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ABSTRACT Considering the diversity of uniform distribution for the solutions of multi-objective opti-
mization problems, we propose the multi-objective genetic algorithm based on fitting (MOGA/F) and
interpolation (MOGA/I). The selected operator is based on the optimal reference points uniformly distributed
in the objective space, which is calculated by applying a fitting function or interpolation method from a finite
set of objective values. After sorting the ranks of the population, the objective space for the last front can
be easily calculated by using fitting and interpolation functions, and the uniformly distributed points can
be obtained without parameter setting. The individuals with the shortest Euclidean distance to the reference
points are chosen according to the error matrix. This method can maintain the diversity and spread of the
solutions without destroying the convergence. In this paper, MOGA/F and MOGA/I are compared with the
traditional methods, non-dominated sorting genetic algorithm-II and multi-objective evolutionary algorithm
based on decomposition, by optimizing the mathematical problems. The numerical examples show that
MOGA/F and MOGA/I have a much higher performance in terms of diversity and convergence of the final
solutions.

INDEX TERMS Multi-objective optimization, diversity, fitting, interpolation, genetic algorithm.

I. INTRODUCTION
Multi-objective evolutionary algorithms (MOEAs) have been
widely used in optimization problems, and their results are
mostly capable of solving real-world problems [1]–[8]. With
the increasing quality of solutions, diversity assessment and
convergence performance have become the primary focus
in the evolutionary process. The balance between these two
aspects has been deeply and broadly discussed. To maintain
the performance in terms of diversity and convergence, three
classes of MOEAs have been used to solve multi-objective
optimization problems (MOPs).

The non-dominated sorting genetic algorithm-II
(NSGA-II) has a high performance for the MOPs based
on dominance [9], [10]. NSGA-II computes the crowding
distance for every last level member as the summation of the
objective-wise normalized distance between two neighboring
solutions. Two mechanisms for managing diversity, namely,
management of diversity promotion during the selection of
individuals and mutation range adjustment for each deci-
sion variable, are introduced and hybridized with NSGA-II
in [11]. ε-MOEA [12] is a steady-state algorithm based on the

ε-dominance relation. It is designed to replace Pareto dom-
inance and divides the objective space into hyperboxes
by a size of ε. This class of MOEAs can promote the
diversity of solutions to approximate the front. However,
the spread of the population and the uniform diversity cannot
be improved [13].

Another widely used method is the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D)
[14], [32], which decomposes anMOP into a number of scalar
optimization subproblems that are then optimized simulta-
neously. The diversity of the population is maintained by
using a group of well-distributed weight vectors or reference
points. In the evolutionary process, each weight vector guides
a different population toward a different position in the true
Pareto front (PF) [15], [16]. Reference points are generated
by applying uniform systematic sampling [17] and weight
vectors with uniform distribution over the predefined design
space [18]–[20]. These methods are emended to MOEA/D
separately to sort the solutions for each subproblem to uni-
formly converge to the PF. Further, the objective space is
decomposed into a set of sub-objective spaces, and three
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grid-based criteria (i.e., grid ranking, grid crowding distance,
and grid coordinate point distance) are incorporated into the
fitness of individuals to distinguish them in both mating
and environmental selection processes [16], [21]. The power
of individual selection can be defined as the perpendicular
distance [18] or Hamiltonian path [22] from the individual to
the reference point or weight vector in the objective space.
However, the performance of this kind of algorithm is highly
dependent on the chosen parameters. The difficulties for
the number of weight vectors, neighborhood size, and the
choice of aggregation method, make it harder to obtain a
good convergence performance with this algorithm. Mean-
while, having well-distributed parameters does not ensure
that their corresponding optimal solutions are also well
distributed [23].

In some MOEAs, diversity becomes the primary focus
in the evolutionary process. Multiple well-distributed pre-
defined reference points are generated on the hyperplane in
NSGA-III [24]. NSGA-III uses a predefined set of reference
points to ensure diversity in obtained solutions. The chosen
reference points can either be predefined in a structured man-
ner or supplied preferentially by the user. But these points
are uniformly distributed in every axis instead of the PF.
Many algorithms applymodified quality indicators to directly
assign each individual a fitness value, which should simulta-
neously reflect the convergence and diversity performance of
individuals [25]–[27]. In this class ofMOEAs, convergence is
ensured by Pareto dominance or other approaches that move
the individuals into a more crowded area [24]–[30].

