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ABSTRACT It is essential to establish smart and efficient charging strategies for electric vehicles, due to the
increase of their sales, and especially taking into account that many of these vehicles will be recharged
in private parking lots, where the charging point features are limited. In this paper, we propose four
different charging methods: the cheapest, the cheapest starting, the low cost, and the last period schemes,
as an alternative to the traditional plug and charge method. Our objective is to find better strategies for
an automatic, efficient, and scheduled electric vehicles’ charging process, avoiding peak power demands,
and promoting recharges at off-peak hours, where electricity prices are low. According to this, a smart
charger could use our proposed methods to enhance the charging process at residential homes. To assess
our proposal, we simulate the battery recharging of 1000 vehicles per day during a full year, considering
the use of domestic electrical plugs, and real electricity pricing. In Addition, three different scenarios have
been simulated: 1) a regular-demand scenario; 2) a high-demand scenario; and 3) an extra-demand scenario,
in which the vehicles arrive with an average battery level of only 25%. Simulation results confirm that using
our charging methods, we can save between 46.9% to 75.2% in terms of electricity fee while maintaining

similar battery levels after the charging process.

INDEX TERMS Electric vehicle, charging protocols, intelligent plug-charger.

I. INTRODUCTION

Recent studies on climate change warned us about the need
to perform a drastic reduction in greenhouse gas (GHG)
emissions [1], [2]. Most worrying cases are found in big
cities, due to the air pollution levels, mainly provoked by the
industry, as well as vehicles’ combustion engine emissions.
In fact, environmental pollution affects health very nega-
tively, causing diseases, such as asthma, cardiorespiratory
disease, or lung cancer [2], [3], and it is a common cause of
shortened lifespan [4].

For this reason, governments and public sector organi-
zations are making efforts to improve the air quality and
quality of life of citizens, by proposing strategies to reduce
GHG emissions (i.e., CO2, CH4, as well as pollutants, such
as Nitrous oxides, dust, and smoke). These strategies also
include: (i) the production of electricity through the use of
renewable energy sources (e.g., solar, wind, and hydroelectric
energy) [5], and (ii) encouraging the use of electric vehicles
(EVs) [6]-[8].

Fortunately, thanks to the technological advances in Artifi-
cial Intelligence-based approaches, and the emerging Internet
of Things (IoT), we are heading towards more advanced,
developed, and efficient cities [9]. Moreover, every car-maker
is currently working on electric engines or even has already a
model out in the market. In fact, we can find companies that
solely manufacture vehicles propelled by electric engines,
such as Eve, Zytel, Little Electric Cars, or Tesla Motors. This
suggests that the EV is going to be a significant player in this
new scenario, since sales are progressively increasing, and
they are expected to be widely deployed during the coming
years. Figure 1 shows the EV sales estimation provided by
different agencies and consortiums, such as the International
Energy Agency (IEA) [10], [11], the Paris Declaration [12]
(which tries to limit the average increase in the global temper-
ature by 2°C), or the ‘EV 30@30’ campaign supported by the
Clean Energy Ministerial (CEM) [13], which considers that
at least 30% of vehicles sold by 2030 would include electric
engines.
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To promote a seamless integration of EVs into the
Smart Cities, in addition to considering the specific issues
related to the Intelligent Transportation Systems (ITS) [14],
[15], it will be essential to equip EVs with smart and
efficient charging systems, especially taking into account
that most of the vehicles will be charged at residential
houses, where domestic electrical installations are limited.
Additionally, the recharging method currently used is the
Plug&Charge (P&C) scheme, i.e., the batteries start the
charging process just when the vehicle is plugged into
the wall.

One of the main problems that the P&C recharging method
may experience is that, in many countries, electricity pricing
varies during the day, especially according to its demand.
However, the P&C does not prevent users from charging their
vehicles when electricity is more expensive, making EVs
less attractive for potential buyers. Moreover, many people
usually follow the same mobility pattern, e.g., they return
home after their working day practically at the same time, and
therefore, charging process can collapse the electricity grid
due to the power peak demands. In essence, the traditional
Plug&Charge charging method may encounter the following
problems:

« The high electricity price. In most countries, the price
of electricity varies along the day, and this cost remains
higher, especially in high peak power demand periods,
where the majority of users would try to charge their
EVs.

« Possible collapse of the grid since the expected quantity
of EVs in coming years and the increase of their battery
capacities can greatly affect electrical grid if all these
vehicles require to recharge at the same time.

o Inefficiency. Using the Plug&Charge, no efficiency
parameters are taken into account. Parameters such as
the price of electricity at that moment, or the quantity of
energy required to fill the battery completely.

« Higher infrastructure capital expenditures (CAPEX) and
operating expenses (OPEX) will be required in order to
satisfy the peaks of high energy demand, especially in
the near future, when the market penetration of EVs will
be higher.

To properly solve the problems derived of the use of the
traditional Plug&Charge method, in this paper, we propose
and analyze four different charging methods, namely: (i) the
Cheapest (C), (ii) the Cheapest Starting (CS), (iii) the Low
Cost (LC), and (iv) the Last Period (LP). In particular, these
efficient charging methods could be applied by a smart
charger to maximize the recharge process, while minimizing
its cost.

Our contributions in this work are the proposal of a set
of battery charging strategies specially designed for EVs,
and the quantification of the improvement of these strategies
compared to the traditional Plug&Charge method. According
to this, we present an analysis of the results obtained by the
charging methods proposed, to determine the strengths and
weaknesses of each one.
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The manuscript is organized as follows: Section II presents
some previous studies regarding EV recharging process.
In Section III, we detail our four proposed methods.
Section IV shows the characteristics of the simulations per-
formed, and Section V includes the analysis of the results
obtained, considering that we seek to reduce the cost of the
electricity required and to optimize the final battery charge
level of EVs. Finally, in Section VI, the conclusions drawn
from our work are presented.

Il. RELATED WORK

The interest in electric vehicles by academia has grown
steadily, and the number of papers focused in EVs, especially
in recent years, clearly demonstrates the increasing interest
of researchers, and their desire to promote and enhance this
type of vehicles.

Closely related to our work, some authors proposed new
charging strategies focused on reducing the electricity cost.
Wi et al. [16] proposed a smart EV charging algorithm based
on a photovoltaic (PV) system for reducing electricity costs
and determining the optimal schedules for EV charging.
Their system relies on the prediction of PV power output
and the electricity consumption required. Authors assessed
their approach by simulating 12 EVs with a battery capacity
of 24 kWh, presenting three different initial states of charge
(SoC) profiles (20, 30 and 40%), and a target SoC of 80%.
Additionally, all the vehicles have a fixed recharge period
from 8 a.m. to 7 p.m. The results showed that their pro-
posal is able to reduce the charging cost from 6% to 15.2%
compared to the Plug& Charge method. Makkonen et al. [17]
presented a system for smart EV charging that manages both
energy storage and an energy management system (EMS).
The charging system allows load shifting, enables the par-
ticipation in the electricity markets, and provides a con-
trol gateway for mobile energy storages. However, authors
assessed their proposal considering a single vehicle recharged
from 44% to 97% battery level. Authors did not compare
their approach to any other methodology, nor quantified the
improvement when using their proposal. Tikka et al. [18]
proposed an intelligent charging system aimed at minimizing
the cost of the recharges. Authors demonstrated the feasibility
of a simple smart charging strategy on a charging testbed,
using commercially components and open source coding.
To evaluate their proposal, they simulated a single vehicle
recharging at home during a week and compared it with
the Plug&Charge method, reducing the electricity bill up to
0.11€ per week. Authors also suggested that charging strate-
gies targeting to minimize charging costs may not be feasible
for a single customer, and additionally, electricity retailers
should be interested on controlling EVs’ charging processes
to meet adequately electricity demand. Based on the use of
emerging vehicular communications, Gharbaoui et al. [19]
proposed a system which relies on a distributed communica-
tion infrastructure, where the vehicles can exchange useful
information about their energy requirements. The approach
presented allows users to minimize the charging times while
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FIGURE 1. EVs future deployment scenarios [10].

