
Received March 21, 2018, accepted April 18, 2018, date of publication April 23, 2018, date of current version May 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2829466

Hand Jitter Reduction Algorithm Software
Test Automation Using Robotic Arm
DEBDEEP BANERJEE , (Member, IEEE), KEVIN YU, AND GARIMA AGGARWAL
Qualcomm Technologies Inc., San Diego, CA 92121, USA

Corresponding author: Debdeep Banerjee (debdeepb@qti.qualcomm.com)

ABSTRACT Hand jitter reduction (HJR) is an algorithm developed to offset the jitter effect caused by camera
users. The hand jitter algorithm can be added and implemented in digital signal processing using hardware
acceleration to execute these noise reduction algorithms. HJR involves the detection of noise in the camera
images and the application of noise reduction algorithms to smoothen these noises. HJR tests are critical for
validating the authenticity of the HJR algorithm. The challenge here is to be able to simulate similar motions
to what a real-world user would experience while using the camera. We have inducted and programmed a
robotic arm to simulate real-world user motions. We have developed software to simulate different motions,
such as the generation of sine waves, and we also generate a randomized motion that is a combination of
different motions, such as a sine wave, a cosine wave, and vertical, horizontal, and angular motions. In the
robotic arm setup, the robot comprises six joints, and we can rotate the joints to generate a specific motion.
We have developed an algorithm to find the locations of joints depending on the motion we need to simulate.
For example, if we need a 30◦ rotation while the camera is at a specific location, we can calculate the joint
value for specific joints in the robotic arm. The goal of HJR tests is also to categorize the results of the
camera as having acceptable or non-acceptable results based on the induced motions. The test automation
has immensely helped us to objectively benchmark the performance of the algorithm over several software
builds. We have provided test results of computer vision use cases of camera panorama to show the effect of
hand jitter on the quality of the software.

INDEX TERMS Software engineering, software testing, robots, robotics and automation.

I. INTRODUCTION
Hand jitter reduction is an algorithm developed to offset the
jitter effect caused by camera users. The hand jitter algorithm
can be added and implemented in digital signal processing
using hardware acceleration to execute these noise reduction
algorithms. Hand jitter reduction involves the detection of
noise in the camera images and the application of noise
reduction algorithms to smoothen these noises.

Hand jitter reduction (HJR) tests are critical for validating
the authenticity of the hand jitter reduction algorithm. The
challenge here is to be able to simulate similar motions to
what a real-world user would experience while using the
camera. We have inducted and programmed a robotic arm to
simulate real-world user motions. We have developed soft-
ware to simulate different motions, such as the generation of
sine waves, and we also generate a randomized motion that
is a combination of different motions, such as a sine wave,
a cosine wave, and vertical, horizontal, and angular motions.

In the robotic arm setup, the robot comprises six joints, and
we can rotate the joints to generate a specific motion.

We have developed an algorithm to find the locations of
joints depending on the motion we need to simulate. For
example, if we need a 30-degree rotation while the camera
is at a specific location, we can calculate the joint value for
specific joints in the robotic arm.

The goal of HJR tests is also to categorize the results of the
camera as having acceptable or non-acceptable results based
on the induced motions. The test automation has immensely
helped us to objectively benchmark the performance of the
algorithm over several software builds. We have provided test
results of computer vision use cases of camera panorama to
show the effect of hand jitter on the quality of the software.

II. MOTIVATION
The motivation for the design and development of the HJR
simulation and automation using a robotic arm is to test

23582
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4907-3054


D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

the HJR algorithm with scenarios that will not be covered
by commonly used shake tables. We want to explore the
possibilities of different kinds of hand jittering motions that a
robotic arm can simulate, which will help us thoroughly test
the HJR algorithm.

A. TEST REAL-WORLD USE CASES SINCE USERS CAN
CAUSE JITTER WHILE USING CAMERA APPLICATIONS
The primary motivation for developing the hand jitter reduc-
tion test is to simulate the hand jitter generated by real-world
users using the camera. We have designed the motions to be
induced by the robotic arm that will simulate the shake or
jitter a camera user may generate. The common motions
include inducing jitter in the phone while shooting panoramic
images.