The improved genetic algorithm (IGA) is proposed for the
array pattern synthesis [31]. IGA makes three modifications,
which has a high performance just for the special optimiza-
tion of array pattern synthesis but not all the MOPs. The front
uniformly distributed strategy can find the optimal solution
with a good diversity [31]. The whole length of the front is
simply calculated by Euclidean distance, and then divided by
the expected number. There are no more advanced methods,
such as fitting or interpolation, for calculating the distribution
of population. Once the optimal reference points are found,
the error-comparison operator mentioned in [31] is used for
choosing the selected individuals in this paper.

In this paper, we define the optimal reference points uni-
formly distributed in the objective space, which is calculated
by applying a fitting function or interpolation method from a
finite set of objective function values. After sorting the ranks
of the population, the objective space for the last front can
be easily calculated, and the uniformly distributed points can
be found without parameter setting. The solutions with the
shortest Euclidean distance to the reference points are chosen
according to the error matrix. This method can maintain the
diversity and spread of the solutions without destroying the
convergence.

The remaining part of this paper is organized as fol-
lows. In Section II, the multi-objective optimization problems
are described. The multi-objective genetic algorithms based
on fitting and interpolation (MOGA/F and MOGA/I) are

proposed Section III. Section IV presents the metric used to
evaluate the performance of optimal solutions and discusses
the comparative performance of the proposed technique by
simulating numerical examples. The conclusions are given in
Section V.

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
The multi-objective optimization problem can be expressed
as

min F(x) = (f1(x), f2(x), . . . , fM (x))T

subject to x = (x1, x2, . . . , xn) ∈ � (1)

where x is the individuals of optimized parameters, and � is
the constrained region for x. In (1), the parameterM is the size
of the objective functions, and n is the number of optimized
parameter in one individual.

Every objective inMOPs contradicts each other, so we can-
not find one individual in the constrained region to minimize
all the objectives simultaneously. Hence, the main goal for
MOEAs is to find a set of solutions, which considers all the
objectives in the process of optimization. Pareto optimality
can have the best balance between all the objectives.

In (1), the MOP is a minimization problem, which aims
to enable every objective to have a minimum value. Here
u, v ∈ RM , u dominates v (shown as u � v) only if ui ≤ vi
for every i ∈ {1, . . . ,M} and ui < vi not less than one
objective. If there is no one individual x ∈ � that can make
F(x) � F(x∗), then the individual x∗ ∈ � is one Pareto
optimal solution for the MOP of (1). The value of objective
function F(x∗) is defined as a Pareto objective vector. There
are no other individuals which can make all the objective
values of the Pareto optimal solution better. The set of all
the Pareto optimal solutions is defined as the Pareto set (PS),
and the set of all the Pareto optimal objective vectors is the
PF [31], [32]. The MOEAs aim to find the optimum solutions
approximating the true PF.

In many real-life applications of multi-objective optimiza-
tion, an approximation to the PF is required by a decision
maker for selecting a final preferred solution. Most MOPs
may have many or even infinite Pareto optimal vectors. It is
very time-consuming, if not impossible, to obtain the com-
plete PF. On the other hand, the decision maker may not
be interested in having an unduly large number of Pareto
optimal vectors to deal with due to overflow of information.
Therefore, many multi-objective optimization algorithms are
to find a manageable number of Pareto optimal vectors which
are evenly distributed along the PF, and thus good represen-
tatives of the entire PF [32].

Unlike single objective problems, for which the PF is but
a single point, PFs for multi-objective problems can have
a wide variety of geometries [33], [34]. In this section,
we review the ZDT test suite of Zitzler et al. [35]. This
suite of six test problems is perhaps the most widely applied
suite of benchmark multi-objective problems in the EA lit-
erature. It should also be noted that ZDT4 only uses one
parameter of dissimilar domain; that is, the single position
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parameter x1 has domain [0,1], whereas all other parameters
have domain [5,5]. The PFs of its problems are well defined,
and the test results from various other studies are commonly
available, thus facilitating comparisons with new algorithms.