optimizes the efficiency of the electrical infrastructure. More
recently, Valdivia-Gonzalez et al. [20] proposed a particle
swarm optimization-based (PSO) method, namely States of
Matter Search (SMS), for maximizing the SoC of plug-in
hybrid electric vehicles (PHEVs). To assess their proposal,
they performed a 24 hours simulation of different scenarios
varying the number of PHEVs (50, 100, 300, 500, and 1000).
Results showed that their proposal obtains significantly better
results compared to other schemes which relied on a Gravi-
tational Search Algorithm (GSA), a Firefly Algorithm (FA),
and a Genetic Algorithm (GA), respectively.

Other works, instead, promoted off-peak charges trying to
mitigate the effect of charging simultaneously a high num-
ber of EVs on the electric grid, especially in peak hours.
Ma et al. [21] created a decentralized charging control strat-
egy, specially designed for large populations of electric vehi-
cles. The main goal is to reduce electricity generation costs
by promoting charges during overnight. In their simulations,
they evaluated vehicles with two battery capacities (i.e.,
10kWh and 20kWh) and a maximum charging rate of 3 kW.
Mets et al. [22] proposed two charging strategies, a local
and a global iterative strategy, with the objective of reducing
the peak power demands. To do this, they simulated a set
of 150 households during a period of 24 hours, and the vehi-
cles simulated were PHEVs. More specifically, they used the
Chevrolet Volt with a battery capacity of 16 kWh. Addition-
ally, simulations considered the same specifications for every
vehicle and a maximum charging rate of 4.6 kWh. Results
showed that the additional power consumption ranges from
6% to 44% depending on the PHEV penetration rate, and
peak loads could be reduced between 8% and 42%, compared
to the business-as-usual scenario. Gan et al. [23] proposed a
distributed protocol for managing day-ahead EVs charging
schedules. The main objective is to rearrange EV charges to
the overnight electricity demand valley. Authors performed a
one-day simulation considering the average residential load
profile in the service area of South California, and they
evaluated their proposal with 10, 20, and 40 vehicles of three
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different types (sedan, compact, and roadster). More recently,
Chen et al. [24] aimed at starting charges at off-peak hours,
and thus optimizing the charging process while reducing high
power demand peaks. In particular, and similarly to [20],
they used a particle swarm optimization-based algorithm, and
compared the results obtained with an uncontrolled recharge
approach. Simulation results showed that the proposed algo-
rithm not only meets EVs charging demand, but also mitigates
the impact of EVs charges on the distribution network.

In the literature we can also find several works that ana-
lyzed how the growing number of EV's would affect the whole
electricity demand. Particularly, Sharma et al. [25] analyzed
the effects of EV charging in unbalanced, residential, dis-
tribution systems. For that purpose, they compared uncon-
trolled and smart charging schemes and simulated different
scenarios throughout a day. Results showed that uncontrolled
EV charging adversely affects electric grid, and therefore,
controlled mode charges, through smart charging approaches,
is highly recommended. Acha et al. [26] proposed a system
to coordinate cost-effective interactions between distribution
network operators, power markets, and EVs. In their simula-
tions, they only considered two vehicle types, PHEVs with
3.12 kWh batteries and plug-in electric vehicles (PEVs) with
24 kWh batteries. They also assumed that all vehicles must
be completely charged at 7 a.m. Quian et al. [27] presented
a methodology for modeling the electricity demand of EVs
in a distribution system. In particular, they compared four
charging scenarios: (i) an uncontrolled domestic charging,
(ii) a smart domestic charging, (iii) an uncontrolled off-peak
domestic charging, and (iv) an uncontrolled public charging.
According to the results obtained, authors stated that a 10%
EV market penetration would increase the power demand up
to 17.9%, while a 20% of EV penetration would result up
to 35.8% increasing in power demand. They also determined
that the starting time of the recharge process has a dramatic
effect on the peak power demand. As for the simulations
performed, they used statistical models to consider the arrival
time and state of charge (SoC) of the vehicles. Additionally,
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they performed one day simulations, using two types of vehi-
cles (the GM EV1 with a 27.19 kWh lead-acid battery and the
Nissan Altra with a 29.07 kWh lithium-ion battery).

Overall, most research regarding electric vehicles focused
on: (i) improving the charging strategies, (ii) optimizing
the SoC, (iii) reducing electricity peaks and exploiting the
overnight demand valley, as well as (iv) studying and mitigat-
ing the effect of EVs increasing electricity demand. Addition-
ally, and similarly to other research areas, most of these works
relied on simulations to assess their proposals. However,
unlike our work, simulations only consider one day, a few
number of vehicles, usually with the same battery capacities,
and in general, authors did not quantified the improvement
in terms of cost reduction, or the benefits obtained were
very limited. In contrast to the previously presented studies,
and to accurately appraise our proposals, our simulations
included 1,000 vehicles per day and comprised a full year.
In addition, our simulated vehicles have different battery
capacities, following the market distribution of EV Spain
sales [28]. We simulated that these vehicles started recharges
with different battery levels and at different time periods.
Last, but not least, we also accounted for the real electricity
pricing which varies along each hour of the day and over the
full year [29].

Ill. OUR PROPOSAL: IMPROVING EVs CHARGE
STRATEGIES

The most commonly used strategy for EVs recharging is the
Plug&Charge, i.e., the battery recharge process immediately
starts when the user arrives at the recharging point and plugs
the vehicle in the wall. However, this method is not really
efficient, since it does rely on any energy efficiency or cost
reduction parameters (e.g., electricity pricing, the current
state of the electricity grid, the current battery level, or if
the energy required has been generated in an environmentally
friendly way). We consider this method as a baseline for our
comparative study, since it is the most accepted and used
strategy among EV users.

A. ELECTRIC CONTEXT

As we previously commented, the objective of this paper is
to propose and compare four battery charging strategies that,
considering additional information about the status of the
battery and the time available for completing the charging
process can improve the traditional Plug&Charge method.
The final goal is that smart chargers can use one of our
approaches to enhance the charging process, especially at
residential homes.

To accurately assess our approaches, we implemented a
simulator which models EVs recharges. More specifically,
it is able to simulate a large number of vehicles with different
battery characteristics and different charging modes.

