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ABSTRACT This paper is devoted to a memristive hyperchaotic system. Different from some the existing
literature, we derive analytically, under appropriate conditions, the stability and the analytic expression of the
Hopf bifurcation by employing center manifold theorem. The system shows dynamics including equilibrium
set with one or three elements, Lyapunov exponents with different signs, such as (0, 0, 0, −), (+, 0, −, −),
(+, 0, 0, −), and (+, +, 0, −), by varying only one parameter. Moreover, the coexistence of multiple
hyperchaotic attractors is observed. Some simulation examples are presented to illustrate our theoretical
results.

INDEX TERMS Memristor, hyperchaotic circuit, Lyapunov exponents, periodic solutions, center manifold.

I. INTRODUCTION
Originally, along with the resistor, capacitor and inductor, the
memristor is the fourth fundamental circuit element, which
has been theoretically postulated [10] and classified [12].
Since 2008, when the researchers at Hewlett-Packard (HP)
Labs developed the device [37], the memristor has attracted
indispensable attentions from both industry and academia,
due to its potential applications in neural networks, novel
storage medium, artificial intelligence, chaotic circuit and so
on [6], [7], [14], [33].

Recently, the modeling, analysis and design of memristor-
based circuit have been studied by many researchers.
Owing to the nonlinearity of the memristor element, the
memristor-based circuits are able to generate a chaotic signal
with ease and reproduce the complicated and unpredictable
behavior [1], [4], [6]. In particular, the bifurcation of a
mathematical model with only two circuit elements (namely,
a memristor and a battery) was studied analytically and
numerically [34]. In addition, the bifurcation phenom-
ena in systems were investigated by applying bifurca-
tion theory [9], [19], [41]. Furthermore, memristor-based
chaotic circuits and related topics were presented by various
authors [13]–[16], [21], [23], [31]–[44]. Different aspects
and properties of bifurcating periodic solutions have been
studied by various authors. For example, the phenomenon of

extreme multi-stability with hidden oscillation was revealed
and the coexistence of infinitely many hidden attractors was
observed in [5], the criteria for the existence and number of
branches of bifurcating periodic solutions was derived in [8]
and [25]. Furthermore, the properties of Hopf bifurcation
(including the bifurcation direction and stability of bifurcat-
ing periodic solutions) were investigated in [22] and [30]
by applying the normal form method and center manifold
theorem; the analytical study of the periodic solutions of high
dimensional systems with dimension over 4 were given in [3]
and [26]–[29].

However, the dynamics of multiple chaotic circuits involv-
ing memristor have not been thoroughly investigated until
now, and some dynamics such as Hopf bifurcation and peri-
odic solutions are still not well understood. In particular,
analytic expression of the Hopf bifurcation (Theorem 6(d) in
this work) has not been discovered in any memristive system
and this fact motivates our work for the paper.

The state-dependent input-output algebraic relationship of
first-order active generalized memristor [40] shown in the
dashed box of Fig. 1 can be expressed in the following
way:

dv0
dt
= f (v0, vM ), iM = g(v0, vM )vM . (1)
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FIGURE 1. The inductor-less hyperchaotic memristor-based circuit.

The state evolution function f (·, ·) and the memductance
g(·, ·) are given respectively by

f (v0, vM ) =
2Is[e−ρv0 cosh(ρvM )− 1]

C0
−

v0
R0C0

,

g(v0, vM ) =
2Ise−ρv0 sinh(ρvM )

vM
−

1
RN
,

where vM , iM and v0 denote the input voltage, the input
current and the voltage of C0, respectively. R0, C0 and RN are
parameters of the system and Ra = Rb, ρ = 1/(2nVT ), where
Is, n, and VT denote the reverse saturation current, emis-
sion coefficient, and thermal voltage of diode, respectively.
Is = 6.8913nA, n = 1.8268, and VT = 25 mV.

Based on the memristor, the 4-D state equations of the
inductorless hyperchaotic circuit shown in Fig. 1 are derived
as 

dv1
dt
=

1
C1

[G(v2 − v1)− g(v0, v1)v1],

dv2
dt
=

1
C2

[Gv1 − (G+ G1 − kG2)v2 − G2v3],

dv3
dt
=

1
C3

[G2(kv2 − v3)],

dv0
dt
= f (v0, v1),

(2)

where v1, v2, v3 and v0 are the voltages of C1, C2, C3
and C0, respectively, and k = R3/R4. The circuit component
parameters are summarized in Table 1. Here, the parameters
R and RN are taken as the continuous varied parameters.
In the case of RN = 2.5k� and R varying, the authors of

[40] investigated the chaotic behavior of (2), the dissipativity,
equilibrium points, and stabilities with typical circuit parame-
ters numerically. Surprisingly, the fact that the system (2)may
have only one equilibrium point (Theorem 1 in this work) has
not been discovered. In this case, we observe multiple chaotic
attractors theoretically and numerically and try to seek an
analytical form of Hopf bifurcation and periodic solutions
of (2).

