
Received March 11, 2018, accepted April 10, 2018, date of publication April 23, 2018, date of current version May 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2829532

UnisonFlow: A Software-Defined Coordination
Mechanism for Message-Passing Communication
and Computation
KEICHI TAKAHASHI 1, (Student Member, IEEE), SUSUMU DATE2, (Member, IEEE),
DASHDAVAA KHURELTULGA1, YOSHIYUKI KIDO2, (Member, IEEE),
HIROAKI YAMANAKA3, (Member, IEEE), EIJI KAWAI3, (Member, IEEE),
AND SHINJI SHIMOJO2, (Member, IEEE)
1Multimedia Engineering Department, Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
2Applied Information Systems Research Division, Cybermedia Center, Osaka University, Suita 567-0047, Japan
3ICT Testbed Research and Development Promotion Center, National Institute of Information and Communications Technology, Tokyo 184-8795, Japan

Corresponding author: Keichi Takahashi (takahashi.keichi@ais.cmc.osaka-u.ac.jp)

This work was supported in part by JSPS KAKENHI under Grant JP26330145 and Grant JP17K00168, in part by collaborative research of
the National Institute of Information and Communication Technology and Osaka University (Research on high functional network platform
technology for large-scale distributed computing), and in part by the Program for Leading Graduate Schools of the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

ABSTRACT Message passing interface (MPI) communication performance is becoming one of the key
factors heavily affecting the total performance of data-intensive applications running on computer clusters.
Our software-defined networking (SDN)-enhanced MPI improves the performance of communication over
interconnects by integrating flexible and dynamic network controllability of SDN into MPI. We have
demonstrated that the acceleration of individual MPI communication primitives is feasible through our
past work on the SDN-enhanced MPI. However, real-world MPI applications have not benefited from
such accelerated communication primitives through our research achievements to date, because each of the
distinct network control algorithms designed for various MPI communication primitives cannot be activated
and coordinated with the execution of the MPI application. Therefore, this paper proposes UnisonFlow,
a software-defined coordination mechanism for the SDN-enhanced MPI that performs network control in
synchronization with the execution of applications. An experiment conducted on a real-computer cluster
verifies that the interconnect control can be successfully performed in synchronization with the execution
of the application. Furthermore, the synchronization is performed with a low overhead and its performance
penalty is practically negligible.

INDEX TERMS Message passing interface, software defined network, openflow, kernel assistance,
interconnects.

I. INTRODUCTION
Recent scientific research has been taking major advantage
of computational analysis and simulation. Sustained growth
in the volume of data generated by scientific experiments
has lead to a rise in the importance of data-intensive com-
puting. For example, approximately 15PB of experimental
data is annually generated and processed at the Large Hadron
Collider (LHC), an experimental facility for high energy
physics [2].

Today, in general, data-intensive computations are per-
formed on high-performance computer clusters. A computer
cluster is composed of a set of computing nodes connected
to a high-performance network, usually referred to as an

interconnect. Applications designed to run on computer
clusters are based on a parallel distributed processing model.
In this processing model, a large computation is decomposed
into smaller fractions of computation and is then performed
by processes running in parallel. These processes communi-
cate with each other for data exchange and synchronization.
For this reason, the inter-node communication performance
among processes can significantly impact the total perfor-
mance of data-intensive applications. Recent advancements
of high performance computing has heavily relied upon
the high degree of parallelism rather than the improvement
of CPU clock speed. Consequently, the total number of
processes and computing nodes involved in a computation

23372
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-1607-5694


K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

has kept increasing. As a result, communication between
distributed processes is becoming the principal bottleneck of
data-intensive applications.

Each application running on a computer cluster has a dis-
tinct pattern of communication among processes [8]. These
communication patterns are difficult to predict precisely in
prior to the execution of the application. Furthermore, most
of the current interconnects available have adopted static
network control and thus are unable to adaptively recon-
figure themselves to match requirements from applications.
In fact, in InfiniBand [7], which is a currently dominant inter-
connect technology, the forwarding tables on switches are
usually pre-configured and remain unchanged until hardware
failure or topology change occurs.

Furthermore, current interconnects are designed to be
over-provisioned in order to satisfy the communication per-
formance requirements of various applications with diverse
communication patterns. Such over-provisioned intercon-
nects are designed and provided with sufficient network
resources (e.g. bandwidth) to minimize the overload of inter-
connect such as congestion.

However, recent scale-out in the number of computing
nodes has revealed two potential shortcomings of over-
provisioned designs. First, the cost of building interconnects
has become increasingly higher, which makes it difficult
to implement over-provisioned designs. This increased cost
is because of the scale and complexity of interconnects
that grow superlinearly as the number of computing nodes
increases. The second shortcoming is the underutilization of
interconnects. A discrepancy between the performance char-
acteristics of the over-provisioned interconnect and the aggre-
gated network requirements of the applications may cause
some portion of the interconnect not being fully utilized.

Based on these considerations, we believe that a novel
cluster architecture which dynamically controls the traffic
flow in the interconnect based on the communication pat-
tern of the application can alleviate the aforementioned two
shortcomings of conventional over-provisioned designs. For
this reason, Software DefinedNetworking enhancedMessage
Passing Interface (SDN-enhanced MPI ), which is an uncon-
ventional MPI framework that incorporates flexible network
controllability of SDN into interconnects, was proposed in
our past research. Furthermore, in past research towards
SDN-enhanced MPI, we have demonstrated that the accel-
eration of collective MPI communication is feasible.