According to the standard IEC 62196 [30], there are four
different charging modes designed for EVs. They are:

o Mode 1 is the standard mode for charging EVs at

residential houses. It involves charging the batteries at
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230v and a maximum current of 16 A. The process
of recharging most EVs can last up to 8 hours, and
therefore, it is considered a slow charge mode. In this
work, we assess the different charging methods using
Mode 1 since it is the mode most commonly used at
residential households [31].

o Mode 2. This charging mode supports currents up to
32 A. Depending on the type of vehicle, the recharging
process can last between 2 and 4 hours. Hence, this
charging mode is known as semi-fast.

e Mode 3. This mode, known as fast-charge, supports
currents between 32 A and 250 A. Depending on the type
of vehicle, the recharging time, using this mode, can take
less than 1 hour.

o Mode 4 supports currents up to 400 A, and it is known
as ultra-fast charge. It is very promising since it will
extremely reduce the time required to charge EV bat-
teries, although many types of batteries are not able
to withstand the heat generated due to the amount of
electricity introduced within a very short time.

Another important matter to be considered is the electricity
pricing. It is worth to mention that the cost of electricity for
the final user varies along the day in many countries. Exam-
ples are United States, Canada, UK, France, Portugal, Spain,
Finland, Estonia, Lithuania, and Latvia [27], [29], [32]-[35].
It is very common to find high price time slots and other
periods where the electricity pricing is low (typically during
the night). Therefore, mainly to save money, it should be nec-
essary to charge EVs considering this fact, i.e., encouraging
users to recharge their vehicles when electricity is cheaper.

In our simulations, we considered the prices currently
offered in Spain. Particularly, electricity pricing has three
rates in Spain (see Figure 2): (i) the regular, (ii) the time
discriminating, and (iii) the EVs rate. In addition, the price
of electricity varies, daily and even along the day, in all these
rates, mainly due to both the estimated demand at each hour
and the cost of electricity production.

B. RECHARGING STRATEGIES PROPOSED

As previously commented, in this work we propose four
different charging methods that will enhance smart charg-
ers by enabling cheaper and more efficient EV recharges.
We assume that the charging points are smart, i.e., they
have communication capabilities with the vehicle and Inter-
net access. Also, the user may inform about the scheduled
departure time.

Let P represent the time period in which the vehicle could
be recharged (i.e., the number of hours between its arrival and
its departure), and B the time period that the vehicle needs
to completely charge its battery. Moreover, p(h) denotes the
price of the electricity at a determined hour 4, ch denotes the
time instant in which electricity price is the cheapest, and
[ denotes the exact time when the vehicle leaves the parking
lot. Finally, s and e denote the starting and ending battery
charging times. Table 1 includes these parameters that will
be used for the different charging methods proposed.
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FIGURE 2. Example of electricity price in Spain on October 31, 2017 [29].

TABLE 1. Charging parameters.

| Parameters | Definition | Example values |

P time period in which the vehicle could be recharged 12 hours

B time period that the vehicle needs to completely charge its battery 6 hours

p(h) price of the electricity at a determined hour 0.152 €/kWh

ch time instant in which electricity price is the cheapest 4 a.m.

l exact time when the vehicle leaves the parking lot 7 a.m.

S starting battery charging time 22 p.m.

e ending battery charging time 4 am.

Based on the information available including the elec-
tricity pricing, the current battery level, and the avail-
able charging time P, the smart charging system would
estimate B, i.e., the time required for a complete battery
recharging according to the characteristics of the battery
of the vehicle and the power supplied by the recharg-
ing point. Finally, the charging method used would deter-
mine the time when the vehicle would start its recharging
process.

The charging methods proposed are the following:

o Cheapest (C). This charging strategy will determine s
in order to allocate ch in the middle of B. According to
this, the charging process period would be determined
by Equation 1. Note that vehicles will be fully charged
only when (ch + B/2) < [ is met.

ch + —)]

(2-2)- (o2

Please, refer to Table 1 for the parameter description.

B
(M
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o Cheapest Starting (CS). The CS method will plan the
start of the recharging just at the moment when electric-
ity is the cheapest (i.e., s = ch), and the charging process
would be determined by Equation 2. This method is
more restrictive that the previous one since vehicles will
be fully charged only when (ch + B) < [ is met.

[ch.. (ch + B)] 2)

Please, refer to Table 1 for the parameter description.
Low Cost (LC). The LC method makes that EVs start
their recharges when the off-peak period begins. This
recharging strategy is mainly intended for nighttime
charges, and it would be determined by Equation 3.
Note that we only consider negative variations in the
electricity fee to the determine max(Ap(h)), i.e. when
the electricity price drops.

[max(Ap(h))..(max(Ap(h)) + B)] (€)

Please, refer to Table 1 for the parameter description.
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FIGURE 3. Example that includes the electricity price and the charging starting point for the different methods
(Spanish electricity pricing for EVs on January 1, 2018). To see the electricity price for additional days, please,

refer to [29].

o Last Period (LP). The LP method determines that vehi-
cles will start their recharging process during the last part
of B (i.e., it ensures that the charging process will finish
just before leaving the parking lot, and unlike the P&C,
which starts the charging process whenever the vehicle
reaches the charging point). According to this, the charg-
ing process would be determined by Equation (4). This
method always allocate the charging process just before
vehicles have to leave their parking lots, regardless the
electricity fee. Hence, it requires to know this informa-
tion to work properly. Finally, note that when P < B is
met, the LP will behave exactly in the same manner than
the traditional P&C method.

[ —B)..I] “)

Please, refer to Table 1 for the parameter description.

For the sake of clarity and better understand the operation
of the proposed methods, we present the following example.
Let assume we have a Nissan Leaf with a battery capacity
of 24 kWh, the vehicle reaches its Mode 1 recharging point
at 7:00 p.m., and leaves at 7 a.m. (i.e., P = 12,1 = 7).
Moreover, it arrived with a battery level of 75%. According to
these data, the recharging process would take 2 hours (B = 2).
Figure 3 shows the evolution of the electricity fares for EVs
(y-axis) throughout the day (x-axis), and the different starting
points determined by the P&C method, as well as by the
proposed charging strategies.

Now, we detail the differences between the charging modes
presented in this work. For example, using the traditional
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Plug&Charge method, the vehicle would begin to recharge
immediately (s = 19 = 7 p.m.). In our example, this is
exactly the time instant when the price of electricity is the
highest.

In the case that the Cheapest method was used, recharging
would begin at 3 a.m. since the cheapest period in which the
whole recharging process fits comprises from 3 a.m. to 5 a.m.
([(4—1)..(441)], according to Equation (1)).

Using the Cheapest Starting method, recharging would
start at 4 a.m. since this is the time when electricity is cheap-
est, and it would finish at 6 a.m. ([4..(4+2)], according to
Equation (2)).

If we used the Low Cost method, the vehicle would start the
charging process at 23 p.m. since the electricity pricing drops
sharply at that time, and the off-peak period begins. Accord-
ing to Equation (3), the charging process would be [23..1].

Finally, if we used the Last Period recharge method, since
the vehicle is going to leave at 7 a.m., the charging process
would start at 5 a.m. to finish it before leaving the parking lot
([(7-2)..7], according to Equation (2)).