The rest of this paper is organized as follows. In Section 2,
the dynamical behavior of the hyperchaotic memristor cir-
cuit described by (2), including its equilibrium numbers,
Lyapunov exponents with different signs such as (0, 0, 0,−),
(+, 0, −, −), (+, 0, 0, −), (+, +, 0, −) by varying only one

TABLE 1. Circuit component parameters.

parameter, and the bifurcation diagrams with two parameters
are derived. It is shown that the system (2) has multiple
chaotic attractors spanning from limit cycles of different peri-
odicity to chaotic attractors with various circuit parameters.
In Section 3, under appropriate conditions, that zero-Hopf
bifurcation (or saddle-node Hopf bifurcation) and analytic
expression of the Hopf bifurcation are obtained. Finally,
Section 4 presents the conclusion of this study.

II. PRELIMINARY ANALYSIS
To characterize the role of the parameters R, RN in (2), in this
section, we investigate the various dynamical behavior of the
system via computer simulations. We analyze the evolution
of chaotic attractors through the bifurcation diagrams and
Lyapunov exponents. For the sake of illustration, we simplify
the presentation by choosing 2 ≤ RN ≤ 5 and R > RN − R1.

A. DISSIPATIVITY OF THE SYSTEM
For analysis the dissipativity of (2), we first note that

∇V =
∑3

j=0

∂ v̇j
∂vj
= −G(v0, v1).

Here, V is the volume element of the flow and

G(v0, v1) = 2ρIse−ρv0 cosh(ρv1)
(

1
C1
+

1
C0

)
+3,

where 3 =
(
1
R −

1
RN

)
1
C1
+

(
1
R +

1
R1
−

k
R2

)
1
C2
+

1
R0C0
+

1
R2C3

. If G(v0, v1) > 0, that is either 3 > 0 or 3 < 0 and
v0 < d(v1), where

d(v1)=
1
ρ
log

[
2ρIs cosh(ρv1)

(
1
C0
+

1
C1

)]
−

1
ρ
log(−3).

(3)

Then (2) is dissipative with an exponential contraction rate
given by V̇ = −G(v0, v1)V . In other words, a volume
element V0 is contracted by the flow into a volume element
V0e−G(v0,v1)t in time t . Thus the system can support attractors.

B. EQUILIBRIUM AND ITS STABILITY
Besides the zero equilibrium, there may be up to two non-
zero equilibria, which can be found by solving the following
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FIGURE 2. Three function curves in the (x = v1, v0) plane.

system of nonlinear algebraic equations:

−
1
R
(v1 − v2)−

[
2Ise−ρv0 sinh(ρv1)−

v1
RN

]
= 0,

v1
R
−

(
1
R
+

1
R1
−

k
R2

)
v2 −

v3
R2
= 0,

(kv2 − v3)
1
R2
= 0,

2Is
[
e−ρv0 cosh(ρv1)− 1

]
−
v0
R0
= 0.

(4)

The algebraic system (4) is not expressed explicitly in
terms of any particular parameter due to its nonlinearity.
By introducing a new variable q = 1

RN
−

1
R+R1

, and analyzing
of (4), we establish that, depending on the values of q, the
system (2) may have either only one (if R = 2.8) or three
(if R = 4.8) equilibrium points, as observed in Fig. 2 and
confirmed mathematically in Theorem 1.
Theorem 1: Let RN ≥ 2, q = 1

RN
−

1
R+R1

> 0 and consider
a function on q as

S(q) =
1
ρ

(
log

(
2Isρ
q

)
− q

)
+ 2Is.

(a) If S(q) ≥ 0, then the system (2) has only an equilibrium
E0 = (0, 0, 0, 0).

(b) If S(q) < 0, then the system (2) has three equilibria E0,
and E± = (±v∗1,±v

∗

2,±v
∗

3, v
∗

0), where v
∗

1 > 0, v∗2 > 0,
v∗3 > 0, v∗0 > 0 satisfy (4).

Proof: From (4), it follows that the coordinate v∗1 of the
equilibria of (2) is a point of intersection of two curves f1(x)
and f2(x), where

f1(x) = −
1
ρ
log

(
qx

2Is sinh(ρx)

)
, f2(x) =

qx
tanh(ρx)

− 2Is.

It is easy to find that both f1(x) and f2(x) are even functions,
and therefore, we can merely set x > 0.
Let f (x) = f1(x)− f2(x), x > 0. The derivative of f (x) via

x implies

f ′(x) =
ψ(θ )

qθ (sinh(θ ))2
,

where θ = ρx and

ψ(θ ) = −(sinh(θ ))2 + (1− q)θ sinh(θ ) cosh(θ )+ qθ2.