However, a technical challenge still remained in this
research; namely, applying our research achievements to real-
world MPI applications. In the preliminary stage of our cur-
rent research so far, we focused on verifying the feasibility of
our idea by investigating whether individual MPI collective
communications could be accelerated or not. Therefore, how
MPI communication accelerated with SDN could be synchro-
nized with the execution of an MPI application remained a
question that required a new technical innovation.

To this end, we propose UnisonFlow, a mechanism
for SDN-enhanced MPI to perform network control in

synchronization with the execution of an MPI application,
based on the strategy shown in [18]. The synchronization
does not incur a large overhead so it avoids performance
degradation of the applications. Furthermore, the proposed
mechanism is designed to work on actual hardware Open-
Flow switches, and is not limited to software switches or spe-
cialized hardware.

The main contributions of this paper are summarized as
follows:

• UnisonFlow, a software-defined coordination mecha-
nism of network control and execution of an MPI appli-
cation is proposed.

• A low-overhead implementation of the proposed con-
cept that works on actual hardware OpenFlow switches
is presented.

• An experiment is carried out to verify whether the inter-
connect control is successfully performed in synchro-
nization with the execution of an application.

• A performance measurement of point-to-point commu-
nication is conducted to evaluate the overhead incurred
by the proposed mechanism.

The remainder of this paper is organized as follows.
Section II introduces SDN-enhanced MPI and its key
technologies. Subsequently, the challenge to realize SDN-
enhanced MPI is derived. Section III describes our proposed
mechanism and its implementation. Section IV shows the
result of the experiments conducted to demonstrate the feasi-
bility of the proposal. Section V reviews related literature and
clarifies the contributions of this paper. Finally, section VI
discusses future issues to be tackled and concludes this paper.

II. RESEARCH OBJECTIVE
This section first briefly describes the two key technologies
of SDN-enhanced MPI: the Message Passing Interface (MPI)
and Software Defined Networking (SDN). After outlining the
current development status of SDN-enhanced MPI, the cen-
tral challenge in realizing a practical SDN-enhanced MPI is
clarified.

A. MESSAGE PASSING INTERFACE (MPI)
Message Passing Interface (MPI) [13] is a de facto standard
specification for inter-process communication libraries used
to develop parallel distributed applications. MPI defines a
suite of communication primitives that helps programmers
to develop applications that require complex communications
among computing nodes.

The communication primitives defined in MPI can be
roughly categorized into point-to-point communication and
collective communication. Point-to-point communication is a
communication between one sender and one receiver. On the
other hand, collective communication involves a group of
multiple processes. Table 1 shows some representative exam-
ples of MPI primitives.

A remarkable feature of MPI is that it abstracts the
underlying network of high-performance computer clusters.
This abstraction allows programmers to develop applications

VOLUME 6, 2018 23373



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

TABLE 1. Examples of MPI primitives.

without forcing them to study the detailed architecture or
structure of the underlying network. In MPI, every process
is identified by a rank number, a non-negative integer. The
mapping between rank numbers and network addresses is
automatically handled by the MPI library. Communication
can be restricted into a certain group of processes, which is
called a communicator in MPI. This abstraction makes MPI
applications portable and easy to port to different computer
clusters.

Until today, countless scientific applications have been
developed by utilizing the communication primitives in MPI.
The execution time of these MPI primitives is an important
performance factor because its impact to the total appli-
cation performance appears significantly accompanied with
the recent scale-out of computer clusters. In other words,
the total performance ofMPI applications can be improved by
optimizing the performance ofMPI communications. For this
reason, researchers have extensively investigated methods
to improve the communication performance of MPI from
various aspects.

B. SOFTWARE DEFINED NETWORKING (SDN)
Software Defined Networking (SDN) is a novel networking
architecture that separates the control plane and data plane
into different devices. In conventional networking architec-
tures, the decision on how to handle packets (control plane)
and the packet transfer (data plane) are implemented as uni-
fied and inseparable features. The separation of the control
plane and data plane has allowed SDN to deliver the following
three benefits:

• Programmable: The control plane can be handled by
a software controller. Network operators can program
controllers tailored for their needs.

• Dynamic: SDN allows the controller to quickly reconfig-
ure the network. For instance, it is possible to dynami-
cally optimize traffic flow in the network based on the
real-time traffic pattern.

• Centralized : A centralized controller configures the
entire SDN-enabled network, thus reducing efforts to
administer and manage the network. In conventional
networking architectures, the operators need to config-
ure each network device separately because the control
plane is distributed on individual devices.

OpenFlow [11] is a widely accepted open standard of SDN.
In an OpenFlow-enabled network, the data plane is handled

by OpenFlow switches. Every OpenFlow switch holds a log-
ical construct called flow table, which is a collection of flow
entries. Each flow entry defines what kind of packet control
should be performed on what kind of packets (Fig. 1). Every
time a packet arrives at an OpenFlow switch, the switch looks
up a matching flow entry in its flow table using the header
fields of the packet. Once a matching flow entry is found,
the action of the matched flow entry is applied to the packet.

FIGURE 1. An example of a flow table.

The OpenFlow controller is responsible for the control
plane. It manages the flow table of switches by adding,
removing and modifying flow entries. The controller and
switches communicate with each other by asynchronously
exchanging messages defined in the OpenFlow protocol. One
of the frequently used messages is the packet-in message,
which is sent out from a switch to the controller when
no matching flow entry is found for an incoming packet.
In response, the controller can send a modify flow entry
message to install a new flow entry on the switch.

C. SDN-ENHANCED MPI
The basic idea of SDN-enhanced MPI is to incorporate
the flexible network controllability of SDN into MPI.
As described in section II-A, MPI mainly focuses on hid-
ing the complexity of the underlying network architecture.
Therefore, MPI does not provide any functionality for explic-
itly controlling the network. Integrating SDN into MPI could
complement such lack of a network control feature in MPI
and allow MPI to optimize the traffic flow in the network in
accordance with the communication pattern of applications.