In this context, it is noteworthy to mention that vehicles
which present a very low SOC could not be fully charged
regardless of the recharging strategy used.

IV. SIMULATION ENVIRONMENT

To assess the performance of the four charging methods
proposed and compare them to the traditional Plug&Charge
method, we relied on simulations. More specifically, we sim-
ulated three different scenarios according to the considered
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TABLE 2. EVs sales during 2016 in Spain [28].

Make and model | Battery Capacity | Market share
(kWh)

Nissan Leaf 24 16.2%
Citroen C-Zero 15 15.5%
Renault Zoe 22 12.6%
BMW i3 22 10.6%
Renault Kangoo 33 10.3%
Nissan NV 200 24 9.6%
Smart fortwo 17.6 4.8%
Volkswagen Golf 242 4.3%
Volvo XC90 65 4.0%
BMW X5 9 3.8%
Renault Twizy 80 6.1 2.9%
KIA Soul 27 2.8%
BMW 225 7.7 2.6%

average battery level of the vehicles just before starting to
recharge. The objective is to analyze the performance of our
proposed methods under different energy requirements. Next,
we detail the three scenarios:

o Regular-demand scenario, in which the vehicles’ bat-
tery levels follow a Gaussian distribution with a mean
() of 72% and a standard deviation (o) of 10%. These
data correspond to those after one day of use, according
to Qian et al. [27].

o High-demand scenario, in which vehicles present a
battery level Gaussian model with u equal to 50% and
o equal to 10%.

« Extra-demand scenario. We consider this scenario as
very adverse. According to this, vehicles will follow a
battery level distribution with o equal to 25% and o
equal to 10%.

We consider that the three studied scenarios are represen-

tative and valid to assess our approach.

Another critical factor to account for during the simula-
tions, is the battery capacity since EVs in the market have
batteries with different capacities (see Table 2). As expected,
vehicles with lower battery capacities will require less time
to be fully charged than those vehicles with higher battery
capacities.

With the goal of simulating the features of the EVs closer
to reality, and to accurately estimate the cost of recharging
EVs when using the different charging methods in each sce-
nario along the year, we considered the model and specific
characteristics of the EVs simulated. Additionally, we use a
Monte Carlo method [36] to determine the different vehicles
included. Hence, vehicles used in our simulations resemble
the current market situation in Spain (see Table 2). The rest
of parameters used in the simulations are shown in Table 3.
More details are given below.

e Number of vehicles. We simulated a total num-
ber of 365,000 EVs, i.e., 1,000 vehicles per day
along an entire year. Making this, we ensure the
macro-perspective and scalability of our proposals.
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« Vehicles’ arrival model. This parameter represents the
time when the vehicle arrives at residential house (i.e.,
at charging point). Therefore, according to the Plug&
Charge method, the recharging process will start at this
moment. To make simulations more realistic, the arrival
of vehicles follows a Gaussian distribution with u is
equal to 1,080 minutes and o is equal to 60 minutes,
i.e., most vehicles usually reach home from 4 to 8 p.m.
We considered these values according to several previ-
ous works [23]-[27].

o Travel duration model, which is the estimated travel
time until reaching the charging point. This value fol-
lows a Weibull distribution (similarly to [37]-[42]) with
o = 45 minutes, § = 1.9, and y =0, i.e., most travel
times require 45 minutes or less. We used these values to
resemble people’s life habits [43]-[45]. Particularly, this
parameter allows to calculate the battery level of vehi-
cles when they reach the charging points; we estimate
these values individually since we specifically consider
the consumption model of each EV.

« Charging time model. This parameter determines the
time that the EV is parked at the charging point, i.e., it
is the maximum available charging time for the vehicle.
The values of this parameter follow a Gaussian distri-
bution with u is equal to 700 minutes and o is equal to
150 minutes. Hence, most of vehicles stay parked from
9 to 14 hours per day.

« Battery level model. This parameter defines the vehi-
cle’s battery level when it arrives at its charging point.
As we simulate three different scenarios (i.e., regular-
demand, high-demand, and extra-demand), the values
follow a Gaussian distribution with different parameters
(u is equal to 72%, 50% y 25%, respectively), while o
is 10%.

« Charging point power. In our simulations, as we are
interested in domestic charging, we consider that all
charging points support Mode 1, i.e., vehicles would
charge their batteries at 230v and 16A (3.68 kWh).

« Energy loss by heat. During the charging process, bat-
teries suffer from energy losses which are dissipated as
heat. These losses are directly correlated to the current
and voltages used in the charging, i.e., low-power charg-
ing reduces the percentage of energy lost compared to
fast-charging. In our simulations, we consider that a 10%
of the electricity is lost during battery charging [46].

V. SIMULATION RESULTS
This section presents the results obtained for the three differ-
ent scenarios described in Section IV. The main objective is to
scrutinize the performance of the charging methods proposed
under different conditions.

A. FIRST SCENARIO: REGULAR-DEMAND

According to Quian et al. [27], the level of battery of an
electric vehicle after a day of use is closely to 72% on aver-
age. Therefore, in our experiments under a regular-demand
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TABLE 3. Simulation settings.

| Parameters \ Values \
Number of vehicles 365,000 (1,000 * 365 days)
Vehicles’ arrival model Gaussian: g = 1,080 min., ¢ = 120 min.
Travel duration model Weibull: @« = 45 min., 3 =1.9,v=0
Charging time model Gaussian: p = 700 min., 0 = 150 min.
Battery level model Gaussian: p = 72%, 50%, and 25%,0 = 10%
Charging Point Power 3.68 kWh (IEC 62196 Mode 1)
Energy loss by heat 10%
TABLE 4. Results obtained in the regular-demand scenario.
| Metrics | P&C | C | € | LC | LP |
MegaWatts charged 2.45 2.34 1.85 2.34 2.38

difference of price compared to P&C (%)

price of electricity (€ /vehicle per year) 349.73 139.29 104.16 161.31 148.79

energy recharged (avg. %) 27.98% | 27.98% | 22.08% | 27.80% | 27.98%

-60.17% | -70.22% | -53.88% | -57.46%

final battery level (avg. %) 99.92% | 99.62% | 94.03% | 99.75% | 99.92%
#EVs battery level <75% 637 637 27,183 871 637
#EVs battery level <50% 0

#EVs battery level <25% 0

starting battery level (avg. %) 71.95%

scenario, we consider that the average battery level the vehi-
cles before recharging is of 71.95%.

Table 4 shows the results obtained in this scenario only.
In particular, we present: (i) the number of Megawatts
charged when using each of the charging methods, (ii) the
total amount of euros spent in charging each vehicle, (iii) the
differences between each charging method and the traditional
P&C, (iv) the number of vehicles whose battery level remains
lower than 75%, 50%, and 25%, respectively, after the charg-
ing process, (v) the average battery level that vehicles present
before starting the recharging, (vi) the average percentage of
energy recharged, and finally, (vii) the average battery level
that vehicles present after leaving the charging points.

As shown, the quantity of energy charged is very similar
for all the methods (it ranges from 2.34 to 2.45 MW), except
for the Cheapest Starting (1.85 MW). However, the dif-
ferences in the electricity cost per vehicle are noticeable
(from 104.16 to 349.73€). In fact, using our approaches,
the cost savings range from 53.88% up to 70.22%. However,
the counterpart of the method with higher saving, the CS,
is that the vehicles’ batteries are only charged, on average,
up to 94.03% (about —5% compared to the other methods).