Suppose that ϑ = 2θ . It is evident that

ψ ′(θ ) = qϑ + 0.5(1− q)ϑ cosh(ϑ)

− 0.5(1+ q)ϑ sinh(ϑ) = g(ϑ)

and hence

g′(ϑ) = q− q cosh(ϑ)+ 0.5(1− q)ϑ sinh(ϑ),

g′′(ϑ) = 0.5(1− 3q) sinh(ϑ)+ 0.5(1− q)ϑ cosh(ϑ),

g′′′(ϑ) = (1− 2q) cosh(ϑ)+ 0.5(1− q)ϑ sinh(ϑ).

As q = 1/RN − 1/(R + R1) and the parameter RN ≥ 2,
we get q < 0.5. It follows that g′′′(ϑ) is a monoton-
ically increasing function of ϑ . This leads to g′′′(ϑ) >

g′′′(0) = 0 and hence g′′(ϑ) > g′′(0) = 0, g′(ϑ) >

ψ ′(0) = 0, g(ϑ) > g(0) = 0, successively. Clearly f (x)
is a monotonically increasing function of x. Then we have
lim infx∈(0,+∞) f (x) = lim

x→0+
f (x) = S(q). On the other hand,

lim
x→+∞

f (x) = +∞ and the conclusion follows.

Let RN = 2.5. By Theorem 1, the system (2) with R =
4.8 have three equilibrium points E0 = (0, 0, 0, 0), E± =
(±169.7759, ±6.7910, ±14.7139, 21.8642) since q = 0.2
and S(q) = −30.2199 < 0. While if R = 2.8, then q =
1/15 and S(q) = 82.3060 > 0, the system (2) has only zero
equilibrium E0 which is unstable.
In general, from a simple analysis by Matlab, we obtain

that (2) with RN = 2.5 has only zero equilibrium point if and
only if S(q) > 0, which is equivalent to 0 < q < q0 where
q0 ≈ 0.1509. Thus the system (2) only has zero equilibrium
if and only if parameter R ∈ (2.3, 3.8151).
It is evident that the system is invariant through mapping:

(v1, v2, v3, v0) → (−v1,−v2,−v3, v0), and the system (2)
has therefore rotation symmetry about the v0-axis. It follows
that any non-trivial phase portrait of (2) must have a twin
phase portrait.

For simplicity, we only consider the zero equilibrium in
this paper. For nonzero equilibria, if they exist, the method
adopted in this paper can also be applied by using the change
of variables such that the equilibrium point can be trans-
lated to the origin. For the dynamics around nonzero equilib-
ria, especially the higher codimension bifurcation problems,
which cannot be explored analytically, one can use some suit-
able numerical bifurcation analysis tools, such as MatCont.
In the future work, we will use it to calculate the codimension
two bifurcation problem.

To study the steady-state bifurcation of the zero equi-
librium, one need consider the linearization of (2) at the
zero equilibrium. By linearizing (2) at the zero equilibrium,
we obtain the following Jacobian matrix

A =


a1 a2 0 0
b1 b2 b3 0
0 c2 c3 0
0 0 0 −d

,
23204 VOLUME 6, 2018
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where

a1 =
(

1
RN
−

1
R
− 2ρIs

)
1
C1
, a2 =

1
RC1

,

b1=
1
RC2

, b2=−
(
1
R
+

1
R1
−
k
R2

)
1
C2
, b3=−

1
R2C2

,

c2 =
k

R2C3
, c3 = −

1
R2C3

, d=
(

1
R0
+ 2ρIs

)
1
C0
.

(5)

Then, the corresponding characteristic equation is given
by

g(λ) = (λ+ d)(λ3 + p2λ2 + p1λ+ p0), (6)

where
p2 = − (a1 + b2 + c3),

p1 = a1b2 + a1c3 + b2c3 − b3c2 − a2b1,

p0 = a1b3c2 + a2b1c3 − a1b2c3.

(7)

It is easy to show that

a1 = −
1
R
+

1
RN
−

68913
456700

, a2 =
1
R
,

b1 =
1

47R
, b2 = −

1
47R
+

35
282

, b3 = −
5
47
,

c2 =
65
282

, c3 = −
5
47
, d =

23
200

.

(8)

By solving the equation g(λ) = 0, we obtain λ = −d is
an eigenvalue of matrix A. According to the Routh-Hurwitz
condition, not all the roots of A have negative real parts.
For example, for fixed RN = 2.5, when R = 2.8, the four
eigenvalues of matrix A are −0.1082, 0.0051 ± 0.0970i,
−0.0115, the corresponding equilibrium is unstable. When
R = 3.6365, the four eigenvalues are −0.0137, −0.0002 ±
0.1000i, −0.0115. In this case, the equilibrium is locally
asymptotically stable.