B. ABILITY TO INTRODUCE REPEATABLE MOTIONS
THAT CAN CREATE A COMBINATION OF SINE
WAVES, COSINE WAVES, ETC
We have developed an algorithm to randomly generate pre-
defined motions at specific time intervals while the tests are
being executed. We combine these motions to simulate the
randomness of real-world human hand jitter. These motions
and the timing of their injection are recorded in a log file so
that we can regenerate the same sequence of events over time
to accurately reproduce the issues.

C. TEST THE RESILIENCE OF THE SOFTWARE ALGORITHM
FOR NOISE CANCELLATION. PERFORM COMPETITIVE
ANALYSIS OF THE NOISE CANCELLATION ALGORITHMS
We need to perform competitive analysis on the performance
of the hand jitter reduction algorithm with other competi-
tive products. Therefore, it is very important to understand
the functionality of our in-house developed algorithm and
what the tolerance limit is for motions and jitters. Then,
we designed a test automation that will validate the motion
types and force values that are both within and without the
tolerable limits. First, the functional test cases are validated.
Then, we check for the ability of the hand jitter reduction
algorithm to correct for the jitter. If there are issues that cause
the noise reduction algorithm to fail for the known intensity
and type of motion, then we work with the systems/software
teams to fix and resolve the issue.

D. TEST THE DSP OFFLOAD VERSUS NON-HARDWARE
ACCELERATED SOLUTIONS AND QUANTIFY THE GAINS
FROM USING HARDWARE ACCELERATED SOLUTIONS FOR
USING THESE NOISE CANCELLATION ALGORITHMS
Since the jitter reduction can be computationally intensive,
it is more power efficient to offload the computing on digital
signal processors to achieve better performance. The chal-
lenge here is to automate the performance tests and prove
how our hardware-accelerated solution is better. We can use
the robotic arm lab automation to test the latency, CPU, and
memory values of the software while the tests are executed
with the hand jitter reduction algorithm. Therefore, we can

repeatedly and accurately generate the performance test
results.

E. ABILITY TO BENCHMARK THE CHANGES OF THE
HAND JITTER REDUCTION ALGORITHM IN A
CONTROLLED LIGHT TEST SETUP SO THAT WE CAN
OBJECTIVELY TEST THE ALGORITHM CHANGES.
The test automation provides a reliable test setup in a lab
environment with controlled light setup, precise motion gen-
eration capabilities and fixed force values to be generated for
each motion. Therefore, due to this stable test setup, we can
easily reproduce the software issues with the same sequence
of motions, panning speeds, and panning distance from the
test subject. In this way, we can execute the same tests for
several software builds and benchmark the results to evaluate
the algorithm’s performance.

III. BACKGROUND AND RELATED WORK
It is important to design and develop automation for testing
the hand jitter reduction algorithm. Robots have been used
for testing precise movements and software [1]. Since we
need precise angular movements to test hand jitter, the robotic
arm provides us a mechanism to perform the camera
shake.

Conventional approaches to quantitatively evaluate camera
shaking include the analysis of the locus of a dot recorded on
a captured image [2], the processing of the captured image
using different test patterns [3], and the fixed test pattern
method using a high-speed camera and feature points to
evaluate camera jitter [4].

In the camera test automation, there needs to be end-to-end
automation to launch the phone camera app, set the necessary
settings and then perform the physical camera shake. The test
automation should be able to launch the application for the
testing example, including the face recognition application
and the execution of test cases in which shake, or jitter is
physically added.

To automate the phone software (using operating systems
such as Android), we need tools and software developed
to test these phone applications [6]. These include running
automated regressions and stability tests [7].

Android applications inject events when users press GUI
(graphical user interface) buttons on the phone. The suitable
models of the system or sub-system to be tested include
event-flow graphs, event-interaction graphs, or finite state
machines [9], [10], [12]. When the user uses applications
on the phone, traces can be collected on the event sequence
exercised by the user. These session traces can be used for
deriving test cases [8] or can be based on GUI rippers [11].
Application crawlers [13] can be used that automatically
deduce possible sequences of events that can be translated
into test cases.

Google Android provides a tool called ‘‘Monkey’’ that
is a random key presser [14]. Since this tool is widely
used, it is regarded as the current state of practice for auto-
mated software testing in Android [15]. It uses a standard,

VOLUME 6, 2018 23583



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

simple-but-effective, default test oracle [16] that regards any
input that leads to a crash to be a fault-revealing test sequence.

