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ABSTRACT Accurate inventory management starts with the scientific and rational classification of
numerous varieties of spare parts. This paper presents a stochastic data envelopment analysis (DEA)
model to address the problem of optimization of spares varieties under uncertainty. An index system is
proposed in terms of product life-cycle process, which contains five design indexes, four operation indexes
and five support indexes. Then, the quantification method of the index system is briefly discussed in
preparation for mathematical calculation. A stochastic spares optimization model (SSOM) is proposed based
on stochastic DEA with the constraints of 14 factors of the index system. The SSOM could be converted into
equivalent deterministic models by probability theory, which overcomes the difficulty in solving non-linear
programming. A numerical example is given to illustrate the proposed method in terms of ability to provide
reasonable inventory management policies.

INDEX TERMS Uncertain environment, spare parts, optimization, stochastic, data envelopment analysis.

I. INTRODUCTION
Spares parts, which are stocked to replace failed parts, are
the indemnification goods for plants to maintain normal func-
tioning. Stocking strategy for spare parts has a pivotal influ-
ence on the productivity and efficiency of industrial plants.
Conservative strategy may lead to overstocking and high cost
of inventory, which will reduce the profit of industrial plants.
On the other hand, optimistic strategy may result in shortage
of necessary spare parts, long machine downtime and decre-
ment in productivity. Therefore, optimization of spare parts
varieties plays an important role in inventory management.

There are considerable existing literatures on optimizing
stocking strategy of spare parts. It is important to have a
reasonable index system before optimizing the controlling
strategy. Some researchers tried to solve this problem by a
single attribute. For example, Nahmias [1] proposed a one-
dimensional approach that is only based on total cost. How-
ever, strategy with only one single attribute cannot solve the
problem when the spare parts are competing. Many multi-
attribute evaluation systemswere then developed to overcome
this difficulty. As was reported in Ng [2], Zhou and Fan [3],
Hadi-Vencheh [4] and Lin et al. [5] a classification scheme
including annual dollar usage, lead time and average unit cost
was proposed. Multi-attribute decision making techniques
were employed byMolenaers et al. [6], Almeida and Erel [7],

and Sharaf and Helmy [8] to provide reasonable decision-
making proposals. Deterministic attribute models were grad-
ually developed into random attribute models in terms
of parameter dispersion. Quantitative analyses for inde-
terministic variables were then carried out. Wang [9]
established a stochastic model for joint spare parts inven-
tory and planned maintenance optimization considering
the random nature of plant failures and then applied
stochastic dynamic programming to find the optimal solu-
tions over a finite time horizon. Godoy et al. [10]
presented a graphical technique which considered a stochas-
tic lead time and a reliability threshold to enhance spare parts
ordering decision-making. Gu et al. [11] assumed that the
probability density distribution functions of lifetime and the
number of failures follow normal distributions, then worked
out the optimal order quantities by minimizing the total cost.
Li et al. [12] proposed a stochastic programming model
to seek a optimal spare parts ordering and pricing policy
from a distributor’s view. Zamar et al. [13] developed a
quantile-based scenario analysis approach for stochastic sup-
ply chain optimization under uncertainty. However, the above
research mainly focus on factors that influence the demand
of spare parts in the normal operational stage or supporting
stage and few articles investigate the factors in the whole
product life-cycle process. In this paper, we will establish
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a comprehensive index system in terms of the whole product
life-cycle process, including design factors, operation factors
and support factors.

Once the evaluation indexing system is established, it will
need to choose a kind of evaluation method that can evaluate
the importance of these factors. Many methods have emerged
in this field. The well-known ABC classification [3], [4], [14]
is simple to use and easy to understand. However, ABC
analysis is based on only single measurement such as annual
dollar usage. Other criteria have gradually been recognized
to be important in inventory management. Analytic hierarchy
process (AHP) was adopted to determine the weights of
factors for multi-attribute evaluation system. For example,
Braglia et al. [15] employed AHP on an inventory policy
matrix based on the reliability centered maintenance (RCM)
to identify the best control strategy. Molenaers et al. [6]
firstly presented the multi-criteria classification issue in a
logic decision tree based on item criticality, then used AHP
at different nodes of the diagram and converted relevant
criteria into a single scalar to represent the criticality of the
part. However, AHP requires subjective judgment when mak-
ing pair-wise comparisons. Heuristic algorithms like genetic
algorithms [7], [16] and artificial neural networks [17], [18]
were also utilized to evaluate the importance of index system.
However, they are complex and difficult in application.