We now explore the stability of the zero equilibrium in
general. By some algebra calculations, we have

p2 =
47
48R
−

1
RN
+ m−

5
282

,

p1 = −
1

47RNR
+

5
282RN

+
282m− 205
13254R

−

(
5m
282
−

25
2209

)
,

p0 =
5

2209

(
−

1
RNR

−
5
RN
+

5+ m
R
+ 5m

)
,

p2p1 − p0 = −
1
47

(
a(RN )
R2
+
b(RN )
R
+ c(RN )

)
,

(9)

where m = 68913/456700 ≈ 0.1509 and a(RN ), b(RN ),
c(RN ) are given by

a(RN ) =
48
47

(
−

1
RN
+ m−

205
282

)
,

b(RN )=
1

R2N
+

1
RN

(
80
47
−2m

)
+m2
−
80m
47
+

1925
79524

,

c(RN ) = −
5

6R2N
+

1
RN

(
5m
3
−

25
1692

)
−

5
6

(
m2
−

5m
282
+

25
2209

)
.

(10)

Theorem 2: Let E0 be the zero equilibrium of (2) and
W s(E0) andW u(E0) denote the stable and unstable manifolds
of E0, respectively. Assume that the system parameters satis-
fies the condition (H): p2 > 0, p0 > 0, p2p1 − p0 > 0, then
the following assertions hold:

(a) If (H) is satisfied, then E0 is locally asymptotically
stable with dim W s(E0) = 4.
(b) If (H) is not satisfied, then E0 is unstable. In partic-

ularly, if p2 > 0, p0 > 0, then dim W s(E0) = 2 and
dim W u(E0) = 2.

Proof: Let λ0 = −d , λ1, λ2, λ3 be eigenvalues of
matrix A with Re(λ1) ≤ Re(λ2) ≤ Re(λ3).
If the condition (H) is satisfied, then the Routh-Hurwitz

conditions imply that λi < 0, i = 0, 1, 2, 3. By the Hartman-
Grobman Theorem we have dimW s(E0) = 4 corresponding
to the fact that E0 is stable.

If the condition (H) is not satisfied, then E0 is unstable.
In particular, if p2 > 0, p0 > 0, then by taking into
account the relations between the roots and the polynomial
coefficients, we have λ1 + λ2 + λ3 = −p2 < 0, λ1λ2λ3 =
−p0 < 0, and λ1 < 0 ≤ Re(λ2) ≤ Re(λ3). In this case the
Routh-Hurwitz conditions indicate that λ1 < 0,Re(λ2) > 0,
Re(λ3) > 0. From the Hartman-Grobman Theoremwe obtain
that dimW s(E0) = 2 and dimW u(E0) = 2. This completes the
proof.

From Theorem 2 we know that the stability of the zero
equilibrium E0 may switch, depending on the parameters R
and RN values. An analysis of the roots of p0 − p1p2 shows
that, for fixed R and RN , the parameter region∑

= {(RN ,R) |p0 > 0, p2 > 0,RN ≥ 2,R ≥ 2 }

is divided into two parts shown in Fig. 3(a) by the lines
R− and R+, which are expressed via RN as

R± =
38.2035+ 53.4979RN − 8.0176R2N ± 2

√
1

63.6725− 18.0866RN + 2R2N
, (11)

where

1 = 364.8769− 220.23RN + 199.6536R2N
−50.2241R3N − 6.4053R4N ,

and R− and R+ are strictly monotonically increasing
functions.
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TABLE 2. Distinct Lyapunov exponents of the proposed system with different signs for values of parameter R.

FIGURE 3. (a) Region of stability of E0 in the RN − R parameter space.
(b) Time series of v1, v2, v3, v0.

They connect at the point Q with the coordinates (2.5447,
3.9309). By taking into account the mutual positions of the
lines R− and R+, we find that the equilibrium of (2) is stable
for the values of the parameters on the plane (RN ,R) below
the line R+ and above the line R−, and unstable for the values
of the parameters on the plane (RN ,R) either above the line
R+ or below the line R−.
The change of stability suggests that a Hopf bifurcation

may occur and concrete results shall be explored in Section 3.
For each fixed value of the parameter RN , say RN = 2.5
time series of (2) for the parameter R = 3.7 with the initial
condition (0.001, 0, 0, 0) converges toE0(0, 0, 0, 0), as shown
in Fig. 3(b) corresponding to the formation of the four roots of
the equilibrium E0 : −0.0085,−0.0003±0.1005i,−0.0115.

C. BIFURCATION ANALYSIS OF THE SYSTEM
Choose RN = 2.5 and take R as a varying parameter
within the regions of 2.3 ≤ R ≤ 50. For the proposed
system, the spectrums of Lyapunov exponents with respect to

parameter R are shown in Fig. 4(a). The bifurcation diagram
with respect to the varying parameter R for the initial condi-
tions (±0.01, ±0.1, ±0.1, 0) and computational time 2000s
are depicted in Fig. 4(b). It is seen that when R varies on
the interval [3.8, 3.845], the first three Lyapunov exponents
are all close to zero. This implies the existence of a 3-torus
quasiperiodic orbit. When R varies between 3.9 and 4.25,
Lyapunov exponent of the proposed system is of sign (+, 0,
0, −) and exhibits 2-torus, while for R > 8.9, the first two
Lyapunov exponents become positive, which imply that the
system is hyperchaotic, as displayed in Fig. 5(d), (e) and (f).
These conclusions are also supported by the results shown
in Table 2.