Regarding the EVs battery levels when vehicles leave the
recharging point, results obtained in our simulations are very
similar for all the methods (99.62-99.92%), except for the
CS (94.03%). Additionally, we observed that there are a
number of vehicles that finish their recharging process with
less than 75% of battery level. This means that those vehicles
have started the charging process with a lower level of their
batteries, and the length of time they were at the charging
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point was not enough to complete the recharging process.
Using the Plug&Charge, the Cheapest, and the Last Period
methods, the number of vehicles with less than 75% of battery
is only of 637 (out of 365,000), while using the Low Cost, this
number slightly increases up to 871 vehicles. However, this
problem is more remarkable when using the Cheapest Start-
ing method since, in that case, vehicles are already plugged,
but waiting without recharging until the energy pricing is the
cheapest. In fact, using the CS method, this number highly
increases up to 27,183 vehicles. Therefore, the CS method
does not seem appropriate to be used in this scenario.

Overall, in regular-demand scenarios, i.e., where EVs
present a good battery level before starting the recharging
process, both the Cheapest and the Last Period exhibit the best
performance (in terms of battery charged and cost savings).
By contrast, the CS method does not seem a good choice since
it does not guarantee that batteries are completely recharged,
making it unsuitable.

B. SECOND SCENARIO: HIGH-DEMAND
The second scenario used in our simulations can be con-
sidered as high-demand since we determined that vehicles
start the recharging process with an initial average battery
level of 50.18%. According to Qian et al. [27], this battery
level implies that the vehicle has been used almost two days
without being recharged. Table 5 presents the results obtained
in this scenario.

As shown, similarly to the results presented in Section V-A,
the quantity of energy charged is very similar for all the
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TABLE 5. Results obtained in the high-demand scenario.

Metrics | P&C | C | € | LC | LP |
MegaWatts charged 4.31 4.07 2.84 4.09 4.23
price of electricity (€ /vehicle per year) 60542 | 251.18 163.87 267.43 278.06
difference of price compared to P&C (%) - -58.51% | -72.93% | -55.83% | -54.07%
energy recharged (avg. %) 49.66% | 47.80% | 33.79% | 48.48% | 49.66%
final battery level (avg. %) 99.84% | 97.97% | 83.96% | 98.65% | 99.84%
#EVs battery level <75% 1,000 1,029 120,072 7,227 1,000
#EVs battery level <50% 506 506 18,774 788 506
#EVs battery level <25% 0
starting battery level (avg. %) 50.18%
TABLE 6. Results obtained in the extra-demand scenario.
| Metrics | P&C | C | CS | LC | LP |
MegaWatts charged 6.43 5.93 3.56 5.92 6.35
price of electricity (€ /vehicle per year) 855.51 390.87 212.00 371.89 454.31
difference of price compared to P&C (%) - -54.31% -75.20% -56.53% | -46.90%
energy recharged (avg. %) 74.97% | 69.90% 42.44% 70.44% | 74.97%
final battery level (avg. %) 99.63% | 94.57% 67.11% 95.10% | 99.63%
#EVs battery level <75% 1,730 16,998 206,778 29,737 1,730
#EVs battery level <50% 1,000 1,000 121,912 4,410 1,000
#EVs battery level <25% 538 538 17,004 652 538
starting battery level (avg. %) 24.67%

methods, although it practically doubles the energy consumed
in the regular-demand scenario (now, it ranges from 2.84 to
4.31 MW) due to the fact that starting battery levels are
reduced from 71.95% (in the regular-demand scenario) to
50.18% (in this high-demand scenario). Again, the Cheapest
Starting method does fail to meet the expectation since all
the vehicles are mainly waiting for the price of electricity
reaching its lowest price, making it impossible to charge their
batteries fully.

The differences in the price of electricity per vehicle
are even more noticeable (from 163.87€, in the case of
CS, to 605.42€, as is the case of P&C). In fact, using
our approaches, the cost savings range from 54.07% up to
72.93%. However, notice that the CS method charges vehi-
cles’ batteries only an 83.96% on average (about —16%
compared to the other methods).

Regarding the EVs battery levels when vehicles leave the
recharging point, they are very similar for all the methods
(97.97-99.84%), except for the CS. In this second scenario,
we observed that there are a number of vehicles that finished
their recharging process even with less than 50% of battery
level (506 vehicles when using the P&C, the C, and the LP
charging protocols, as well as 788 and 18,774 when using the
LC and the CS protocols, respectively). These considerations
suggest that these vehicles remain only a few time at the
charging point or their initial battery levels are quite low.
Similarly that in the regular-demand scenario, the CS method
does not work well, although these deficiencies are more
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pronounced in this scenario, i.e., when higher charges are
needed.

Overall, in high-demand scenarios, i.e., where EVs require
a significant amount of energy to full their batteries, the Last
Period exhibits the best trade-off in performance (in terms of
battery level charged and cost savings). In particular, the LP
can charge the batteries exactly at the same level than using
P&C, while reducing up to 54.07% the cost of recharges.
By contrast, the CS method is only able to reach an average
83.96% of battery levels, in fact, using the CS, more than
120,000 out of 365,000 vehicles present battery levels lower
than 75% after the recharging process.

C. THIRD SCENARIO: EXTRA-DEMAND

In this subsection, we present the results in the most exigent
scenario by far. More specifically, we consider that vehicles
reach the recharging points with a very low battery level on
average, i.e., only 24.67%. Although this scenario could be
considered as extreme, we aim to assess our proposal under a
wide range of situations.

Table 6 shows the results obtained in the extra-demand
scenario. As expected, the differences among the differ-
ent charging methods, in terms of energy consumed, are
higher in this third set of experiments (ranging from 3.56 to
6.43 MW). Compared to the regular-demand scenario, up
to 162% more energy is required. Under these exigent con-
ditions, the Cheapest Starting method works even worse
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FIGURE 4. Average total euros spent to charge an EV during a full year for each charging method in the three energy

demand scenarios.

since vehicles only reach the 67.11% of the battery levels
(nearly —33% compared to the other methods), which is
clearly unsatisfactory.

As for the price of electricity, there are significant advan-
tages when using our proposed methods (especially the C,
the CS, and the LC), compared to the traditional P&C
approach. Particularly, prices range from 212.00 to 855.51€),
which represent savings from 46.90% up to 75.20%.

Regarding the EV battery levels when vehicles leave the
recharging point, in this third scenario, the number of vehi-
cles that finish their recharging process without fulling their
batteries increases significantly. The CS method is clearly
unable to manage vehicles’ charging properly in this extra-
demand scenario. As shown, 206,778 (out of 365,000) remain
with less than 75% of battery level. It is also noteworthy that
the LP method obtains the same results, in terms of battery
recharged, than the P&C method but reducing a 46.90% the
electricity cost. Meanwhile, the Cheapest method is even
able to reduce this cost up to 54.31%, but the number of
vehicles that finish the recharging process with less than 75%
of battery level increases from 1,730 when using P&C or LP
to 16,998 when using the C charging method.