Data Envelopment Analysis (DEA) is a Linear Program-
ming based technique for the analysis of efficiency of organi-
zations with multiple inputs and outputs and is proposed by
Charnes et al. in 1978 [19]. In DEA, the organization under
study is called a DMU (decision-making unit). Suppose there
are nDMUs in a DEAmodel: DMU0 is target DMU, DMUi is
the ith DMU (i = 1, 2, · · · , n), xi = (xi1, xi2, . . . , xip) is
the inputs vectors of DMUi, x0 = (x01, x02, . . . , x0p) is the
inputs vector of DMU0, yi = (yi1, yi2, . . . , yip) is the outputs
vectors of DMUi, y0 = (y01, y02, . . . , y0p) is the outputs
vector of DMU0, u ∈ Rp×1 is the vector of input weights,
v ∈ Rp×1 is the vector of output weights. Then a typical basic
DEA model called CCR is represented as follows:

max θ =
vty0
utx0

subject to :
vtyi ≤ utxi, i = 1, 2, . . . , n,
u ≥ 0
v ≥ 0.

(1)

In the above model, the objective is to obtain the ratio of
the weighted output to the weighted input weights with the
constraints that the ratio of virtual outputİ vs. virtual inputİ
should not exceed 1 for every DMU. By virtue of the con-
straints, the optimal objective value θ∗ is at most 1. The
optimal solution θ∗ yields an efficiency score for a par-
ticular DMU and the process is repeated for each DMUi,
i = 1, 2, . . . , n. DEAmethod can be regarded as a production
process with multiple inputs and outputs. As is known, all
the manufactures hope to produce maximum outputs with the

least inputs. This principle is also reflected in DEA model.
The DMU will be more effective than other DMUs if it has
a larger optimal value. Therefore, DMUs are regarded to be
inefficient if θ∗ < 1, while DMUs are efficient if θ∗ = 1.
Compared with the aforesaid methodology, DEA have the
advantages in avoiding subjective factors, having simple
algorithms and reducing errors. Moreover, it can con-
tain controllable input (output) and non-controllable input
(output). DEA can efficiently deal with fact that the
numerical dimension is not unified. Several DEA mod-
els, i.e. BCC model and Additive model, have been
developed to suit different application scenarios [20]–[23].
In view of the situation that inputs and outputs of
the DMU cannot be accurately determined, many liter-
atures have proposed opportunity constrained program-
ming models [24]–[26], stochastic DEA models [27]–[30]
and fuzzy DEA models [31]. In this paper, some factors in
index system, i.e. corrective maintenance time, logistic delay
time and mission time, are assumed to be random variables,
considering that their values will change with real-life situ-
ations. Therefore, a stochastic DEA model is employed to
address the problem of optimization of spare parts varieties.

The reminder of this paper is organized as follows.
In section 2, a comprehensive index system is estab-
lished in terms of the whole product life-cycle process.
Section 3 briefly introduces the quantification method of the
index systems with respect to qualitative factors and quanti-
tative factors. Section 4 establishes the stochastic spares opti-
mization model (SSOM) based on stochastic DEA method.
Some algorithms are addressed to obtain the equivalent deter-
ministic model in Section 5. A numerical example is given to
illustrate the SSOM in Section 6. Section 7 summarizes the
main work and contributions of this paper.

II. ESTABLISHMENT OF INDEX SYSTEM
In this section, an index system is established in terms of
design, operation and support as shown in Fig. 1. Design
factors are composed of mean time between failures (MTBF),
consequences of failure (CoF), the number of stand-alone
installation, replace-ability and standard part, which are
determined in the design phase. Operation factors are the
attributes that influence the inventory of spare parts in
the operation phase, including operation environment, turn
around time (TAT), mission time and the number of equip-
ment. Support factors consist of corrective maintenance time,
logistic delay time, the number of suppliers, purchase lead
time and cost, which are related to logistics and maintenance.