In analyzing the dynamical bifurcation and the folding
properties of a chaotic attractor, a Poincare map is very
significant. Fig. 4(c) and (d) demonstrate projections of the
Poincare map of the proposed system in the v1 − v0 plane
for the parameter R varying. It is strongly expected that the
system (2) can generate multi-chaos when R varies. This
conclusion is also supported by the following results revealed
in Fig. 5.

D. COEXISTENCE OF MULTIPLE ATTRACTORS
Coexistence of multiple attractors is an interesting topic [2],
[5], [36], [41]. In this subsection, from numerical simulation
we study coexistence of multiple attractors of (2). Firstly,
perform simulation to observe the interesting phenomenon of
multiple chaotic attractors of (2). For the fixed parameters
R = 3.45 and RN = 2.25, the system (2) can gener-
ate two coexisting chaotic attractors, whose phase portraits
and time series are shown in Fig. 5. Fig. 5(b) depicts two
coexisting chaotic attractors in (v1, v0)-plane. The right
attractor is a one-periodic chaotic attractor corresponding to
initial value (0.0015, 0.001, 0, 0) (blue), and the left is one-
periodic chaotic attractor corresponding to initial conditions
(−0.0015, −0.001, 0, 0) (red), respectively. We emphasize
that the left attractor and the right attractor are diverging
completely. For some other choices of parameters, the sys-
tem (2) also exhibits different multiple strange attractors,
such as coexisting multiple hyperchaotic attractors, as shown
in Fig. 5(d), and periodic attractors with multiple periodicity.

III. HOPF BIFURCATION AND PERIODIC
SOLUTIONS OF THE SYSTEM
In this section, with the help of the higher-dimensional
Hopf bifurcation theory and base on symbolic computations,
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FIGURE 4. (a) Bifurcation diagram. (b) Spectrum of Lyapunov exponents.
(c) Poincare map of v1 − v0 plane with R = 3.8. (d) Poincare map of
v1 − v0 plane with R = 4, where RN = 2.5 and the initial value
(−0.001, 0, −0.1, 0).

dynamical bifurcation with respect to the varying parameters
R and RN shall be investigated. According to the center
manifold theory, that zero-Hopf bifurcation occurs when the

equilibrium in autonomous system has a zero eigenvalue and
a pair of purely imaginary eigenvalues.

Firstly, the existence of Hopf bifurcation is guaranteed by
the analysis of characteristic value. For simplicity, we intro-
duce two new variables:

p̃0=
(5+ m)RN − 1
5(1−mRN )

, p̃1=
(205/282− m)RN+1
(30/47− m)RN + 1

. (12)

It is easy to see that p̃1 is strictly monotonically increasing
on the parameter RN , and p̃1 has a maximum p̃1max = 1.819.
We note that, under the conditions 5 > RN ≥ 2, R ≥ RN −
R1 ≥ 1.8, p1 > 0 is equivalent to R > 1.2p̃1. Therefore,
we can carry out the model analysis with p1 > 0.
Theorem 3: Let 5 > RN ≥ 2 and R ≥ 1.8. Then the

following assertions hold.
(a) If p0 = 0 (that is, R = p̃0, as shown in (12)), p2 > 0,

and p22 − 4p1 < 0, then the characteristic equation of E0
has a zero root and three roots with negative real parts,
which implies that the system (2) may undergo a fixed point
bifurcation.

(b) If p0 = p2 = 0, then the characteristic equation
of E0 has a zero eigenvalue, a negative eigenvalue, and a
pair of purely imaginary eigenvalues. In this case, zero-Hopf
bifurcation occurs.

(c) If p0p2 > 0 and (b(RN ))2 − 4a(RN )c(RN ) > 0, then
as R varies and passes through the critical value R∗ = R+
or R−, a Hopf bifurcation occurs (the stability of (2) switches
for around R− or R+, where expressions of p0, p1, p2, a(RN ),
b(RN ), c(RN ), and R± are given in (9)-(11).

Proof: Suppose that the zero equilibrium in (2) has a
pure imaginary root iω0 in which ω0 > 0. We obtain

p0 − p2ω2
0 + iω0

(
p1 − ω2

0

)
= 0.

Separating the real and imaginary parts, we find that the
variable ω0 is given by the following equations:

ω2
0 =

p0
p2
, ω2

0 = p1.

Thus, p0 − p1p2 = 0. From the representation (9) of
p0 − p1p2 via R,RN , we obtain that the critical value R = R∗

equals to either R+ or R− as

R± =
−b(RN )±

√
b(RN )2 − 4a(RN )c(RN )
2c(RN )

,

where a(RN ), b(RN ), c(RN ) are given by (10). It follows that
by direct computation and with the help of Matlab tool, we
obtain approximate expression of R±, as shown in (11).