Although extra-demand scenarios (at least with this
quantity of high energy demanding vehicles) cannot be eas-
ily found in realistic environments, we have also demon-
strated the benefits of using our approaches compared to
the P&C method. More specifically, our results highlighted
that the Last Period charging method outperforms the rest
of approaches since it clearly exhibits the best trade-off
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in terms of performance, battery level increasing, and cost
savings.

D. OVERALL COMPARISON

To better study the differences among the charging methods,
in this section, we present an overall comparison of the dif-
ferent charging methods under the three energy demand sce-
narios previously presented. Figures 4, 5, and 6 graphically
depict the results obtained in terms of euros spent per vehicle,
percentage of battery level after the recharging process, and
electricity cost (in euros/kWh).

After having thoroughly analyzed the results obtained in
the three different charging demand scenarios, relevant dif-
ferences can be highlighted. As shown, the total euros spent
to charge a vehicle is drastically reduced when using our
proposed charging methods compared to the P&C under
all circumstances, i.e., in regular, high, and extra-demand
scenarios (see Figure 4).

It is noteworthy to mention that the best results were
obtained by the Last Period method. It attains the same bat-
tery levels than traditional Plug&Charge in all the scenarios,
but with a substantial reduction of €/vehicle in compari-
son to P&C. More specifically, LP reduces the electricity
price: (i) a 57.46% in the regular-demand scenario, (ii) a
54.07% in the high-demand scenario, and a 46.9% in the
extra-demand scenario. This is due to LP exploits the period
when the electricity cost is lower to perform the recharging
process. By contrast, when the period of time that the vehi-
cle is plugged is not enough to fully recharge the battery,
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FIGURE 6. Average euros/kWh for each charging method in the three different energy demand scenarios.

this method behaves exactly in the same manner than P&C, Considering that the charging mode used was Mode 1,
i.e., the recharging process starts immediately and pricing the Cheapest Starting method should be discarded since its
factor does not play any significant role. performance has been demonstrated unsatisfactory (in term
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of battery level) in all scenarios (see Figure 5), but espe-
cially in those where the vehicles demand more energy. This
is due to batteries cannot be fully charged in the period
between the electricity cost becomes the lowest and the time
when vehicles leave the charging points. However, we con-
sider that this method could be more promising when using
more powerful charging modes (i.e., when higher currents
and voltages are available), especially considering that this
approach has resulted in the lowest cost in all simulations
(see Figures 4 and 6). In fact, the best price-wise results were
obtained in the first scenario (which we consider the most
realistic), where the CS method presented an electricity cost
almost three times lower than Plug&Charge).

The results obtained by our methods, in terms of battery
level (see Figure 5), are very similar than those obtained
by the Plug&Charge. However, the significant reduction of
electricity cost (in terms of €/kWh) makes them more suit-
able and highly recommended. Figure 6 shows the ben-
efits of using our proposed schemes. For example, using
the LP, we can reduce the electricity cost from 52.86% to
55.71%. Additionally, it can be observed that the LC method
puts the electricity cost reduction ahead of battery charge,
whereas the LP ensures a good battery level despite slightly
increasing the electricity cost when the energy demand also
increases.

The emergence of electrical vehicles provided with higher
battery capacities (e.g., more than 90 kWh) can hamper bat-
tery fully recharges, especially when vehicles arrive with low
battery levels, and low power modes such as Mode 1 are used.
According to this, more powerful charging points (i.e., Mode
2 or Mode 3 compliant) should be widely deployed to ensure
that these type of vehicles can properly be recharged.

VI. CONCLUSIONS

The sales of EVs are increasing drastically, and we foresee
that EVs are going to be a part of our daily lives in the near
future. As the technologies used are continuously improving,
and the batteries of this type of vehicles are gaining auton-
omy, it will be essential to enhance recharging methods while
reducing the cost of recharging EVs.

The most common method used to recharge EVs is the
well-known Plug&Charge. However, this method is not very
efficient since it does not take into account any parameter
for boosting efficiency. We consider that taking into account
valuable information, such as electricity pricing, the current
state of the electricity grid, or vehicle’s battery level would
definitively improve the charging process. According to this,
in this paper, we propose four charging methods, namely
the Cheapest, the Cheapest Starting, the Low Cost, and the
Last Period. These methods seek to maximize the charge
of the batteries while minimizing the cost of the electricity
consumed.

To assess our approaches, we used three different scenar-
ios (i.e., a regular-demand, a high-demand, and an extra-
demand), and we simulated a total of 365,000 EVs during
a full year. Simulation results showed an improvement which
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ranges from 46.9% to 75.2%, in terms of cost reduction
of the charging process, while maintaining similar battery
levels.

The study conducted demonstrates that the use of smart
context-aware charging points, i.e., those chargers that adapt
the charging process according to the initial vehicle battery
level and the time window available to recharge the battery,
is clearly convenient since the electricity cost can be drasti-
cally reduced.

REFERENCES

[1] M. Préndez and S. Lara-Gonzdlez, “Application of strategies for san-
itation management in wastewater treatment plants in order to con-
trol/reduce greenhouse gas emissions,” J. Environ. Manage., vol. 88, no. 4,
pp. 658-664, 2008.

[2] N. Scovronick, “Reducing global health risks through mitigation of
short-lived climate pollutants: Scoping report for policymakers,” World
Health Org., Geneva, Switzerland, Tech. Rep., 2015, accessed: Mar. 1,
2018. [Online]. Available: http://apps.who.int/iris/bitstream/handle/
10665/189524/9789241565080_eng.pdf?sequence=1

[3] A. Priiss-Ustiin and C. Corvaldn, “Preventing disease through healthy
environments,” Towards an estimate of the environmental burden of
disease, World Health Org., Geneva, Switzerland, Tech. Rep., 2006.
[Online].  Available:  http://apps.who.int/iris/bitstream/handle/10665/
204585/9789241565196_eng.pdf?sequence=1

[4] I.Barofsky, “Quality of life research: A critical introduction,” Quality Life
Res., vol. 13, no. 5, pp. 1021-1024, 2004.

[5] European Commission, “EU action against climate change-research

and development to fight climate change,” Directorate General

Environ., Luxembourg, Tech. Rep. KH-78-07-427-EN-C, 2007,

accessed: Mar. 1, 2018. [Online]. Available: http://www.pedz.uni-

mannheim.de/daten/edz-bn/gdu/07/research.pdf

Observatorio Tecnoldgico de la Energia, “Technology map of electric

mobility,” Ministerio de Industria, Energia y Turismo, Spain, Tech.

Rep., 2012, accessed: Mar. 1, 2018. [Online]. Available: http://www.

idae.es/uploads/documentos/documentos_Movilidad_Electrica_ ACC_

c603£868.pdf

[7]1 Ministerio de Industria, Energfa y Turismo, ‘“Comprehensive
strategy for Electric Vehicles,” Ministerio de Industria, Energia y
Turismo, Spain, Tech. Rep., 2010, accessed: Mar. 1, 2018. [Online].
Available: http://www.minetad.gob.es/es-es/gabineteprensa/notasprensa/
documents/estrategiaintegralveh%C3%AD
culoelectrico060410.pdf

[8] L. Schewel and D. M. Kammen, ““Smart transportation: Synergizing elec-
trified vehicles and mobile information systems,” Environment, vol. 52,
no. 5, pp. 24-35, 2010.