A. DESIGN INDEXES
The subsection below describes the properties of five design
indexes.

MTBF refers to the average amount of time that a
device or product functions before failing, which is an
important index in repairable system [32]. MTBF is an
important parameter for measuring the reliability and
availability [33], [34]. Spare parts with short MTBFs are
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FIGURE 1. Index system.

always at a low level of reliability and availability and need
frequent maintenance. Therefore, items with short MTBFs
should be kept at high inventory levels.

CoF refers to losses or damages that are caused by a failure.
Generally, consequences of failure could be classified into
five types in terms of severity, i.e. catastrophic consequences,
critical consequences, severe consequences, marginal conse-
quences and negligible consequences. Items that are likely
to cause serious consequences may high inventory levels
because their shortage of spare parts will have a critical
impact on the overall system.

The number of stand-alone installation is the number of a
kind of component or unit installed on an equipment, which
is clarified in the design phase. The number of stand-alone
installation may, to some extent, reflect the demand for spare
parts. Components with a large number of stand-alone instal-
lation are more likely to fail, so the demand for spare parts is
higher.

Replace-ability is the capability of an item to be replaced
by site workers. Components without replace-ability cannot
be replaced in the current site and need to be sent to senior
site. Thus, it is reasonable to reduce the inventory level of
items with poor site replace-ability.

A standard part refers to a part or material that conforms to
an established industry published specification. The lack of
non-standard parts is more difficult to handle than standard
parts because standard parts are interchangeable and easier
to obtain than non-standard parts. Therefore, it is necessary
to maintain the inventory level of non-standard parts.

B. OPERATION INDEXES
This subsection gives a brief introduction of operation
indexes, including mission time, operation environment,
turnaround time (TAT) and the number of equipment.

Mission refers to the task, together with the purpose,
that clearly indicates the action to be taken and the reason

therefore [35]. Mission time is the length of time to complete
the mission. Mission time has a direct impact on the demand
for spare parts because more spare parts may need to be
replaced within a longer mission time.

Operational environment is defined as a composite of
the conditions, circumstances, and influences that affect the
employment of capabilities and bear on the decisions of the
commander [35]. The operating environment has a crucial
influence on the life of components and the demand for com-
ponents. For example, the operating environment of aircraft
engines is more stringent than displays installed in cockpits
in the same plane. The screws on the engine are more likely
to fail than the screws on the display. Therefore, the spare
parts for the screws on the engine are higher than those on
the display.

Turnaround time (TAT) is defined as the length of time
between arriving at a point and being ready to depart from that
point [35]. TAT depends on the properties of equipment as
well as maintainability and supportability in practice, andwill
change with the real scenarios. TAT has a obvious influence
on the requirement of spare parts as there is not enough time
to prepare spare parts in case of limited TAT.

The sum of equipments is the total number of the equip-
ments participating in the mission. The sum of equipments is
of interest because the requirement of inventory of spare parts
is in a proportional relationship with it.

C. SUPPORT INDEXES
The subsection below describes the properties of five support
indexes.

Corrective maintenance time is the time that begins with
the observance of a malfunction of an item and ends when
the item is restored to a satisfactory operating condition [36].
Corrective maintenance time could represent one item’s
maintainability. Components with long corrective mainte-
nance time are poor in maintainability and thus should main-
tain high inventory levels.

Logistic delay time is the component of downtime dur-
ing which no maintenance is being accomplished on the
item because of technician alert and response time, supply
delay, or administrative reasons [36]. As the shortage of these
spare parts may cause huge time and money costs, spare
parts with long logistics delay time should maintain a high
inventory level.

Purchase lead time is defined as the time between
the initiation and completion of a purchase process and
could be determined by market research and historical
experience. Parts with long purchase lead time are more
likely to be in short supply. Therefore, spare parts with a
long procurement cycle should maintain a stable inventory
level.

The number of suppliers is the sum of suppliers who can
provide required spare parts. According to MIL-STD-965B,
components are selected from program parts selection
list (PPSL) and their suppliers are then determined. The
number of suppliers has a direct effect on the supply stability
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TABLE 1. Quantification principles.

because components with the large number of suppliers are
at a low risk in shortage.