In this paper, ZDT1, ZDT2, and ZDT4 test instances are
used to compare the proposed methods with MOEA/D and
NSGA-II [10], one of the most successful non-decomposition
MOEAs. All these test instances are minimizations of the
objectives.
• ZDT1
f1(x) = x1
f2(x) = g(x)[1−

√
f1(x)/g(x)]

g(x) = 1+ 9(
n∑
i=2

xi)/(n− 1)

and x = (x1, . . . , xn)T ∈ [0, 1]n. The PF is convex, and
n = 30 is chosen for our experiments.
• ZDT2
f1(x) = x1
f2(x) = g(x)[1− (f1(x)/g(x))2]

where g(x) and the range and dimensionality of x are the same
as in ZDT1. The PF is non-convex.
• ZDT4
f1(x) = x1
f2(x) = g(x)[1−

√
f1(x)/g(x)]

where g(x) = 1 + 10(n − 1) +
n∑
i=2

[x2i − 10 cos(4πxi)] and

x = (x1, . . . , xn)T ∈ [0, 1]n × [−5, 5]n−1. This test
instance has many local PFs, and n = 10 is chosen for our
experiments.

III. MULTI-OBJECTIVE GENETIC ALGORITHM BASED
ON FITTING AND INTERPOLATION
In practice engineering application, only some discrete points
can be observed, and we need to find several functions with
established parameters to approximate these points. There
are two common methods of interpolation and fitting used
to achieve this [36]–[39]. We can get one proximate curve for
two-dimensional data or a hook face for three-dimensional
data. For high-dimensional data, the suitable functions and
parameters can also be defined. For the method of interpo-
lation, the proximate function can go through each point; for
the method of fitting, the proximate function can well present
the law of the points.

Proximity to the front and diversity of solutions within the
approximation set are important requirements for MOPs. For
the objective function value space, the solutions are the finite
set of points. Based on the fitting and interpolation function,
we can know the distributed situation of the population in cur-
rent front. The expected points with uniform distribution can
be directly calculated by applying the fitting and interpolation
function. Then, the optimal individuals can be easily found by
using the error-comparison operator. The concrete process is
presented in Algorithm 1.

First, the population should be ranked by nondominance
comparison, and those with lower ranks are copied into the
new population until its size equals N . The population in

Algorithm 1 The Procedure of MOGA/I and MOGA/F
Input: MOP, the maximum number of generation

MaxGen, the population size N
Output: The optimized solution EP
1: Set the generation number t = 0, i = 1, j = 1;
2: Generate an initial population P0 with size N .
3: if t = MaxGen then
4: EP = Pt+1 and break
5: else
6: Qt = Elitist-preserving+Recombination+Mutation
(Pt )
7: Rt = Pt ∪ Qt
8: (F1,F2, ...) = Non-dominated-sort (Rt )
9: repeat
10: St = St ∪ Fi and i = i+ 1
11: until |St | ≥ N
12: Last front to be included: Fl = Fi
13: if |St | = N then
14: Pt+1 = St
15: else
16: Pt+1 = ∪

l−1
i=1Fj

17: Calculate the number of individuals in Fl : L = |Fl |
18: Points uniformly distributed in the front:

K = L if L ≤ N else K = N
19: The expected points f̂K = Interpolation or

Fitting (Fl , K )
20: Assign expected error order for every individuals

in Fl : (f1, f2, ...)= Error-comparison operator
(Fl , f̂K )

21: repeat
22: Pt+1 = Pt+1 ∪ fj and j = j+ 1
23: until |Pt+1| = N
24: end if
25: t = t + 1
26: end if

the front with the last rank is a non-dominated set P, and
the number of individuals is L. Every individual in P can be
assigned an expected error by using error-comparison opera-
tor. The new populationwill copy the individuals with smaller
expected error to the uniformly distributed points until the
size of the new population reaches N . The values of objective
function can be expressed as fL = (f1, . . . , fm, . . . , fM )L
for P. Here, the number of uniformly distributed points is set
as K . K should not exceed N for a good approximation to
the PF, and the constraint of the size of population. K can be
shown as

