountered in the start point to goal
point direction. Note that for this multi zone related input
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FIGURE 20. 3D-RAD/ ODHW search complexity as a function of number of static hazard zones.

FIGURE 21. Search complexity as a function of expansion step size

scenario, search complexity varies considerably but is
bounded and remains well within acceptable levels. A more
complete understanding of the variability in search complex-
itywhich 3D-RAD/ODHWand 3D-RADexhibit with respect
to the location of 10 hazard zones, is shown in Figures 19a and
19b respectively and over 100 different input scenarios.

Note that 3D-RAD complexity exceeds the 300K set upper
limit in nine out of the one hundred randomly generated input
scenarios. On the other hand, 3D-RAD/ ODHW complexity
is bounded and, in most cases, below 60% of the maximum
allowable value.

B. COMPLEXITY AS A FUNCTION OF NUMBER OF
HAZARD AREAS AND MOVING OBJECTS
In general search complexity is expected to increase as the
number of hazard zones and objects increases. This is shown

below in Figure 20 where complexity is experimentally mea-
sured as the number of static zones increases from one to
ten. Note that figure 19 displays average complexity values
derived from 100 experiments per number of static zones,

with zones randomly positioned in each experiment. Fur-
thermore, cylindrical zones are generated having radius and
height in the range 5000m to 10000m and 0m to 10000m,
respectively. These typical, relatively low complexity exper-
imental results show the general trend of increasing com-
plexity as the number of static objects in the environment
increases.

C. COMPLEXITY VERSUS NODE EXPANSION TIME STEP
A first reaction to the question of how search complex-
ity varies with respect to node expansion Time-Step (TS)
(given a constant UAV speed) may be that search complexity
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increases as the time- step size decreases. However, making
TS larger, in order to reduce complexity, has an effect on the
behavior of the graph theoretic search algorithm itself, which
in turn relates to the topology of the input scenario. That
is, the relationship between the Distance separating Hazard
Zones (DHZ) and TS affects to a large extent algorithmic
search complexity.

In general, small TS (and corresponding travelling dis-
tance) values, as compared to DHZ, allow the search process
to easily find routes passing in between zones with minimum
search oscillatory behavior. As TS increases, search space
resolution decreases but gains in complexity are compensated
by the possible introduction of oscillatory node expansion
behavior.

Thus as TS values increase, say from 50 to 95 sec, search
complexity is confined within a relatively small range, see
Figure 21. In this figure and for each time step TS, measured
complexity is averaged over 100 different input scenarios
with each scenario containing 10 randomly located hazard
zones.

VI. CONCLUSIONS
The capability of defining viable flying routes for UAVs in
general and autonomousUAVs in particular, is an integral part
of the planning work done prior to a mission and, much more
importantly, during the mission when routes must be modi-
fied in response to changes in the operating environment.

Among the plethora of possible design methodologies,
work in this paper is focused on a graph theoretic (GT)
search approach whereby estimated UAV routes are discrete
in nature and defined in terms of nodes (i.e. points in space)
and associated segments. Having decided to employ a GT
representation of the problem space, the paper developed
novel ways of ‘‘sampling’’ 3D operating spaces containing
hazard areas and other moving objects.

In particular node expansion has been defined and used,
within a minimum cost function optimization framework, in a
way that conforms to flying behaviors. That is aircraft mostly
fly with constant speed, at a constant barometric height and
for relatively long periods of time.

Furthermore, flying is often restricted to a number of pos-
sible altitude bands whereas changes in altitude and/or direc-
tion are restricted to values that ensure excessive airframe
stress is avoided.

Of course, the router should be able to provide output(s)
within a limited time period, particularly when operating
within a rapidly changing mission environment. This makes
router algorithmic complexity a major issue.

Thus the paper examines the computational characteristics
of the proposed GT methodology and their dependency on
the operational environment, i.e. location and number of
static or moving hazard zones and objects. Experimentation
has revealed that the level of GT search complexity increases
considerably when expanded nodes are located near to zone
areas. This undesirable search behavior is effectively rec-
tified in a novel way with the introduction of an adaptive

weighting factor which operates on the Heuristic part of the
cost function.

The resulting 3D router offers flyable routes with decon-
fliction, i.e. collision avoidance with other moving objects.
The assumption made of moving objects flying at constant
speed is not restrictive, particularly when autonomous UAVs
and hence their onboard routers operate in a Sense-Plan-Act
type of planning framework where routes are re-estimated
using up-to-date information.
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