Cost include cost of purchase and cost of storage. The cost
of spare parts is determined by their natural properties and is
therefore determined during the design phase. It is intuitive to
store the spare parts whose cost is at a low level with respect
to costs-saving.

III. QUANTIFICATION METHOD OF INDEX SYSTEM
Quantification is an important step before we take the indexes
into mathematical models. Based on the properties of indexes
demonstrated in Section II, these indexes could be clas-
sified into two types, qualitative indexes and quantitative
indexes.

Qualitative indexes include operational environment (OE),
replace-ability (RA), standard part (SP), consequences of
failure (CoF). To employ these factors in the mathematical
model, Table 1 shows the qualification principles of these
indexes.

Quantitative indexes could be further divided into two sub-
types, deterministic factors and random factors. Deterministic
factors could be represent by crisp values and include the
sum of equipments, the number of stand-alone installation,
purchase lead time, the number of suppliers and cost. Specif-
ically, purchase lead time, the number of suppliers and cost
could obtained by market research or historical experiences.
The sum of equipments and the number of stand-alone instal-
lation are designed according to the requirements of mission.
Random factors are the variables that will change with actual
scenarios, including TAT, MTBF, mission time, corrective
maintenance time and logistic delay time. The approach to
determine these quantitative indexes is not demonstrated here
as it is not the focus of this paper.

IV. MODELING SSOM BASED ON STOCHASTIC DEA
In this section, we develop a stochastic programming model
based on Additive model proposed by Charnes et al. [21]
in 1985 which considers the total slacks of inputs and
outputs simultaneously in arriving at a point on the effi-
cient frontier. In the proposed stochastic spares optimization
model (SSOM), every candidate inventory item is regarded as
a decision-making unit (DMU). The constraints derive from
the index system. The objective is to find the optimum which
simultaneously maximizes outputs and minimizes inputs in
the sense of vector optimizations. The candidate DMU is
efficient when the objective is zero, based on which we can
rank all candidate DMUs. The section is organized as follows.
Firstly, we give a brief introduction on the relative symbols

and notations. Then we classify 14 factors into input variables
and output variables. The SSOM is subsequently established
with input vectors and output vectors. Finally, a ranking
criterion is given and illustrated, based on which we can give
priorities to all candidate DMUs.

Assume that there are n DMUs and then relative symbols
and notations are introduced as follows:

DMUk : the kth DMU, k = 1, 2, · · · , n;
DMU0 : target DMU;
T̃k : the random TAT of DMUk ;
F̃k : the random MTBF of DMUk ;
W̃k : the random mission time of DMUk ;
M̃k : the random corrective maintenance time of DMUk ;
D̃k : the random logistic delay time of DMUk ;
Sk : the number of suppliers of DMUk ;
Ek : the operational environment of DMUk
Gk : the consequences of failure of DMUk ;
Ak : the replace-ability of DMUk ;
Pk : standard part or not of DMUk ;
Nk : the number of stand-alone installation of DMUk ;
Zk : the number of equipments of DMUk ;
Lk : the purchase lead time of DMUk ;
Ck : the cost of DMUk ;
λk : the weght of kth DMU i = 1, 2, · · · , n;
s−i : the slack of each ith input;
s+j : the slack of each jth output;

Pr is the probability measure;
α is belief degree which is a predetermined number

between 0 and 1.
DEA method can be regarded as a production process with

multiple inputs and outputs. As is known, all the manufac-
tures hope to produce maximum outputs with the least inputs.
Therefore, this principle is also reflected in DEA model. The
DMU will be more effective than other DMUs if it has a
smaller input as well as a larger output. According to the
strategy tendency with smaller inputs and larger outputs,
we divide all the parameters into input indexes and output
indexes. It should be classified as input index if more atten-
tions need to be paid to the smaller parameter, conversely it
should be regarded as output index. For example, MTBF is
regarded as an input index because items with shorter MTBF
are more important with the aim of selecting pivotal spare
parts varieties. By contrast, purchase lead time is regarded
as an output variable as it is more likely to be short of the
spare parts whose purchase lead time is long. The inputs and
outputs are:

Xk = {T̃k , F̃k , Sk ,Ek ,Gk ,Ak ,Ck}, k = 1, 2, 3, . . . , n;
Yk = {W̃k ,Nk ,Zk , M̃k ,Lk , D̃k ,Pk}, k = 1, 2, 3, . . . , n.
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Then the SSOM is:

max θ =
7∑
i=1

s−i +
7∑
j=1

s+j

subject to :

Pr

{
n∑

k=1

T̃kλk ≤ T̃0 − s
−

1

}
≥ α,

Pr

{
n∑

k=1

F̃kλk ≤ F̃0 − s
−

2

}
≥ α,

Pr

{
n∑

k=1

W̃kλk ≥ W̃0 + s
+

1

}
≥ α,

Pr

{
n∑

k=1

M̃kλk ≥ M̃0 + s
+

4

}
≥ α,

Pr

{
n∑

k=1

D̃kλk ≥ D̃0 + s
+

6

}
≥ α,

n∑
k=1

Skλk ≤ S0 − s
−

3 ,

n∑
k=1

Ekλk ≤ E0 − s
−

4 ,

n∑
k=1

Gkλk ≤ G0 − s
−

5 ,

n∑
k=1

Akλk ≤ A0 − s
−

6 ,

n∑
k=1

Ckλk ≤ C0 − s
−

7 ,

n∑
k=1

Nkλk ≥ N0 + s
+

2 ,

n∑
k=1

Zkλk ≥ Z0 + s
+

3 ,

n∑
k=1

Lkλk ≥ L0 + s
+

5 ,

(2a)



n∑
k=1

Pkλk ≥ P0 + s
+

7 ,

n∑
k=1

λk = 1,

λk ≥ 0, k = 1, 2, · · · , n

s−i ≥ 0, i = 1, 2, · · · , 7

s+j ≥ 0, j = 1, 2, · · · , 7

(2b)

RANKING CRITERION
The closer θ is to zero, the more efficient the DMU0 is
ranked.

The θ is the sum of all the input slacks and output slacks
for one DMU. To let θ close to 0, either the inputs are
small, or the outputs are larger, or both of them. Thus the
closer to 0 the θ is, the more potential the DMU has got to be
reserved.

We can give priorities to DMUs by the ranking
criterion, based on which inventory policies could be
determined.

V. EQUIVALENT DETERMINISTIC MODEL
This section simplifies the constraints of random variables
and develops equivalent deterministic models to overcome
the difficulty in solving nonlinear programming.
Defination 1: (Liu [37]) Suppose that ξ is a random

variable defined on probability space (�, Ã,Pr). For any
α ∈ (0, 1] , the α-optimistic values of ξ are defined
as

ξsup(α) = sup{r|Pr{ξ ≥ r} ≥ α}.
Defination 2: (Liu [37]) Suppose that ξ is a random

variable defined on probability space (�, Ã,Pr). For any
α ∈ (0, 1] , the α-pessimistic values of ξ are defined
as

ξinf(α) = inf{r|Pr{ξ ≤ r} ≥ α}.
Defination 3: A real-valued function f defined on a convex

set X ∈ Rn is said to be quasiconcave if

f (λx + (1− λ) v) ≥ min {f (x) , f (v)}

for any x, y ∈ X and 0 < λ < 1.
Theorem 1: Assume T̃1, T̃2, . . . , T̃n are independent ran-

dom variables defined on probability space (�, Ã,Pr).
If Pr{T̃k = xk}(k = 1, 2, · · · , n) are quasiconcave, and any
α is given in (0.5, 1] , λk ∈ [0, 1], then for

Pr

{
n∑

k=1

T̃kλk ≤ T̃0 − s
−

1

}
≥ α, (3)

we have
n∑

k=1,k 6=0

{λk (T̃k )inf(α)} + λ0[(T̃0)sup(α)] ≤ (T̃0)sup(α)− s
−

1 .