K =

{
L if L ≤ N
N if L > N

(2)

For the method of interpolation, there are several kinds
of interpolation functions, such as Lagrange, Piecewise
Cubic Hermite Interpolation Polynomial (PCHIP), Cubic
Spline, Piecewise Linear (PL), and Fractal Interpola-
tion (FI) [40], [41]. In this paper, PL, PCHIP, and FI are
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used to obtain the interpolation function according to the
population in the current front. The interpolation function can
be shown as

HI(fL ,M ) = I([f1, f2, . . . , fM ]L) (3)

In the interpolation process, every two points should carry
out one operator on the basis of the sorted points. Because the
operator of interpolation is behind the ranking operator, in the
current front, other objective values will decrease gradually
with the increasing values of one objective. Therefore, the
M -th objective values are sorted, and the interpolation
function can be calculated. For the interpolation methods,
the higher the number of interpolation points, the better the
approximate performance.

When the approximate function for the population is
known, the uniformly distributed points can be calculated
directly. The uniformly results can be written as

ς̂I =

∫∫
. . .

[f1,fL ]

∫
HI(fL ,M )df

K − 1
(4)

The integral can be understood as the whole length of
the curve for the two-dimensional objective space and as
the whole area of the hook face for the three-dimensional
objective space. After determining the global distribution of
the population, the expected points f̂K = (f̂1, f̂2, . . . , f̂M )K
can be calculated according to the uniformly results ς̂I,
which are uniformly divided by the average length or
area.

For the method of fitting, one polynomial with undeter-
mined coefficients can approximate the discrete points. The
fitting function can be defined by the user or matched with
the characteristic of the points. There are several common
fitting functions, such as Exponential, Fourier, Gaussian,
Polynomial, Power, and Rational. One fitting function can be
presented as

HF(f1, f2, . . . , fM−1)

= a1r1(f1, f2, . . . , fM−1)+ a2r2(f1, f2, . . . , fM−1)

+ . . .+ aQrQ(f1, f2, . . . , fM−1) (5)

where r1, r2, . . . , rQ refers to the designed functions with
the number Q < L, and a = (a1, a2, . . . , aQ)T denotes the
undetermined coefficients, which are calculated by using the
least squares criterion as

J (a1, a2, . . . , aQ)

=

L∑
l=1

δ2i =

L∑
l=1

[HF(f l1 , f
l
2 , . . . , f

l
M−1)− f

l
M ]2

=

L∑
l=1

[
Q∑
q=1

aqrq(f l1 , f
l
2 , . . . , f

l
M−1)− f

l
M ]2 (6)

The undetermined coefficients can be obtained by mini-
mizing J (a1, a2, . . . , aQ). Then, a can be calculated bymatrix

Algorithm 2 The Procedure of Interpolation and Fitting
Input: The population in the last front Fl , the number of

expected points K
Output: The uniformly distributed points f̂K
1: Calculate the number of individuals in Fl : L = |Fl |
2: Calculate the objective value of the population fL
3: Calculate the interpolation function or the fitting funtion

according to fL : HI(fL ,M ) or HF(fL ,M )
4: Divide the integral of interpolation function or fitting

funtion by K − 1
5: The uniformly distributed points f̂K can be obtained

left division as

a = [r1(f l1 , f
l
2 , . . . , f

l
M−1), r1(f

l
1 , f

l
2 , . . . , f

l
M−1),

. . . , r1(f l1 , f
l
2 , . . . , f

l
M−1)]L\[f

l
M ]L (7)

The uniformly results from the fitting function can be
written as

ς̂F =

∫∫
. . .

∫
ϒ

HF(f1, f2, . . . , fM−1)d(f1, f2, . . . , fM−1)

K − 1
(8)

where ϒ = [(f 11 , f
1
2 , . . . , f

1
M−1), (f

L
1 , f

L
2 , . . . , f

L
M−1)]. Thus,

the uniformly distributed points f̂K in the fitting function HF
can be found according to the uniformly results ς̂F. The pro-
cess of interpolation and fitting is presented in Algorithm 2.