At the time of writing this paper, we have applied the
above described basic idea to two collective MPI primitives,
MPI_Bcast and MPI_Allreduce as proof of concept. Experi-
ments conducted on a real computer cluster comprising bare
metal servers and hardware OpenFlow switches have demon-
strated that the execution time of these primitives has been
successfully reduced [4], [19]. SDN-enhancedMPI_Bcast [4]
accelerates MPI_Bcast by utilizing the hardware multi-
cast functionality of OpenFlow switches. SDN-enhanced
MPI_Allreduce [19] dynamically reconfigures the path allo-
cation based on the communication pattern ofMPI_Allreduce
so that congestion in links is minimized.

D. CENTRAL CHALLENGE OF SDN-ENHANCED MPI
The central challenge in realizing a practical SDN-enhanced
MPI lies in a coordination mechanism between the appli-
cation and network control. Although the previous works
on SDN-enhanced MPI have shown the feasibility of accel-
erating individual primitives as described in section II-C,

23374 VOLUME 6, 2018



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

actual MPI applications have not yet taken advantage of
network programmability brought by SDN, since each of
the distinct network control algorithms designed for an MPI
primitive cannot be activated along with the execution of
an MPI application. In other words, no mechanism exists
that conveys the type and option of the MPI primitive being
executed at the moment by an application to the network
controller in charge of acceleration of the corresponding
primitive.

In this paper, we realize a software-defined coordination
mechanism to perform network control in synchronization
with the execution of an application. Furthermore, the follow-
ing technical requirements must be met by the mechanism:

• Low overhead : The overhead incurred by the proposed
coordination mechanism should not degrade the com-
munication performance of MPI, since the final goal is
to improve the total performance of theMPI application.

• Interoperability with hardware OpenFlow switches: We
place emphasis on developing a practical implemen-
tation that works on computer clusters. Therefore,
the mechanism should work on actual hardware
OpenFlow switches, and should not be limited to soft-
ware switches or specialized hardware.

• Compatibility with existing MPI library: To mitigate the
cost to port existent MPI applications on SDN-enhanced
MPI, the existent MPI application should work on
SDN-enhanced MPI without the source code being
modified or recompiled. Compatibility with existing
MPI implementations is essential for the portability of
applications.

III. PROPOSAL
A. BASIC IDEA
The basic idea of UnisonFlow is to embed MPI context infor-
mation as a tag into each packet released through the MPI
library and handle packets based on their tags in switches.
The tag is stored in the header field of each packet. In this
paper, MPI context information is defined as a collection of
application-aware data which identifies an communication
of an MPI communication primitive. Specifically, an MPI
primitive type, source/destination rank and communicator
constitute MPI context information.

A straightforward approach to realize application-aware
network control is to enhance the packet processing fea-
ture of OpenFlow switches in a way that switches can read
application-layer information from packets and then make
decisions based on that information. However, this approach
requires significant alteration to the switch hardware itself
and the OpenFlow protocol, because packet processing on
switches is mostly performed on fixed dedicated hardware
components. The proposed mechanism stores application-
layer information into a header field of packets so that
OpenFlow switches can perform application-aware packet
flow control.

In detail, the tag is embedded into the destination MAC
address field of the packet header field. The location of the

destination MAC address field in a packet and the binary
layout of a tag are shown in Fig. 2.

FIGURE 2. Tag information embedded in a packet.

Two main reasons exist for using the destination MAC
address header field. The first reason is that the MAC address
is defined as one of the header fields that can be used as a
matching condition in OpenFlow. For this reason, there is
no need to extend or modify existing OpenFlow switches
to support this header field. The second reason is explained
from the advantage in the number of installable flow entries.
Although there are header fields other than the destination
MAC address that can be used as a matching condition in
OpenFlow, switches are typically equipped with a special
hardware dedicated for L2 header field lookups. As a result,
more flow entries that include only L2 header fields can be
stored than the flow entries with other header fields.

B. ARCHITECTURE
1) OVERVIEW
Figure 3 illustrates an overview of UnisonFlow. At this stage
of research, it is assumed that a computer cluster executes
a single MPI application because our research target is the
acceleration of inter-node communication in MPI. The oper-
ating system of computing nodes is assumed to be Linux.

FIGURE 3. Overall architecture of UnisonFlow.

We have developed three major software modules that
constitute this architecture (bold rectangles in Fig. 3).
The first module is the Interconnect Controller, which is

VOLUME 6, 2018 23375



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

basically an OpenFlow controller responsible for installing
flow entries into OpenFlow switches. The interconnect con-
troller was developed based on the Ryu SDN controller
framework [17]. The second module is the Tagging Kernel
Module. It resides in the kernel space of each computing
node. The role of the tagging kernel module is to extract MPI
context information from each packet emitted by the MPI
library, encode this context information as a tag and then
apply it to the packet. The third module is the Customized
MPI Library, which is dynamically linked to the MPI appli-
cation. MPICH [5], an implementation of MPI, was extended
so that it meets our needs. Specifically, it was enhanced to
communicate with the tagging kernel module and to send
active connection information to the kernel module.

2) INTRA-NODE ARCHITECTURE
On each computing node, the tagging kernel module and
MPI library work together to embedMPI context information
as a tag into each packet. The kernel module performs the
actual tagging procedure, whereas the MPI library provides
the kernel module with supplementary information used for
filtering out non-MPI traffic.

As described in section III-A, UnisonFlow exploits the
destination MAC address field of a packet as a place to
store the corresponding tag. To implement this, a functional
component that dynamically rewrites MAC address fields of
packets is essential.