(4)
Proof 1: Without loss of generality, let n = 2, λ1 = λ0 and

T̃1 = T̃0, then we will consider the equation

Pr
{
T̃0λ0 + T̃2λ2 ≤ T̃0 − s

−

1

}
≥ α. (5)

Rewrite equation (5) as

Pr
{
(1− λ0) T̃0 + (−λ2) T̃2 ≤ s

−

1

}
≤ 1− α. (6)

Then we have

Pr{(1− λ0) T̃0 + (−λ2) T̃2 ≤ s
−

1 }

= 1− sup
x1+x2>s

−

1

{Pr{(1− λ0)T̃0 = x1} ∧ Pr{(−λ2) T̃2 = x2}}

≤ 1− α. (7)
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TABLE 2. Quantification results of qualitative indexes .

Hence,

sup
x1+x2>s

−

1

{Pr{(1− λ0) T̃0 = x1} ∧ Pr{(−λ2) T̃2 = x2}} ≥ α.

Suppose that
(
x∗1 , x

∗

2

)
= arg sup

x1+x2∈R
Pr{{(1− λ0) T̃0 =

x1} ∧ Pr{(−λ2) T̃2 = x2}|{x1 + x2 > s−1 }} ≥ α}.
It follows that Pr{(1− λ0) T̃0 = x∗1 } ∧ Pr{(−λ2) T̃2 =

x∗2 } ≥ α and x
∗

1 + x
∗

2 > s−1 .
Since Pr{(1− λ0) T̃0 = x∗1 } ∧ Pr{(−λ2) T̃2 = x∗2 } ≥ α

implies that Pr{(1− λ0) T̃0 = x∗1 } ≥ α, Pr{(−λ2) T̃2 =
x∗2 } ≥ α.
From that the functions Pr{(1− λ0) T̃0 = x1} and

Pr{(−λ2) T̃2 = x2} are quasiconcave, we have

x∗1 ≤ ((1− λ0) T̃0)sup(α), x∗2 ≤ ((−λ2) T̃2)sup(α).

Then we get

((1− λ0) T̃0)sup(α)+ ((−λ2) T̃2)sup(α) ≥ s
−

1 .

Otherwise,

((1− λ0) T̃0)sup(α)+ ((−λ2) T̃2)sup(α) < s−1 ,

Pr{(1− λ0) T̃0 = ((1− λ0) T̃0)sup(α)} ≤ Pr{(1− λ0)̃T0 =
x∗1 },

Pr{(−λ2) T̃2 = ((−λ2) T̃2)sup(1 − α)} ≤ Pr{(−λ2)̃T2 =
x∗2 },
which are contradict with probability function Pr{ξ ≥
ξsup(α)} ≥ α.
Conversely, if

((1− λ0) T̃0)sup(α)+ ((−λ2) T̃2)sup(α) ≥ s
−

1 ,

we get

Pr{(1− λ0) T̃0 = a1} ≥ α,

Pr{(−λ2) T̃2 = a2} ≥ α.

since a1 < ((1− λ0) T̃0)supα, a2 < ((−λ2) T̃2)sup(α).
Consequently,
sup

x1+x2∈R
Pr{{(1− λ0) T̃0 = x1} ∧ Pr{(−λ2) T̃2 = x2}|{x1 +

x2 > s−1 }} ≥ α}.

TABLE 3. Quantification results of deterministic indexes .

Then,

Pr{(1− λ0) T̃0 + (−λ2) T̃2 ≤ s
−

1 }

= 1− sup
x1+x2>s

−

1

{Pr{(1−λ0) T̃0 = x1} ∧ Pr{(−λ2) T̃2 = x2}}

≤ 1− α.

Finally, we can get

((1− λ0) T̃0)sup(α)+ (
n∑

k=1,k 6=0

(
(−λk) T̃k )sup(α)

)
≥ s−1 (8)

If λk = 0 or 1, it is obvious that

((1− λ0) T̃0)sup(α) = (1− λ0) (T̃0)sup(α)
((−λk) T̃k )sup(α) = (−λk) (̃Tk )inf(α)

If λk ∈ (0, 1), then 1− λθ > θ ,−λk < θ ,

((1− λ0) T̃0)sup(α)

= sup{r|Pr{(1− λ0) T̃0 ≥ r} ≥ α}

= (1− λ0) sup{r/ (1− λ0) |Pr{T̃0 ≥ r/ (1− λ0)} ≥ α}

= (1− λ0) (T̃0)sup(α),

((−λk) T̃k )sup(α)

= sup{r|Pr{(−λk) T̃k ≥ r} ≥ α}

= −λk sup{−r/λk |Pr{T̃k ≤ −r/λk} ≥ α}

= (−λk) (̃Tk )inf(α).