In order to find the best solution uniformly distributed
in the PF, the error-comparison operator mentioned in [31]
is used in this paper. The expected error order between the
expected individuals f̂K and the individuals in the last front
should be assigned. After calculating the expected individuals
f̂K by applying the interpolation or fitting function, every
individual in the last front can be identified with an order.
The distances between f̂K and each individual in P can be
obtained by calculating Euclidean distance. Then the orders
for every individual can be determined by the distances, and
the individuals with smaller orders will be copied to the new
population.

Once the f̂K is obtained, the expected error between the
i-th element in P and the j-th element in f̂K can be defined as

1̂ij = E[fi, f̂j]

=

√
(f i1 − f̂

j
1)

2
+ (f i2 − f̂

j
2)

2
+ . . .+ (f iM − f̂

j
M )

2
(9)

According to (9), we can calculate all the expected errors,
which can make up an expected error matrix R̂ with L rows
and K columns. The expected error order will be calcu-
lated by using the error-comparison operator [31]. After that,
K individuals with the lower values in the last front can be
selected.

The procedure of error-comparison operator is shown in
Algorithm 3. In the t-th selection, the minimum value σ̂t is
located in R̂. Then the expected error order of individual in
P associated with the row of σ̂t is set as t . At the same time,
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Algorithm 3 The Procedure of Error-Comparison Operator
Input: The population in the last front Fl , the uniformly

distributed points f̂K , the number of expected
points K

Output: The individuals in Fl with expected error order:
(f1, f2, ...)
1: Calculate the number of individuals in Fl : L = |Fl |
2: Calculate the objective value f̂L of the population fL
3: for i = 1 to L do
4: for j = 1 to K do
5: Calculate the expected error: 1̂ij = E[fi,f̂j]
6: end for
7: end for
8: The expected error matrix R̂ is constructed by 1̂ij
9: for t = 1 to K
10: Find the smallest value σ̂t in R̂ with row number of

m and column number of n
11: Assign the mth individual in Fl with expected

error order of t: ft = {Fl(m), t}
12: Assign themth row and nthe column in R̂with infinite

values: R̂(m, :) = inf, and R̂(:, n) = inf
13: end for

the elements in the associated row and column in the expected
error matrix R̂ must be set as infinite values, to prevent the
individual from being repeatedly selected.

In the comparison process, every individual in P can be
assigned an expected error value from only one nearest
expected position in f̂K . The individuals on the edge of dis-
tributed space are definitely selected because the expected
error values, 1̂11 and 1̂lk , are the smallest.
Both MOGA/F and MOGA/I can improve the diversity

of the final solution. The fitting function and interpola-
tion function aim to express the distribution character of
the population in the last front. The uniformly distributed
points can be achieved by these two functions. The main
difference between the two methods is whether the func-
tion passes through each individual. MOGA/F uses fitting
function which just reflects the distribution character of the
population. The type of fitting function has a great influence
on the optimization result. The convergence is reduced to
some extent by usingMOGA/F. On the contrary, interpolation
function passes every individual in the last front. This method
has a fast convergence by different types of interpolation
functions.

IV. SIMULATION RESULTS
A. EVALUATION METRICS
There should be some metrics that have the abilities to evalu-
ate the quality of the population. In manyMOPs, the diversity
and the convergence of the optimized solution are the main
concern for the performance of the algorithm. In [32], the
D-metric measures the error sum between the optimized solu-
tion and the expected points uniformly distributed in the PF.
In this metric, the size of the expected positions is much large

than N , and there is no constraint on the one-to-one corre-
spondence between the desired position and the individual in
the final solution. As a result, the smaller value of D-value
cannot guarantee the results with a good uniformity.

Here, we define a metric of expectation value (E-metric)
[31] to show the quality of the optimized results at two areas:
convergence to the PS and maintenance of diversity in the
solutions of the PS. For mathematical optimization problems,
the true PFs have been previously described in detail. The PFs
for each instance can be directly used in the result analysis,
so the expected positions can be easily calculated for the
E-metric. The uniformly distributed points fN with number of
N can be found from the true PF in the objective space. Then,
the minimum Euclidean distances of the solutions from the
chosen solutions in the PF can be calculated by finding the
minimum element σt in the error matrix R.