As a possible solution for the functional component on
the Linux kernel, we have considered ebtables, raw socket
and protocol handler [16]. Ebtables is commonly used as
an L2 packet filter that includes Network Address Transla-
tion (NAT) for MAC addresses. Raw sockets are special type
of sockets that give user space programs access to the whole
packet including protocol headers. The protocol handler is a
function that can be inserted to the kernel, usually to add new
network protocols. Out of these potential solutions, we have
adopted the protocol handler because it achieves both flexi-
bility in rewriting of the packets depending on their payload
and minimal alteration to the MPI library. As previously
described, ebtables has aMACNAT feature; however, it has a
limitation where the MAC addresses can only be translated to
pre-configured addresses. On the other hand, the use of a raw
socket results in an extensive modification of the MPI library,
since it requires the MPI library to handle the TCP/IP stack.
In contrast to these two methods, the use of the protocol han-
dler facilitates the interception of packets in the network stack
of the kernel and arbitrary modifications to those packets. For
this reason, we can utilize the network stack of the kernel
and avoid re-implementing another network stack. Moreover,
the whole packet including header and payload can be read
and written by the protocol handler for dynamically rewriting
the MAC address fields of packets.

Figure 4 illustrates how MPI packets are processed on a
computing node. The solid arrows represent packet flows
generated by an MPI application. The dashed arrow repre-
sents interaction between software modules.

FIGURE 4. Intra-node packet flow.

Once the tagging kernel module is loaded into the ker-
nel space at the boot time of the Linux operating system,
the kernel module registers its own protocol handler to the
kernel using the dev_add_pack API. This protocol handler
is called every time a packet is sent out from the network stack
to the Network Interface Card (NIC). Intercepted packets
sequentially undergo three major phases of packet process-
ing, which are performed by the following three components
(bold rectangles in Fig. 4), respectively:

1. MPI packet filter : Packets generated by SSH, remote
file systemis, and any programs other than MPI are
immediately forwarded to the NIC. To investigate
whether a packet originates from MPI or not, this
component looks up the peer table maintained by the
tagging kernel module and verifies if the packet is a
part of the TCP connections opened by the MPI library.
The peer table is designed as a hash table of all TCP
connections to other processes opened by MPI. The
4-tuple (source IP, destination IP, source port and des-
tination port) of each packet is used to identify a TCP
connection.

2. MPI context information extractor : This component
extracts the MPI context information from packets by
reading and parsing their message envelope. The mes-
sage envelope is essentially a header that is prepended
to every MPI message by the MPI library for identifi-
cation. Although the message envelope is prescribed in
the MPI specification [13], its actual binary layout is
implementation dependent.

3. Tag writer : This component encodes the context infor-
mation extracted in the previous phase as a virtualMAC
address and writes it into the packet. The virtual MAC
address is generated by packing the components of
MPI context information into the binary format shown
in Fig. 2. Technically, the MAC addresses of packets
can be modified by simply overwriting the specific
position of the sk_buff structure, which is the internal
representation of network packets in the kernel.

As described, the tagging kernel module maintains the
peer table to keep track of all connections opened by the

23376 VOLUME 6, 2018



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

locally-running MPI process to other MPI processes running
on remote computing nodes. In order to update the content
of the peer table in accordance with the internal information
of the MPI library, the MPI library has been enhanced to
provide this information to the kernel module. As the commu-
nication channel between the MPI library and kernel module,
the ioctl system call has been leveraged. These modifica-
tions have been made so that functional compatibility with
the original MPI library was guaranteed.

3) INTER-NODE ARCHITECTURE
Switches composing the interconnect forward packets based
on their tag value. These forwarding rules are stored in the
form of flow entries and managed by the centralized inter-
connect controller.

The decision about how a packet is forwarded is made
by the MPI primitive module, which is a pluggable software
component integrated into the interconnect controller. A uni-
fied interface between the MPI primitive module and the
interconnect controller is defined for simplified development
and integration of primitive modules. Each MPI primitive
module is expected to be designed dedicatedly for a single
type of MPI primitive.

Figure 5 illustrates an example of the packet flow between
two remote computing nodes. When the interconnect con-
troller receives a packet-in message caused by an unmatched
packet (step 1 in Fig. 5), the controller decodes the tag embed-
ded in the packet and extracts the MPI context information
(step 2). After that, the responsible MPI primitive module
is invoked with the context information as its input (step 3).
The MPI primitive module determines how a set of packets
carrying the same context information should be treated.
Based on this decision, flow entries are generated and then
installed to relevant switches (step 4).

FIGURE 5. Inter-node packet flow.

Note that NICs drop incoming packets whose destination
addresses are not the address of NICs unless they are put into
promiscuous mode. Therefore, the destination MAC address
of tagged packets needs to be restored to the true MAC
address of its receiver node. This restoration is achieved by

appending an action for changing the MAC address field to
the flow entry installed on the switch adjacent to the receiver
node.

IV. EVALUATION
Two experiments were conducted to examine the feasibility
of UnisonFlow. In the first experiment, the control of the
interconnect is investigated in terms of whether it is properly
synchronized with the execution of the application. In the sec-
ond experiment, the overhead imposed by UnisonFlow is
evaluated.