Substituting R = R∗ into the characteristic equation (6),
we have λ1 = iω0, λ2 = −iω0, λ3 = −p2, λ4 = −d , where
ω0 =

√
p1. Hence, in the case of p0p2 > 0, the first condition

for Hopf bifurcation [17] is satisfied.
From the characteristic equation (6) and the relations

p1 = ω2
0 and 1 > 0, it follows that

(3λ+ 2λP2 + p1)
∂λ

∂R
+ λ2

∂p2
∂R
+ λ

∂p1
∂R
+
∂p0
∂R
= 0.
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FIGURE 5. Multiple chaotic attractors: (a) v1 − v2 − v3 and (b) v1 − v0 plane; (c) Time series of v1 for R = 3.45, RN = 2.25, the initial
conditions (0.0015, 0.001, 0, 0) (blue) and (−0.0015, −0.001, 0, 0) (red). Multiple chaotic attractors: (d) v1 − v3 − v0 and (e) v1 − v0 plane,
(f) Time series of v1 for R = 4, RN = 2.5, the initial conditions (0.001, 0, 0.1, 0) (red) and (−0.001, 0, −0.1, 0) (blue).

A simple calculation is given as

Re

(
∂λ

∂R

∣∣∣∣
R=R∗,λ=iω0

)

= −Re

 λ2
∂p2
∂R
+ λ

∂p1
∂R
+
∂p0
∂R

3λ+ 2λP2 + p1

∣∣∣∣∣∣∣
R=R∗,λ=iω0



= −

(
∂p0
∂R
− ω2

0
∂p2
∂R

) (
p1 − 3ω2

0

)
+ 2ω2

0p2
∂p1
∂R(

p1 − 3ω2
0

)2
+ (2ω0p2)2

∣∣∣∣∣∣∣∣
R=R∗

= −

∂ (p1p2 − p0)
∂R(

2p1 + p22
)
∣∣∣∣∣∣∣
R=R∗

6= 0. (13)

Therefore, the condition for the occurrence of a Hopf bifur-
cation [17] is also satisfied. This implies that Hopf bifurcation
for (2) exists.
Remark 4: From Theorem 3, Hopf bifurcation occurs at a

set of parameter values given by

H = {(R,RN ) |R = R± or R = p̃0, 2 ≤ RN ≤ 2.5447 },

where R±, p̃0 as shown in (11)-(12).
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Remark 5: Recall the codimension is the number of inde-
pendent conditions characterizing the bifurcation problem.
The codimension two zero-Hopf bifurcation is different from
codimension one Hopf bifurcation(See, for example, [24]).
In fact, if the bifurcation is characterized by one independent
conditions, then it is called codimension one bifurcation.
While a bifurcation characterized by two independent con-
ditions is called codimension two bifurcation. Theorem 3(b)
presents some parameter conditions for such a codimension
two bifurcation as zero-Hopf bifurcation. Fig. 6 shows the
bifurcation diagram of (2) with RN = 2.5, and the H point
indicates that Hopf bifurcation will occur at the correspond-
ing parameter value. The corresponding parameter values
of the two H points are R = 3.5990 and R = 4.2727,
respectively. Results are consistent with the conclusion of
theorem 3(c).

FIGURE 6. The bifurcation diagram of the system (2) with RN = 2.5.

We now turn to investigate the stability and seek Hopf
bifurcation and periodic solutions of (2) at E0 by employ-
ing the normal form theory [18], [20], [24] and we obtain
analytical formulae for the normal form coefficients from (2)
derived via the center manifold reduction that give detailed
information about the bifurcation and stability of various
bifurcated solutions [19], [38].

Let

ξ1 =


a2
(
a1c3 + ω2

0

)
− iω0 (a1 − c3)

−c3
(
a21 + ω

2
0

)
− iω0

(
a21 + ω

2
0

)
c2
(
a21 + ω

2
0

)
0

,

ξ3 =


a2 (c3 + p2)

− (c3 + p2) (a1 + p2)

c2 (a1 + p2)

0

, and ξ0 =


0
0
0
1

.
Then

Aξ1 = iω0ξ1, Aξ3 = −p2ξ3, Aξ0 = −dξ0.