Then, equation (8) can be rewritten as:

n∑
k=1,k 6=0

{λk (T̃k )inf(α)} + λ0[(T̃0)sup(α)] ≤ (T̃0)sup(α)− s
−

1 .

(9)

Similarly, we may simplify other random constraints
in the same way, the model (2) can be rewrite as
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model (10).

max θ =
7∑
i=1

s−i +
7∑
j=1

s+j

subject to :
n∑

k=1

{λk (T̃k )inf(α)} + λ0[(T̃0)sup(α)− (T̃0)inf(α)]

≤ (T̃0)sup(α)− s
−

1 ,
n∑

k=1

{λk (F̃K )inf(α)} + λ0[(F̃0)sup(α)− (F̃0)inf(α)]

≤ (F̃0)sup(α)− s
−

2 ,
n∑

k=1

{λk (W̃k )sup(α)} + λ0[(W̃0)inf(α)− (W̃0)sup(α)]

≥ (W̃0)inf(α)+ s
+

1 ,
n∑

k=1

{λk (M̃k )sup(α)} + λ0[(M̃0)inf(α)− (M̃0)sup(α)]

≥ (M̃0)inf(α)+ s
+

4 ,
n∑

k=1

{λk (D̃k )sup(α)} + λ0[(D̃0)inf(α)− (D̃0)sup(α)]

≥ (D̃0)inf(α)+ s
+

6 ,
n∑

k=1

Skλk ≤ S0 − s
−

3 ,

n∑
k=1

Ekλk ≤ E0 − s
−

4 ,

n∑
k=1

Gkλk ≤ G0 − s
−

5 ,

n∑
k=1

Akλk ≤ A0 − s
−

6 ,

n∑
k=1

Ckλk ≤ C0 − s
−

7 ,

n∑
k=1

Nkλk ≥ N0 + s
+

2 ,

(10a)



n∑
k=1

Zkλk ≥ Z0 + s
+

3 ,

n∑
k=1

Lkλk ≥ L0 + s
+

5 ,

n∑
k=1

Pkλk ≥ P0 + s
+

7 ,

n∑
k=1

λk = 1,

λk ≥ 0, k = 1, 2, · · · , n
s−i ≥ 0, i = 1, 2, · · · , 7
s+j ≥ 0, j = 1, 2, · · · , 7

(10b)

Especially, when random variables obey normal distribu-
tions and they are independent, the equivalent model can be

rewrite as model (11),



max θ =
7∑
i=1

s−i +
7∑
j=1

s+j

subject to :
n∑

k=1,k 6=0

T k +8−1(α)σ ITkλk + λ0[T 0 − σ
I
T08

−1(α)]

≤ [T 0 − σ
I
T08

−1(α)]− s−1 ,
n∑

k=1,k 6=0

Fk +8−1(α)σ IFkλk + λ0[F0 − σ
I
F08

−1(α)]

≤ [F0 − σ
I
F08

−1(α)]− s−2 ,
n∑

k=1,k 6=0

(W k −8
−1(α)σOWk )λk + λ0[W 0 + σ

O
W08

−1(α)]

≥ [W 0 + σ
O
W08

−1(α)]+ s+1 ,
n∑

k=1,k 6=0

(M k −8
−1(α)σOMk )λk + λ0[M0 + σ

O
M08

−1(α)]

≥ [M0 + σ
O
M08

−1(α)]+ s+4 ,
n∑

k=1,k 6=0

(Dk −8−1(α)σODk )λk + λ0[D0 + σ
O
D08

−1(α)]

≥ [D0 + σ
O
D08

−1(α)]+ s+6 ,
n∑

k=1

Skλk ≤ S0 − s
−

3 ,

n∑
k=1

Ekλk ≤ E0 − s
−

4 ,

n∑
k=1

Gkλk ≤ G0 − s
−

5 ,

n∑
k=1

Akλk ≤ A0 − s
−

6 ,

n∑
k=1

Ckλk ≤ C0 − s
−

7 ,

n∑
k=1

Nkλk ≥ N0 + s
+

2 ,

n∑
k=1

Zkλk ≥ Z0 + s
+

3 ,

n∑
k=1

Lkλk ≥ L0 + s
+

5 ,

n∑
k=1

Pkλk ≥ P0 + s
+

7 ,

n∑
k=1

λk = 1,

(11a)


λk ≥ 0, k = 1, 2, · · · , n
s−i ≥ 0, i = 1, 2, · · · , 7
s+j ≥ 0, j = 1, 2, · · · , 7

(11b)
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TABLE 4. Distributions of random variables.