A. EXPERIMENTAL ENVIRONMENT
Both of the two experiments were conducted on the
SDN-enabled computer cluster shown in Fig. 6. For the
topology of the interconnect, a two-level fat-tree composed
of six switches was adopted because fat-trees are one of the
most widely used topologies for today’s cluster systems. Note
that each of the two physical switches was divided to three
logical switches due to a limited number of available Open-
Flow switches in our institution. In the following discussion,
we refer to the two upper layer switches as spine1 and spine2,
whereas the four lower layer switches are referred to as leaf1,
leaf2, leaf3 and leaf4, respectively. Spine switches and leaf
switches were connected on 4 Gbps links, each of which was
an aggregated link of four GbE links. Six computing nodes
were connected to a leaf switch; that is, 24 computing nodes
in total. These computing nodes are hereinafter referred to
as node01 to node24. Leaf switches and computing nodes
were interconnected with 1Gbps Ethernet. A management
node accommodating the interconnect controller was also
prepared.

FIGURE 6. Overview of the experimental environment.

For SDN switches, NEC R© ProgrammableFlow R© PF5240
has been adopted. The computing node was a SGI R©

Rackable R© Half-Depth Server C1001 equipped with the
hardware and software as shown in Table 2.

B. VERIFICATION OF COORDINATION MECHANISM
The first experiment was conducted to verify whether the
dynamic control of packet flows on the interconnect was
performed in synchronization with the execution of the appli-
cation. To verify the synchronization between interconnect

VOLUME 6, 2018 23377



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

TABLE 2. Computing node specifications.

control and execution of the application, an MPI application
which sequentially executes two different MPI primitives has
been developed. The interconnect controller applies different
routing strategies for each primitive as MPI primitive mod-
ules. We then observe the traffic flow on the interconnect
using the port counters of switches to verify if the inter-
connect control can successfully switch from one to another
when the MPI primitive executed changes.

The detailed experimental setup is as follows. The MPI
application executes an iteration of MPI_Bcast followed by
another iteration of MPI_Reduce. List 1 shows a simplified
source code of this application. The process with rank 0
is specified as the root process for both MPI_Bcast and
MPI_Reduce. The rank 0 process is configured to run on
node01, which is connected to switch leaf1. Furthermore,
the MPI application records the time where each of the
following three events occurs: the start of the MPI_Bcast
iteration (t1), the start of the MPI_Reduce iteration (t2) and
the finish of theMPI_Reduce iteration (t3). This timing infor-
mation is used to investigate the relationship between the
execution of the MPI application and the traffic change in the
interconnect.

Listing 1. Source code of MPI application.

Each MPI primitive is repetitively executed because a
single invocation of these primitives completes too quickly to
observe the traffic change. The port counters of PF5240 are
updated approximately once a second. This implies that
instant traffic changes happening in less than one second
cannot be precisely observed. Since a single invocation
of MPI_Bcast or MPI_Reduce finishes in the order of
milliseconds, we repeat each primitive to make its total exe-
cution time longer so that we can observe the traffic change
using port counters.

Under the interconnect topology of this experimental envi-
ronment, there are always two possible paths between any two
different leaf switches. One is the path that contains spine1
(e.g. leaf1 - spine1 - leaf2) and the other path contains spine2
(e.g. leaf1 - spine2 - leaf2). The interconnect controller was
deployed with a routing strategy that assigns paths utilizing
spine1 to the traffic generated by MPI_Bcast. In contrast,
the traffic generated by MPI_Reduce was set so that it goes
through spine2. Note that spine switches are never utilized by
traffic between two computing nodes under an identical leaf
switch. As a representative implementation of conventional
networking architecture, an SDN controller was employed
with a Equal Cost Multi Path (ECMP) routing strategy.
To observe the traffic change in the interconnect, a measure-
ment module that periodically (every two seconds) gathers
and reports transmitted and received bytes of every switch
port was integrated into the interconnect controller. Based on
these port counter values, we calculated the throughput of the
transmitted traffic and the received traffic of each port.

Figures 7 and 8 show the change of throughput observed at
the ports of switches spine1 and spine2 when using ECMP.
Both spine1 and spine2 were utilized during the execution of
MPI_Bcast and MPI_Reduce as a result of load balancing.
However, there is some inequality in the utilization of two
spine switches. This inequality is because ECMP distributes
the traffic workload not on the basis of not packets, but on
flows.

MPICH, which is the MPI implementation used in
UnisonFlow, has optimized implementations for collective
communications like other MPI libraries. In particular, under
the environment of this experiment,MPI_Bcast uses binomial
tree algorithm while MPI_Reduce uses the Rabenseifner’s
reduce algorithm [15]. As a result, MPI_Bcast is not a simple
repeated point-to-point communication from the root process
to other processes, but involves communication between non-
root processes. For instance, Fig. 7a indicates how the traffic
between spine1 and leaf1 changes. In detail, TX shows the
outgoing traffic from spine1 to leaf1, which is the aggre-
gated traffic from the computing nodes under leaf2, leaf3 and
leaf4 to the computing nodes under leaf1. In contrast, RX
shows the aggregated traffic from computing nodes under
leaf1 to other computing nodes under leaf2, leaf3 and leaf4.

Figures 9 and 10 show the change of throughput when
using the proposed mechanism. In these plots, the time
of event occurrences recorded by the MPI application
are marked with vertical solid black lines. The time

23378 VOLUME 6, 2018



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

FIGURE 7. Throughput measured at ports on switch spine1 (conventional). (a) At port 0xa00 (spine1) towards port 0xa00 (leaf1).
(b) At port 0xb00 (spine1) towards port 0xa00 (leaf2). (c) At port 0xc00 (spine1) towards port 0xa00 (leaf3). (d) At port 0xd00 (spine1)
towards port 0xa00 (leaf4).

FIGURE 8. Throughput measured at ports on switch spine2 (conventional). (a) At port 0xa00 (spine2) towards port 0xb00 (leaf1).
(b) At port 0xb00 (spine2) towards port 0xb00 (leaf2). (c) At port 0xc00 (spine2) towards port 0xb00 (leaf3). (d) At port 0xd00 (spine2)
towards port 0xb00 (leaf4).