In order to study properties of the solutions of (2),
by changing the variables

(v1, v2, v3, v0)T = T(x, y, z,w)T ,

where

T = (Reξ1,−Imξ1, ξ3, ξ0). (14)

From the Taylor expansions of e−ρv0 , sinh(ρv1) and
cosh(ρv1), we can rewrite (2) as

ẋ = −ω0y+ F1(x, y, z,w),
ẏ = ω0x + F2(x, y, z,w),
ż = −p2z+ F3(x, y, z,w),
ẇ = −dw+ F4(x, y, z,w),

where

Fi (x, y, z,w)

= ρ2γi

((
w−

ρ

2
w2
)
(p11x + p12y+ p13z)

−
ρ

6
(p11x + p12y+ p13z)3 + · · ·

)
, i = 1, 2, 3,

F4 (x, y, z,w)

=
ρ2

2

(
w2
−
ρ

3
w3
+ (p11x + p12y+ p13z)2

− ρw (p11x + p12y+ p13z)2 + · · ·
)

in which p11 = a2(a1c3 + ω2
0), p12 = ω0(a1 − c3), p13 =

a2(c3 + p2) and
γ1 = 2Isc2(a21 + ω

2
0)(a1 + p2)/P,

γ2 = −2Isc2(a1 − c3)(a1 + p2)/P,
γ3 = −2Is [(a1 − c3)(c3 + p2)(a1 + p2)

+ a2(a21 + ω
2
0)(c3 + p2)

]
/P,

(15)

where

P = a2c2(a1c3 + ω2
0)(a

2
1 + ω

2
0)(a1 + p2)

− c2(a21 + ω
2
0)(a1 − c3)(c3 + p2)(a1 + p2)

−a2c2(a21 + ω
2
0)

2(c3 + p2)

+ c2c3(a1 − c3)(a21 + ω
2
0)(a1 + p2).

Thus one can calculate the following characteristic quantities:

g11 = g02 = g20 = 0,

G21 = −
ρ3

8

[
γ1(p311 + p11p

2
12)+ γ2(p

2
11p12 + p

3
13)
]

−
ρ3

8
i
[
γ2(p311 + p11p

2
12)− γ1(p

2
11p12 + p

3
13)
]
,

and

h111 = h120 = 0, h211 =
ρ2

4
(p211 + p

2
12),

h220 =
ρ2

4
(p211 − p

2
12 − 2ip11p12).

Now, we define α11, α20 in the following way

Dα11 = −h11, (D− 2iω0)α20 = −h20,

where

D =
(
−p2 0
0 −d

)
, h11 =

(
h111
h211

)
, h20 =

(
h120
h220

)
.
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As a result, we obtain

α11 =

 0
ρ2

4p2
(p211 + p

2
12)

,
α20 =

 0
ρ2

4(d + 2ω0i)
(p211 − p

2
12 − 2ip11p12)

.
In addition, we have G1

110 = G1
101 = 0 and

G2
110 =

ρ2

2
[(γ1p11 + γ2p12)+ i(γ2p11 − γ1p12)],

G2
101 =

ρ2

2
[(γ1p11 − γ2p12)+ i(γ2p11 + γ1p12)].

It follows that

g21 = G21 +

2∑
k=1

(2Gk110α
k
11 + G

k
101α

k
20)

= −
ρ3

8

[
γ1(p311 + p11p

2
12)+ γ2(p

2
11p12 + p

3
13)
]

+
ρ4

4

[
2κ(γ1p11 + γ2p12)

p2

+
(k1k2 − l1l2)d + 2ω0(k1l2 + k2l1)

d2 + 4p1

]
+ i

{
−
ρ3

8

[
γ2(p311 + p11p

2
12)− γ1(p

2
11p12 + p

3
13)
]

+
ρ4

4

[
2κ(γ2p11 − γ1p12)

p2

+
(k1l2 + k2l1)d − 2ω0(k1k2 − l1l2)

d2 + 4p1

]}
in which κ = p211+ p

2
12, k1 = p211− p

2
12, k2 = γ1p11− γ2p12,

l1 = −2p11p12, l2 = γ2p11 + γ1p12.
Based on the above analysis, the curvature coefficient of

limit cycle in (2) can be given by the following formula

C1(0)=
i

2ω0

(
g20g11−2 |g11|2−

1
3
|g02|2

)
+
1
2
g21 =

1
2
g21.

Moreover, we have

µ2 = −
Re(C1(0))
α′ (0)

, τ2 = −
Im(C1(0))+ µ2ω

′(0)
ω0

,

β2 = 2Re(C1(0)),

where

α′ (0) = Re
(
∂λ

∂R

∣∣∣∣R=R∗,λ=iω0) = − ∂(p1p2−p0)
∂R

2p1 + p22

∣∣∣∣∣
R=R∗

= −
1

98(p1 + p22)

(
2a(RN )
R3

+
b(RN )
R2

)∣∣∣∣∣
R=R∗

,

ω′ (0)= Im
(
∂λ

∂R

∣∣R=R∗,λ=iω0)= 1
ω0

[
p2α′(0)+

1
2
∂p1
∂R

]∣∣∣∣
R=R∗

=
1
ω0

[
p2α′ (0)+

1
98R2

(
1
RN
+

15942489
21464900

)]∣∣∣∣
R=R∗

.