The optimal solution MOEAs desire is exactly the same
as the expected points fK , which is uniformly distributed in
the PF. In order to consider the diversity and convergence
of the final solution Q∗, all the individuals in Q∗ should
be have only one expected position. The expectation value
of E-metric can be obtained by calculating the expected
error between Q∗ and fK , and the E-metric can be expressed
as

E(P∗, fK ) =

K∑
t=1

σt

|P∗|
(10)

where K is the size of fK , which is calculated by (2), and
the values σt for each individual can be directly adopted by
the error-comparison operator. The solution with both a high
diversity and a good convergence can have a low expectation
value of E-metric. Because the reference points come from
the true PF, this metric can directly evaluate the performance
of the solutions.

B. SIMULATION RESULTS AND ANALYSIS
In order to show the high performance of the proposed
methods, MOGA/F and MOGA/I are compared with the
traditional methods of MOEA/D, NSGA-II, and NSGA-III.
MOGA/I is implemented with PL, PCHIP, and FI. Several
mathematical optimization problems of ZDT1, ZDT2, and
ZDT4 are implemented. Only two-objective optimization
problems are considered herein.

In this paper, the same conditions as used in NSGA-II,
NSGA-III and MOEA/D in [10], [24], and [32] are adopted
for the simulation. The population size will be fixed at 100 in
each method. The maximum generation is set to 2500. The
populations in the first generation are randomly generated
in the constrained region, and the initial population with the
same condition is used for each algorithm. For the crossover
andmutation operation, the same parameters and processes as
used in [10] and [32] are adopted in this paper. The crossover
probabilities is set to pc = 0.9, and the mutation probabilities
is set to pm = 0.1 in the evolutionary operator. The same
distribution indices are applied for the crossover andmutation
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FIGURE 1. The objective function values of the optimal population in the best simulation found by using NSGA-II.

FIGURE 2. The objective function values of the optimal population in the best simulation found by using MOEA/D.

FIGURE 3. The objective function values of the optimal population in the best simulation found by using NSGA-III.

operators as ηc = 20 and ηm = 20, respectively [10].
MOEA/D is applied with Tchebycheff approach in this paper,
which can indicate the performance of the evolutionary algo-
rithms based on decomposition.

In order to avoid contingency of a single process, thirty
independent simulations are carried out for all the optimiza-
tion problems. For the interpolation method, the number of
interpolation points is set to 2. The Polynomial fitting func-
tion is applied.

Fig. 1 to Fig. 7 give the objective function values of the
optimal population obtained by using NSGA-II, MOEA/D,
NSGA-III, MOGA/F, and MOGA/I with PL, PCHIP, and FI,
which are the best results selected from the multiple sim-
ulations. Regarding the uniformity of the final solutions,

the proposed algorithms have significant advantages over the
other algorithm in different conditions.

NSGA-II can easily evolve the population approximating
the PF, but there are some individuals deviating from the opti-
mal position, and the corresponding results have a bad uni-
formity. Although NSGA-II can improve the diversity of the
solutions by crowding distance, its ability to drive solutions
toward uniformness may be limited. The solutions optimized
by MOEA/D showed good diversity of uniform distribution
and achieved a perfect match with the Tchebycheff vectors.
Obviously, the individuals at the edge of ZDT1 and ZDT4 and
those in the middle of ZDT2 have a larger distance from their
neighbor. It should be noted that the individuals in this scale
have a more important role in MOPs. This kind of MOEAs
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FIGURE 4. The objective function values of the optimal population in the best simulation found by using MOGA/F.

FIGURE 5. The objective function values of the optimal population in the best simulation found by using MOGA/I with PL.

FIGURE 6. The objective function values of the optimal population in the best simulation found by using MOGA/I with PCHIP.