FIGURE 9. Throughput measured at ports on switch spine1 (proposed). (a) At port 0xa00 (spine1) towards port 0xa00 (leaf1).
(b) At port 0xb00 (spine1) towards port 0xa00 (leaf2). (c) At port 0xc00 (spine1) towards port 0xa00 (leaf3). (d) At port 0xd00 (spine1)
towards port 0xa00 (leaf4).

FIGURE 10. Throughput measured at ports on switch spine2 (proposed). (a) At port 0xa00 (spine2) towards port 0xb00 (leaf1).
(b) At port 0xb00 (spine2) towards port 0xb00 (leaf2). (c) At port 0xc00 (spine2) towards port 0xb00 (leaf3). (d) At port 0xd00 (spine2)
towards port 0xb00 (leaf4).

synchronization between throughput change and event occur-
rences was made on the basis of the timestamp. At t1 where
MPI_Bcast started, both RX and TX throughput observed

at the ports of spine1 rise steeply and then maintain the
amount of approximately 14Mbps and 9Mbps, respectively,
while there is no clear growth of throughput at the ports

VOLUME 6, 2018 23379



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

of spine2. This indicates that only spine1 was utilized dur-
ing the execution of MPI_Bcast. When MPI_Bcast finished
and then MPI_Reduce started at t2, a sharp fall of through-
put at spine1 was observed, whereas a rapid uptake in the
throughput at spine2 was observed. After that, a sharp drop of
throughput at the ports of spine2 was observed immediately
when MPI_Reduce finished (t3). This measurement result
indicates that only spine2 was utilized during the execution
of MPI_Reduce. Based on these observations, it is confirmed
and verified that the network control is synchronized with the
execution of the MPI application.

C. EVALUATION OF OVERHEAD
The primary source of the overhead incurred by the pro-
posed mechanism is considered to be the tagging kernel
module, because it requires per-packet inspection and mod-
ification over all packets emitted from a computing node.
Additionally, rewriting the destination MAC address header
field in the switches to restore the true MAC address can
also be a source of overhead. In order to evaluate the total
overhead caused by the proposal, we measured the com-
munication performance of point-to-point MPI primitives
using the OSU Micro-Benchmark Suite 5.3 [14] between
node01 and node02 and compared the result with and without
the proposed mechanism. The reason to measure the perfor-
mance of point-to-point communication and not collective
communication is to remove unwanted influence from com-
plex algorithms and communication patterns of collective
communications. The osu_bw benchmark and osu_latency
benchmark included in the OSU Micro-Benchmark suite
were used tomeasure the bandwidth and latency, respectively.

Figure 11 shows a comparison of the throughput observed
between node01 and node02. Fig. 12 shows the comparison
result of latency for the same computing node pair. The plots
in Fig. 11 and Fig. 12 represent the average of 500 measure-
ments and 50,000 measurements, respectively. Fig. 13 shows
the overhead imposed to latency by the proposed mechanism.
These plots indicate that performance degradation imposed

FIGURE 11. Comparison of bandwidth.

FIGURE 12. Comparison of latency.

FIGURE 13. Absolute overhead to latency.

by the proposed mechanism is practically negligible for both
bandwidth and latency.

In this experiment, we only evaluated the performance of
point-to-point primitives. However, the fact that collective
primitives are often implemented using multiple point-to-
point primitives [6], [10] implies that the overhead of the
proposed mechanism is negligible for collective primitives as
well.

V. RELATED WORK
Several studies [3], [12] have been carried out to incorpo-
rate application-awareness into SDN. An extension to Open
vSwitch and OpenFlow has been proposed [12] to realize
an application-aware data plane. This extension adds flow
tables with application-specific actions to the packet pro-
cessing pipeline of Open vSwitch. Although this method
covers most network applications, it is not able to efficiently
read and process the payload of a packet because the flow
matching mechanism has not been modified from the plain
OpenFlow design. Thus, only pre-defined header fields can
be used as matching criteria. Moreover, applying this method

23380 VOLUME 6, 2018



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

to bare-metal computer clusters is challenging because the
hardware switches were out of the focus. The packet pro-
cessing pipelines of commercial hardware switches cannot
be modified since they are implemented using unmodifi-
able hardware. In contrast, our research supports existing
hardware switches and per-packet inspection.

An application-aware routing scheme for big data
applications has been presented in [3]. This routing scheme
maintains a global view of the network topology and link
usage. Based on this global view, the network controller
dynamically allocates a path for each Hadoop network flow
so that congestion is avoided and network utilization is
increased. Experiments demonstrated that the application-
aware SDN routing significantly improved the speed of the
shuffle phase in Hadoop, in comparison with conventional
routing mechanisms such as ECMP and Spanning Tree. The
concept of optimizing the traffic flow in the interconnect
based on application-layer information is similar to SDN-
enhanced MPI. However, the scheme to synchronize flow
installation and a Hadoop job has not been clarified in this
research.

Hybrid Flexibly Assignable Switch Topology (HFAST) [9]
interconnect architecture tailors the interconnect topology to
meet the communication requirements of different applica-
tions. This is achieved by utilizing reconfigurable optical cir-
cuit switches to dynamically provide the connection between
packet switches. Additionally, a process allocation algorithm
optimized for HFAST architecture is also presented. HFAST
architecture can reduce required hardware resources com-
pared to conventional fat-tree interconnects. Our research is
different from this research in terms that a technical design to
extract communication patterns from applications and convey
such information to the network controller in real-time is
exhibited.