Furthermore, we obtain the period and characteristic expo-
nent as

T =
2π
ω0

(1+ τ2ε2 + O(ε4)), β = β2ε
2
+ O(ε4),

where ε2 = R−R∗
µ2
+ O((R − R∗)2) and the expression of the

bifurcating periodic solution of (2) is (except for an arbitrary
phase angle)

x = Reu, y = Imu, (z,w)T

= α11 |u| + Re
(
α20u2

)
+ O(|u|3),

and

u = εe
2π t
T i
+

iε2

6ω0

(
g02e−

4π t
T i
− 3g20e−

4π t
T i
+ 6g11

)
+O(ε3)

= εe
2π t
T i
+ O(ε3).

By tedious calculation, we obtain a bifurcating periodic
solution of (2) as (16), as shown at the bottom of this page,
where a1, a2, c3, d , p0, p1, p2 as shown in (8)-(9) and K is
defined as

K =
ρ2

4(d2 + 4p1)

[
(p211 − p

2
12)d − 2ω0p11p12

]
cos

(
4π t
T

)
+ 2

[
(p211 − p

2
12)ω0 + p11p12d

]
sin
(
4π t
T

)
.

Summing up the results obtained above, the assertions in
Theorem 6 below are established.
Theorem 6: Fix RN and let the parameter R vary such that

R > RN − R1 and p0p2 > 0. Then the following assertions
hold for periodic solutions of (2), which emerge from E0 via
Hopf bifurcation near the critical value R∗.

(a) If µ2 > 0, then a branch of bifurcating periodic
solutions of (2) exists for sufficient small |R − R∗|. In this


v1
v2
v3
v4

 =



ω0 (a1 − c3) sin
(
2π t
T

)
+ a2

(
a1c3 + ω2

0

)
cos

(
2π t
T

)
ω0
(
a21 + ω

2
0

)
sin
(
2π t
T

)
− c3

(
a21 + ω

2
0

)
cos

(
2π t
T

)
c2
(
a21 + ω

2
0

)
cos

(
2π t
T

)
ρ2

4p2

(
p211 + p

2
12

)


ε +


0
0
0
K

 ε2 + O (ε3), (16)
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FIGURE 7. Solutions of the system (2) with the parameter RN = 2.5 and
the initial value (0.01, 0.1, 0.1, 0). (a) R = 3.3. (b) R = 3.5865. (c) R = 3.81.

case, the Hopf bifurcation is non-degenerate and subcritical,
and this branch of periodic solutions is unstable.

(b) If µ2 < 0, then a branch of bifurcating periodic
solutions of (2) exists for sufficient small |R−R∗|. In this case,
this branch of periodic solutions of (2) from Hopf bifurcation
at E0 is non-degenerate, supercritical and stable.

(c) The period and a nonzero Floquet exponent of the
bifurcating periodic solution of (2) are:

T =
2π
ω0

(1+ τ2ε2 + O(ε4)), β = β2ε
2
+ O(ε4),

where µ2 = −
Re(C1(0))
α′(0) , τ2 = −

Im(C1(0))+µ2ω
′(0)

ω0
, β2 =

2Re(C1(0)), ε2 = R−R∗
µ2
+ O((R− R∗)2).

(d) The expression of the periodic solution of (2) from Hopf
bifurcation has the form as (16).

To illustrate that the analytical results are valid, we con-
sider some examples from the numerical simulation. Fix

RN = 2.5 in (2) one can calculate R− = 3.5990, R+ =
4.2727, β2 = −3.3317e−010 andµ2 = 1.3348e−012 when
the critical value R∗ = R−, which implies that Hopf bifur-
cation of (2) at E0 is non-degenerate and supercritical, and
a bifurcating periodic solution exists for this case, which is
stable, as depicted in Fig. 7(b). When the parameter R < R−
(or R− < R < 3.8143), simulations show that E0 is unstable
(or stable), as shown in Fig. 7(a) (or (c)), respectively. These
are in good agreement with results of Theorems 6 and 3.

IV. CONCLUSION
In this paper, we studied a hyperchaotic memristor system.
Different from some existing literature, we derive, under
appropriate conditions, the stability and analytic expression
of the Hopf bifurcation in terms of center manifold theo-
rem. We prove that equilibrium set of the proposed system
has one or three elements. This new memristor system has
a simple structure but exhibits complex dynamical behav-
ior, including 3-torus (quasiperiodic orbits), 2-torus, chaos
and hyperchaos. It also exhibits coexisting multiple hyper-
chaotic attractors. We calculate and obtain analytical form of
bifurcating periodic solutions. It shows the periodic solution
can be determined with respect to the system parameters
RN and R. Moreover, in terms of the characteristic equa-
tion, we verify that under some appropriate conditions, zero-
Hopf bifurcation occurs. These results are new and improve
some known results, and can act as a guidance for doing
further work. It is an interesting open problem to analyze
whether or not the uniqueness of the periodic solution can
be proved, which leads to the future studying.
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