[91 M. Roscia, M. Longo, and G. C. Lazaroiu, “Smart city by multi-agent
systems,” in Proc. IEEE Int. Conf. Renew. Energy Res. Appl. (ICRERA),
Oct. 2013, pp. 371-376.

[10] International Energy Agency, ‘“‘Global EV Outlook 2017. Two million and
counting,” Int. Energy Agency, Paris, France, Tech. Rep., 2017, accessed:
Mar. 1, 2018. [Online]. Available: https://www.iea.org/publications/
freepublications/publication/GlobalEVOutlook2017.pdf

[11] International Energy Agency, “Energy technology perspectives:
Catalysing energy technology transformations,” Int. Energy Agency,
Paris, France, Tech. Rep., 2017, accessed: Mar. 1, 2018. [Online].
Available: https://www.iea.org/etp2017/summary/

[12] Framework Convention on Climate Change, “Adoption of the Paris
agreement,” United Nations, New York, NY, USA, Tech. Rep.
FCCC/CP/2015/L.9/Rev.1, 12, 2015, accessed: Mar. 1, 2018, [Online].
Available: http://unfcce.int/resource/docs/2015/cop21/eng/109r01.pdf

[13] Clean Energy Ministerial. (2018). Accelerating the Global Clean
Energy Transition. Accessed: Mar. 1, 2018. [Online]. Available:
http://www.cleanenergyministerial.org/

[14] S. M. Tornell et al, “Smartphones as the keystone for leveraging
the diffusion of its applications,” in Proc. 9th ITS Eur. Congr, 2013,
pp. 1-8.

[15] J. Barrachina et al., “‘Reducing emergency services arrival time by using
vehicular communications and evolution strategies,” Expert Syst. Appl.,
vol. 41, no. 4, pp. 1206-1217, 2014.

[6

VOLUME 6, 2018



V. Torres-Sanz et al.: Enhancing the Charging Process of EVs at Residential Homes

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]
[37]

[38]

Y.-M. Wi, J.-U. Lee, and S.-K. Joo, “Electric vehicle charging method for
smart homes/buildings with a photovoltaic system,” IEEE Trans. Consum.
Electron., vol. 59, no. 2, pp. 323-328, May 2013.

H. Makkonen, V. Tikka, J. Lassila, J. Partanen, and P. Silventoinen,
“Demonstration of smart charging interface in green campus,” in Proc.
Eur. Conf. Power Electron. Appl. (EPE-ECCE Eur.), Aug. 2014, pp. 1-10.
V. Tikka, H. Makkonen, J. Lassila, and J. Partanen, “Case study: Smart
charging plug-in hybrid vehicle test environment with vehicle-to-grid
ability,” in Proc. Eur. Conf. Power Electron. Appl. (EPE-ECCE Eur.),
Aug. 2014, pp. 1-10.

M. Gharbaoui, L. Valcarenghi, R. Brunoi, B. Martini, M. Conti, and
P. Castoldi, “An advanced smart management system for electric vehicle
recharge,” in Proc. IEEE Int. Electric Vehicle Conf. (IEVC), Mar. 2012,
pp. 1-8.

A. Valdivia-Gonzalez, D. Zaldivar, F. Fausto, O. Camarena, E. Cuevas, and
M. Perez-Cisneros, ““A states of matter search-based approach for solving
the problem of intelligent power allocation in plug-in hybrid electric
vehicles,” Energies, vol. 10, no. 1, p. 92, 2017.

Z. Ma, D. Callaway, and I. Hiskens, “Decentralized charging control
for large populations of plug-in electric vehicles,” in Proc. IEEE Conf.
Decision Control (CDC), Dec. 2010, pp. 206-212.

K. Mets, T. Verschueren, W. Haerick, C. Develder, and F. De Turck, “Opti-
mizing smart energy control strategies for plug-in hybrid electric vehicle
charging,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. Workshops
(NOMS Wksps), Apr. 2010, pp. 293-299.

L. Gan, U. Topcu, and S. Low, ““Optimal decentralized protocol for electric
vehicle charging,” in Proc. 50th IEEE Conf. Decision Control Eur. Control
Conf. (CDC-ECC), Dec. 2011, pp. 5798-5804.

L. Chen, C. Y. Chung, Y. Nie, and R. Yu, “Modeling and optimization
of electric vehicle charging load in a parking lot,” in Proc. IEEE PES
Asia—Pacific Power Energy Eng. Conf. (APPEEC), Dec. 2013, pp. 1-5.

1. Sharma, C. Caiiizares, and K. Bhattacharya, “Smart charging of PEVs
penetrating into residential distribution systems,” IEEE Trans. Smart Grid,
vol. 5, no. 3, pp. 1196-1209, May 2014.

S. Acha, T. C. Green, and N. Shah, ““Optimal charging strategies of electric
vehicles in the UK power market,” in Proc. IEEE PES Innov. Smart Grid
Technol. (ISGT), Jan. 2011, pp. 1-8.

K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of load demand due
to EV battery charging in distribution systems,” IEEE Trans. Power Syst.,
vol. 26, no. 2, pp. 802-810, May 2011.

ANFAC, “Annual Report 2016,” Asociacién espafiola de fabricantes
de automdviles y camiones, Tech. Rep., 2017, accessed:
Mar. 1, 2018, [Online]. Available: http://www.anfac.com/documents/
tmp/MemoriaANFAC2016.pdf

“Término de facturacién de energia activa del PVPC,” Red Eléctrica
de Espaiia, Community Madrid, Spain, 2017, accessed: Mar. 1, 2018.
[Online]. Available: https://www.esios.ree.es/es/pvpc

IEC 62196-1. Plugs, Socket-Outlets, Vehicle Couplers and Vehicle
InletsUConductive Charging of Electric Vehicles—Part 1: Charging
of Electric Vehicles up to 250 A A.C. and 400 A D.C., IEC Standard
62196-1:2003(E), International Electrotechnical Commission, Geneva,
Switzerland, 2003, accessed: Mar. 1, 2018. [Online]. Available:
http://www.inmetro.gov.br/barreirastecnicas/pontofocal/..%5Cpontofocal
%5Ctextos%5Cregulamentos%SCSAU_357.pdf

P. Haugneland and H. H. Kvisle, “Norwegian electric car user expe-
riences,” in Proc. Electric Vehicle Symp. Exhib. (EVS27), Nov. 2013,
pp. 1-11.

ComEd. (2017). Real Time Hourly Prices.
https://hourlypricing.comed.com/live-prices/
Independent Electricity System Operator. (2017). Real Time Hourly
Prices. [Online]. Available: http://www.ieso.ca/power-data#price/
FACUA, “Comparative study about the electric supply in ten
European countries,” Asociacién de consumidores y usuarios en
accion, Tech. Rep., 2014, accessed: Mar. 1, 2018, [Online]. Available:
http://facua.org/es/documentos/estudio_electricidad_europa_es.pdf
Elering. (2017). Electricity Market Price. [Online]. Available:
http://vana.elering.ee/electricity-market-price/

C. P. Robert, Monte Carlo Methods. New York, NY, USA: Wiley, 2004.
R. Miceli and F. Viola, “Designing a sustainable university recharge area
for electric vehicles: Technical and economic analysis,” Energies, vol. 10,
no. 10, p. 1604, 2017.