A software-defined multicasting mechanism for MPI has
been presented in [1]. This mechanism offloads collective
MPI primitives to programmable NICs and OpenFlow
switches. This method heavily depends on specialized
hardware such as NetFPGA, whereas our proposal is
software-based.

Multi-Protocol Label Switching (MPLS) and UnisonFlow
share the similar idea of eliminating the need to examine
packet payloads by encoding upper layer information into
fixed-length tags that are processable by hardware. However,
to the best of our knowledge, no work has tackled to integrate
MPI with label switching networks.

VI. CONCLUSION
In this paper, we have proposed UnisonFlow, a software-
defined coordinationmechanism for SDN-enhancedMPI that
performs network control in synchronization with the execu-
tion of an application. The proposed mechanism is character-
ized by a kernel-assisted approach to tag packets that are emit-
ted from computing nodes with the MPI context information
of each packet. Experiments conducted on a computer cluster
have verified the synchronization between network control

and the execution of the application. Moreover, evaluation
experiments have indicated that the overhead incurred by the
coordination mechanism is practically negligible.

There are still issues to be addressed in the future. First,
SDN-enhanced MPI primitives developed in our previous
work [4], [19] need to be adjusted as MPI primitive mod-
ules on the interconnect controller and tested to see if they
are accelerated compared to conventional MPI primitives.
Second, performance evaluation using real-world MPI appli-
cations is necessary. Although we have developed some indi-
vidual SDN-enhanced MPI primitives and UnisonFlow as
the coordination mechanism of message-passing communi-
cation and computation, it is still unclear how these elements
can accelerate a practical application as a whole. Finally,
we need to investigate how this architecture can be adopted
to a computer cluster simultaneously running multiple jobs,
which is common in practical deployments. Since our current
implementation of the UnisonFlow assumes only one job
running at the same time on a node, we need to enhance it
to support multiple concurrent jobs. This enhancement might
involve an integration with the job scheduler.

REFERENCES
[1] O. Arap, G. Brown, B. Himebaugh, andM. Swany, ‘‘Software definedmul-

ticasting for MPI collective operation offloading with the NetFPGA,’’ in
Euro-Par 2014 Parallel Processing (Lecture Notes in Computer Science),
vol. 8632. Cham, Switzerland: Springer, 2014, pp. 632–643.

[2] I. Bird, ‘‘Computing for the large hadron collider,’’ Annu. Rev. Nucl.
Particle Sci., vol. 61, no. 1, pp. 99–118, 2011.

[3] L.-W. Cheng and S.-Y. Wang, ‘‘Application-aware SDN routing for big
data networking,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2015, pp. 1–6.

[4] K. Dashdavaa et al., ‘‘Architecture of a high-speed MPI_bcast leveraging
software-defined network,’’ in Euro-Par 2013: Parallel Processing Work-
shops (Lecture Notes in Computer Science), vol. 8374. Berlin, Germany:
Springer, 2014, pp. 885–894.

[5] W. Gropp, ‘‘MPICH2: A new start for MPI implementations,’’ in Recent
Advances in Parallel VirtualMachine andMessage Passing Interface (Lec-
ture Notes in Computer Science), vol. 2474. Berlin, Germany: Springer,
2002, p. 7.

[6] W. Huang, G. Santhanaraman, H.-W. Jin, Q. Gao, and D. K. Panda,
‘‘Design of high performance MVAPICH2: MPI2 over InfiniBand,’’ in
Proc. 6th IEEE Int. Symp. Cluster Comput. Grid (CCGRID), May 2006,
pp. 43–48.

[7] InfiniBand Architecture Specification Release 1.3, InfiniBand Trade Asso-
ciation, Beaverton, OR, USA, 2015.

[8] S. Kamil, L. Oliker, A. Pinar, and J. Shalf, ‘‘Communication requirements
and interconnect optimization for high-end scientific applications,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 21, no. 2, pp. 188–202, Feb. 2010.

[9] S. Kamil, A. Pinar, D. Gunter, M. Lijewski, L. Oliker, and J. Shalf,
‘‘Reconfigurable hybrid interconnection for static and dynamic scientific
applications,’’ in Proc. 4th Int. Conf. Comput. Frontiers (CF), May 2007,
pp. 183–194.

[10] J. M. Squyres and A. Lumsdaine, ‘‘The component architecture of open
MPI: Enabling third-party collective algorithms,’’ in Component Models
and Systems for Grid Applications. Norwell, MA, USA: Kluwer, 2005,
pp. 167–185.

[11] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-
works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[12] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. V. Lakshman,
‘‘Application-aware data plane processing in SDN,’’ inProc. 3rdWorkshop
Hot Topics Softw. Defined Netw. (HotSDN), 2014, pp. 13–18.

[13] M. P. Forum. (2012). MPI: A Message-Passing Interface Standard.
[Online]. Available: https://www.mpi-forum.org/docs/mpi-3.0/mpi30-
report.pdf

VOLUME 6, 2018 23381



K. Takahashi et al.: UnisonFlow: Software-Defined Coordination Mechanism

[14] OOhio State University. (2016). MVAPICH :: Benchmarks. [Online].
Available: http://mvapich.cse.ohio-state.edu/benchmarks/

[15] R. Rabenseifner, ‘‘Optimization of collective reduction operations,’’ in
Computational Science—ICCS (Lecture Notes in Computer Science),
vol. 3036. Berlin, Germany: Springer, 2004, pp. 1–9.

[16] R. Rosen, Linux Kernel Networking: Implementation and Theory.
New York, NY, USA: Apress, 2013.