FIGURE 7. The objective function values of the optimal population in the best simulation found by using MOGA/I with FI.
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FIGURE 8. Evolution of the E-metric value in NSGA-II, MOEA/D, NSGA-III,
MOGA/F, and MOGA/I with PL for ZDT1.

similar to MOEA/D and predefined reference points or vec-
tors may also have this appearance because of the concave
and convex of the PF. In Fig. 3, the final solutions obtained
byNSGA-III are similar to those ofMOEA/D. For NSGA-III,
reference points are uniformly distributed in every axis
instead of the PF. As a result, the individuals in the areas with
big curvature may loss the uniformity.

The solutions optimized by MOGA/F and MOGA/I
showed a better performance in diversity of uniformness.
Each individual has a relatively equal distance from its neigh-
bor and can approximate the PF very well.

To compare the performances of the solutions obtained
by these algorithms, the performance index of the expec-
tation value is implemented for all the optimization prob-
lems. The size of expected points f̂K is set to N . Then
every individual can be corresponding to one single expected
position, and the evaluation of its performance can be
obtained.

TABLE 1. Average expectation values of the solutions found by NSGA-II,
MOEA/D, NSGA-III, MOGA/F, and MOGA/I.

Table 1 presents the average expectation values obtained
from each method. NSGA-II clearly achieved a better per-
formance than NSGA-III and MOEA/D, which is contrary
to the simulation and analysis in [32], due to the different
number of expected points in the calculation of expectation
value. This parameter in [32] is much larger, so the population

FIGURE 9. Evolution of the E-metric value in NSGA-II, MOEA/D, NSGA-III,
MOGA/F, and MOGA/I with PL for ZDT2.

FIGURE 10. Evolution of the E-metric value in NSGA-II, MOEA/D,
NSGA-III, MOGA/F, and MOGA/I with PL for ZDT4.

with bad uniformity can have a good expectation value. The
data show that the simulation results calculated by MOGA/F
and MOGA/I can achieve a considerably higher performance
by several orders of magnitude. The obtained population with
minimum error to the expected points has a higher perfor-
mance of uniformity and a good approximation of the PF.
The results show the fact that MOGA/F achieves a better
performance than MOGA/I. In the application, the fitting
function has better robustness because when one individual
deviates from the PF, the interpolation function cannot accu-
rately reflect the law of PF. For the method PCHIP, higher
order of polynomial can be a better representation for the PF,
whereas for MOGA/I with FI, there is no corresponding
performance improvement. FI function introduces new errors
by the original advantages of handling volatile data. The
optimum solutions of ZDTs have the character of polyno-
mial. Therefore, the expectation values of the final population
obtained by MOGA/I with FI are worse than those of other
two interpolation methods.
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Fig. 8, Fig.9 and Fig. 10 present the evolution of the aver-
age E-metric value of the current population to the expected
positions fN with the number of function evaluations in
each algorithm for each instance. These results indicate that,
in terms of the number of function evaluations, MOEA/D and
NSGA-III converge much faster than the other algorithms in
minimizing the E-metric value but cannot converge to the
smallest value. MOGA/F and MOGA/I with PL have similar
convergence in the initial process because they have the same
evolutional structure. MOGA/I with PL converges faster than
MOGA/F, whereas MOGA/F has a smaller E-metric value
in the end process. The interpolation function can approxi-
mate the PF faster, and the fitting function can approximate
the PF more precisely. For different interpolation functions,
they have the similar convergence. Hence, only the result of
MOGA/I with PL is listed.

V. CONCLUSION
The multi-objective optimization methods of MOGA/F and
MOGA/I have been proposed to find the best population with
a high performance of diversity and a good approximation
of the PF. By using a fitting and an interpolation function,
the reference points uniformly distributed in the objective
space can be easily obtained. Contributing to the error-
comparison operator, the individuals with lower distance to
the expected points calculated by MOGA/F and MOGA/I
can be easily chosen through the error matrix. The results
of the three mathematical optimization problems indicate
that the optimal population found by using MOGA/F and
MOGA/I has a good uniformity in the PF and can converge
to a desired result. Regarding the convergence of the average
E-metric value of the current population to the expected
positions, the interpolation function can approximate the PF
faster, while the fitting function can approximate the PF
more precisely. Based on the objective function values of the
optimal population found in the best simulations found by
using different methods,MOGA/F andMOGA/I have amuch
higher performance on diversity of uniformness.
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