H. Al-Deek and E. B. Emam, “New methodology for estimating reliability
in transportation networks with degraded link capacities,” J. Intell. Transp.
Syst., vol. 10, no. 3, pp. 117-129, 2006.

[Online]. Available:

VOLUME 6, 2018

(39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

C. Maxim, A. Gogonel, D. Maxim, and L. Cucu-Grosjean, “Estimation
of probabilistic minimum inter-arrival times using extreme value theory,”
in Proc. 6th Junior Res. Workshop Real-Time Comput. (JRWRTC), 2012,
pp. 1-4.

J. I. McCool, Using the Weibull Distribution: Reliability, Modeling and
Inference, vol. 950. Hoboken, NJ, USA: Wiley, 2012.

Susilawati, ‘“Modeling urban arterial road travel time variability,”
Ph.D. dissertation, Transp. Syst. School Natural Built Environ. Univ. South
Australia, Adelaide, Australia, 2012.

R. Fries, A. Dunning, and M. Chowdhury, “Traveler’s value of real-time
transit information,” in Proc. 88th Annu. Meeting Transp. Res. Board,
2009, pp. 1-19.

STcars. (2017). Time Out from Commuting. [Online]. Available:
http://www.stcars.sg/guides-articles/time-out-from-commuting-73660

E. Hansson, K. Mattisson, and J. Bjork, P.-O. Ostergren, and
K. Jakobsson, “Relationship between commuting and health outcomes in
a cross-sectional population survey in southern Sweden,” BMC Public
Health, vol. 11, no. 1, p. 834, 2011.

V. Helminen and M. Ristiméki, “Relationships between commuting dis-
tance, frequency and telework in Finland,” J. Transp. Geograph., vol. 15,
no. 5, pp. 331-342, 2007.

J. Lee, K. W. Choi, N. P. Yao, and C. C. Christianson, ‘“Three-dimensional
thermal modeling of electric vehicle batteries,” J. Electrochem. Soc.,
vol. 133, no. 7, pp. 1286-1291, 1986.

VICENTE TORRES-SANZ received the B.Sc.
degree in computer science from the Univer-
sity of Zaragoza in 2012, and the M.Sc. degrees
from Madrid Open University in 2014 and 2015,
respectively. He is currently pursuing the Ph.D.
degree with the Intelligent Networks and Informa-
tion Technologies Research Group, University of
Zaragoza. His research interests include electric
vehicles, simulation, intelligent transportation sys-
tems, and traffic safety.

JULIO A. SANGUESA received the B.Sc. degree
in computer science from the University of
Zaragoza in 2008, the M.Sc. degree from the Open
University of Catalonia in 2010, and the Ph.D.
degree from the University of Zaragoza in 2014.
He is currently an Assistant Professor with the
Centro Universitario de la Defensa. He is also
with the Intelligent Networks and Information
Technologies Research Group. His research inter-
ests include VANETS, electric vehicles, intelli-

gent transportation systems, vehicle-to-vehicle, and vehicle-to-infrastructure
communications. He serves as a reviewer, and a TPC member in different
international journals and conferences.

FRANCISCO J. MARTINEZ (M’09) received the
B.Sc. degree in computer science and the B.Sc.
degree in documentation from the Technical Uni-
versity of Valencia in 1996 and 1999, respec-
tively, and the Ph.D. degree in computer engi-
neering from the Technical University of Valencia
in 2010. He is currently an Associate Professor
with the Department of Computers and System
Engineering, University of Zaragoza, Spain. He is
also the Leader of the Intelligent Networks and

Information Technologies Research Group. He has authored over 100 papers
published in well-recognized conferences and journals. His current research
interests include vehicular networks, intelligent transportation systems, elec-
tric vehicles, traffic safety, vehicle-to-vehicle, and vehicle-to-infrastructure
communications. He received the Extraordinary Doctorate Award. He serves
as an associate editor, a reviewer, and a TPC member in different interna-
tional journals and conferences.

22887



IEEE Access

V. Torres-Sanz et al.: Enhancing the Charging Process of EVs at Residential Homes

PIEDAD GARRIDO received the B.Sc. degree in
computer science and the B.Sc. degree in doc-
umentation from the Universidad Politecnica de
Valencia in 1997, 1999, and 2015, respectively,
and the Ph.D. degree in documentation: archives
and libraries in the digital environment from the
Charles III University of Madrid in 2008. She is
currently an Associate Professor with the Com-
puter Science and Systems Engineering Depart-
ment, University of Zaragoza, Spain. Her current
research interests, inside the Intelligent Networks and Information Technolo-
gies Research Group, include intelligent transportation systems, traffic safety
and sustainable transport, datawarehousing, and intelligent information tech-
nologies for industry.

22888

JOHANN M. MARQUEZ-BARIJA received the
B.Sc. and M.Sc. degrees (Hons.) in systems engi-
neering (computer science), the M.Sc. degree
in telematics, the M.Sc. degree in computer
architectures, and the Ph.D. degree (cum laude)
in architecture and technology of computer and
network systems from the Universitat Politecnica
de Valencia, Spain. He was a Research Assistant
Professor with the CONNECT Centre for Future
Networks and Communications, Trinity College
Dublin, Ireland. He is currently an Associate Professor with University of
Antwerp—imec, Belgium. He is also with the IDLab Antwerp which is
performing applied and fundamental research in the area of communication
networks and IoT/distributed systems. He was and is involved in several
European research projects, being a Co-Principal Investigator for several of
them. He is also the Technical Coordinator of the FUTEBOL consortium,
where he became a Principal Investigator for imec within this project. He has
studied in USA, Bolivia, Cuba, and Spain. His main research interests include
5G advanced heterogeneous architectures, programmable elastic and flexible
future wireless networks and its integration and impact on optical networks,
provisioning and dynamic resource allocation toward dynamic networks
in smart-cities, and IoT clustering. He is a Senior Member of the IEEE
Communications Society and the IEEE Education Society. He is serving
as an editor and a guest editor for four International Journals, as well as
participating in several technical program and organizing committees for
different worldwide conferences/congresses.

VOLUME 6, 2018



	INTRODUCTION
	RELATED WORK
	OUR PROPOSAL: IMPROVING EVs CHARGE STRATEGIES
	ELECTRIC CONTEXT
	RECHARGING STRATEGIES PROPOSED

	SIMULATION ENVIRONMENT
	SIMULATION RESULTS
	FIRST SCENARIO: REGULAR-DEMAND
	SECOND SCENARIO: HIGH-DEMAND
	THIRD SCENARIO: EXTRA-DEMAND
	OVERALL COMPARISON

	CONCLUSIONS
	REFERENCES
	Biographies
	VICENTE TORRES-SANZ
	JULIO A. SANGUESA
	FRANCISCO J. MARTINEZ
	PIEDAD GARRIDO
	JOHANN M. MARQUEZ-BARJA