[17] Ryu SDNFramework Community. (2014).Ryu SDNFramework. [Online].
Available: https://osrg.github.io/ryu/

[18] K. Takahashi et al., ‘‘Concept and design of SDN-enhanced MPI frame-
work,’’ in Proc. 4th Eur. Workshop Softw. Defined Netw. (EWSDN),
Sep./Oct. 2015, pp. 109–110.

[19] K. Takahashi, D. Khureltulga, Y. Watashiba, Y. Kido, S. Date, and
S. Shimojo, ‘‘Performance evaluation of SDN-enhanced MPI allreduce
on a cluster system with fat-tree interconnect,’’ in Proc. Int. Conf. High
Perform. Comput. Simulation (HPCS), Jul. 2014, pp. 784–792.

KEICHI TAKAHASHI (S’15) received the M.Eng.
degree from Osaka University in 2016, where
he is currently pursuing the Ph.D. degree with
the Graduate School of Information Science and
Technology. His main research interests include
high-performance computing and parallel dis-
tributed computing. He is a Student Member of
ACM and IPSJ.

SUSUMU DATE (M’08) received the B.E., M.E.,
and Ph.D. degrees from Osaka University in 1997,
2000, and 2002, respectively. He was an Assistant
Professor with the Graduate School of Information
Science and Technology, Osaka University, from
2002 to 2005. He was also a Visiting Scholar
with the University of California at San Diego,
San Diego, in 2005. From 2005 to 2008, he was
involved in the internationalization of education
with the Graduate School of Information Science

and Technology, Osaka University, as a specially appointed Associate Pro-
fessor. Since 2008, he has been an Associate Professor with the Cyberme-
dia Center, Osaka University. He is currently an Associate Professor with
the Cybermedia Center, Osaka University. His research field is computer
science, and his current research interests include cloud, cluster, grid, high-
performance computing, and their applications. He is a member of IPSJ.

DASHDAVAA KHURELTULGA received the
M.Eng. degree from Osaka University in 2015,
where he is currently pursuing the Ph.D. degree
with the Graduate School of Information Science
and Technology.

YOSHIYUKI KIDO (M’06) received the Ph.D.
degree from Osaka University in 2008. He was
a specially appointed Assistant Professor with
the Center for Advanced Medical Engineering
and Informatics, Osaka University, from 2008 to
2011, and with the Graduate School of Informa-
tion Science and Technology, Osaka University,
from 2011 to 2012. He was involved in RIKEN,
the HPCI Program for Computational Life
Science from 2012 to 2013. He became a

specially-appointed Associate Professor with the Cybermedia Center, Osaka
University, in 2013, where he is currently an Associate Professor. His
research field is computer science with bioscience, and his current research
interests include visualization, software-defined networking, cluster comput-
ing, and related information technologies. He is a member of CS and IPSJ.

HIROAKI YAMANAKA (M’17) received the
M.E. and Ph.D. degrees from Osaka University
in 2008 and 2011, respectively. Since 2011, he
has been a Researcher with the National Insti-
tute of Information and Communications Technol-
ogy. He was involved in the research of network
virtualization and SDN technologies. His current
research interests include edge computing and IoT
technologies.

EIJI KAWAI (M’99) received the Ph.D. degree
in information systems from the Nara Institute of
Science and Technology (NAIST) in 2001. From
2000 to 2003, he was an Awarded Researcher
with the Japan Science and Technology Corpora-
tion. From 2003 to 2009, he was with the Gradu-
ate School of Information Science, NAIST, as an
Assistant Professor and an Associate Professor.
In 2009, he joined the National Institute of Infor-
mation and Communications Technology, where

he is currently the Director of the ICT Testbed Research, Development and
Operations Laboratory.

SHINJI SHIMOJO (M’03) received the M.E. and
Ph.D. degrees from Osaka University in 1983 and
1986, respectively. He was an Assistant Pro-
fessor with the Department of Information and
Computer Sciences, Faculty of Engineering Sci-
ence, Osaka University, in1986, where he was an
Associate Professor with the Computation Center
from 1991 to 1998. From 1991 to 1998, he was
also a Visiting Researcher with the University of
California at Irvine, Irvine, for a year. He has been

a Professor with the Cybermedia Center (then the Computation Center),
Osaka University, since 1998. From 2008 to 2011, he was an Executive
Researcher and the Director of the Network Testbed Research and Develop-
ment Promotion Center, National Institute of Information and Communica-
tions Technology. He is currently the Director of the Cybermedia Center. His
current research interests include a wide variety of multimedia applications,
peer-to-peer communication networks, ubiquitous network systems, and IoT
systems. He is a fellow of IEICE and IPSJ. He is a Founding Member of
PRAGMA and CENTRA. He received the Osaka Science Prize in 2005 and
an award by the Minister of Internal affair on 2017.

23382 VOLUME 6, 2018


	INTRODUCTION
	RESEARCH OBJECTIVE
	MESSAGE PASSING INTERFACE (MPI)
	SOFTWARE DEFINED NETWORKING (SDN)
	SDN-ENHANCED MPI
	CENTRAL CHALLENGE OF SDN-ENHANCED MPI

	PROPOSAL
	BASIC IDEA
	ARCHITECTURE
	OVERVIEW
	INTRA-NODE ARCHITECTURE
	INTER-NODE ARCHITECTURE


	EVALUATION
	EXPERIMENTAL ENVIRONMENT
	VERIFICATION OF COORDINATION MECHANISM
	EVALUATION OF OVERHEAD

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	KEICHI TAKAHASHI
	SUSUMU DATE
	DASHDAVAA KHURELTULGA
	YOSHIYUKI KIDO
	HIROAKI YAMANAKA
	EIJI KAWAI
	SHINJI SHIMOJO