TABLE 5. Optimal results.

where 8−1 (α) is the inverse function of the standard
normal distribution, σ ITK is the standard deviation of
Tk (k = 1, 2, ..., n), σ IT0 is the standard deviation of T0,
T k is the average value of Tk (k = 1, 2, ..., n), T 0 is the
average value of T0. σOWk

is the standard deviation of
Wk (k = 1, 2, ..., n), σOW0

is the standard deviation of W0,
W k is the average value of Wk (k = 1, 2, ..., n), W 0 is the
average value of W0.

VI. A NUMERICAL EXAMPLE
In this section, we apply and evaluate the performance of the
proposed method to address the problem of optimization of
spare parts varieties. Firstly, we introduce the background on
this simple system and the information of input and output
factors. Then we calculate the optimal value of each DMU
under SSOM. Finally, we provide some decision proposals
on inventory management.

We focus on a depot which support eight airplanes in a mis-
sion. Ten items are selected randomly from the airplane parts
list as an example to illustrate the proposed approach. The
quantification results of qualitative indexes are obtained from
expert elicitation as shown table 2. The quantification results
of deterministic indexes are determined by mission require-
ments and historical data, as shown in table 3. The dis-
tributions of random variables are supposed to be normal
distributions to reduce the computational complexity and the
relative data are shown in table 4.

We regard each type of item as a DMU to calculate the
optimal value in SSOM and then select the appropriate spare
parts based on these optimal results. The input values and
output values are taken from the quantification results as
shown in table 2 to 4. Specifically, the belief degree α is 0.80,
which means that the target DMU could meet the restrictions
with the probability of 0.80. The optimal results solved by the
SSOM is shown in table 5.

According to the ranking criteria, the basic ranking order
is DMU4, DMU5, DMU 6, DMU7, DMU8, DMU9, DMU10,
DMU1, DMU2, DMU3, in which DMU4 to DMU10 are
equally important. Based on the ranking order, the basic
inventory policy is to store item 4 to item 10. Moreover,

we could distinguish the equally important items by a single
index. For example, cost is an important factor in the inven-
tory management. Priority is usually given to low-cost items.
Then the ranking order in terms of cost could be given as
follows: DMU9, DMU10, DMU 7, DMU6, DMU8, DMU4,
DMU5. The inventory policy could be adjusted based on the
new ranking order when the budget is limited.

VII. CONCLUSIONS
We presented a stochastic DEAmodel for optimization under
uncertainty, developed equivalent deterministic models to
overcome difficulty in solving non-linear programming and
then applied our approach to address the problem of opti-
mizing the inventory policy of spare parts varieties. We pro-
posed a comprehensive index system from the perspective
of the product life-cycle process, which consisted of design
factors, operation factors and support factors. Then we estab-
lished a stochastic DEA model called SSOM considering
the uncertain nature in parameters to select spare parts vari-
eties with the constraints of multi-criteria. Some algorithms
were employed to obtain the equivalent deterministic model
of SSOM. In particular, the equivalent deterministic model
of normal distributions was discussed. Finally, we applied
our approach on a depot which serves eight airplanes for
illustration and provided reasonable inventory management
proposals based on the optimal results. We also provided a
single criterion for equally important DMUs in terms of cost.
Decision makers can assign different values of belief

degree α to different factors in terms of actual demand, which
keeps the same for all random factors in the current model.
Although the model in this paper deals with the optimization
problem in spare parts varieties, it is a general model and can
be applied in the other fields of multi-criteria optimization
where random factors need to be considered. In actual imple-
mentation, decisionmakers can simplify themodel as needed.
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