Exploratory testing is ‘‘simultaneous learning, test design,
and test execution’’ [17] that can be cost-effective and is
widely used by industrial practitioners [18]–[20] for general
testing. However, it is particularly underdeveloped for mobile
app testing [21], [22].

For the design and development of testing Android-
based applications GUI, application programming inter-
face(API) level or model-based approaches have been
taken [23]–[28].

App event sequences can be generated frommodels that are
manually constructed or obtained from project artifacts, such
as code, XML configuration files or UI execution states. For
example, AndroidRipper [24] builds a model using a depth-
first search over the user interface in the phone software.

Some of the techniques require detailed app information,
such as source code [29]. Additionally, there is a need for
general UI models [30] and interface and activity transition
models [31], [32].

The usage of a robotic arm for software testing is prevalent
as we can precise use a robot to repeat a specific test sequence
accurately [33]. The robots have been used for performing
graphical user interface testing [34] etc. Black box testing
involves testing of a software program without knowing the
internal implementation of the software functions and its
building blocks. The software program can be tested in a
black box technique if the inputs and the expected output is
known. A robot setup can be efficiently used for software
testing as it can precisely repeat the test sequences and the
test results can then be analyzed [35]–[40].

Therefore, we have a reference to the tools and techniques
of software automation of phone software applications that
can be used to execute tests on the phone. These tests can
be executed when the phone is shaken during the hand jitter
algorithm testing.

IV. SOLUTION
In the video encoding for hand jitter reduction testing, a shake
table is commonly used for generating motions and testing
digital image stabilization algorithms. In image stabilization
algorithms, the algorithm detects and eliminates the jitter by
comparing the frames and identifying the frames that have
jitter. It can apply algorithms to smooth the jitter in the
recorded video. Similarly, in the hand jitter reduction (HJR)
algorithm tests, we can use a robotic arm to generate very
precise and repeatable motions to the device so that we can
evaluate the hand jitter reduction algorithm’s performance
under different motions.

A. USE CASES TO BE TESTED FOR HAND JITTER
REDUCTION ALGORITHM TESTS
The use cases that can be tested with HJR include camera
preview, video recording, and computer vision use cases such
as camera panorama, face recognition, and 3D reconstruction.
Any use cases that use live frames from the camera sensor can

be used with hand jitter reduction algorithms since it can help
smooth the issues and errors due to the motion.

B. QUANTIFICATION OF THE IMPACT OF HAND
JITTER (SHAKE) ON THE COMPUTER VISION
ALGORITHMS TESTS
We work closely with the computer vision engineering team
to understand the capabilities of the hand jitter reduction
algorithm and perform tests with functional and adversarial
conditions. The algorithm can handle and eliminate jitter for
the specific threshold of motion, and the algorithm will fail
to detect it beyond the threshold. Therefore, we understand
this threshold concerning angular motion and then design test
cases to test specific panning speed, angular motions, and
other aspects. Tests that are beyond the acceptable range of
motion are considered as adversarial tests, and we do not fail
these tests since the expected result is a failure here. We do
check if the algorithm can gracefully handle the adversarial
tests and not crash the software.

C. TEST SETUP
We have a dedicated lab for executing HJR use case automa-
tion. This lab system contains three essential components,
including programmable light sources, the test subjects setup
and a DENSO robotic arm setup.

We have installed adjustable light sources that can control
the brightness and color of the test environment. These light
sources can be programmed and controlled by a central PC
remotely. Therefore, we can add light conditions to the HJR
test with different lux values. In video recording, lighting
condition is a key factor of the FPS of recorded video. It will
affect the HJR performance as well. In a darker room, some of
the captured video may be too dark to be correctly analyzed
by the HJR algorithm and resulted in HJR performance drop
at certain lux values. Therefore, it is necessary to have a
controllable light source to effectively find issues in HJR
testing.

In this lab, we have multiple large posters and 3D models
installed as our test subject setup. They serve as our test
contents and simulating what the software will be applied in
real-world environment. They are placed in fixed positions
so that we can program the robotic arm to take the test device
to different test subjects designed for each test case. Every
time, the device will be moved precisely to the same point and
perform the same hand jitter movement in the same test case.
Therefore, we can easily reproduce any previous issue, which
helps developers debug these issues. The robotic arm is the
most critical piece of our lab setup. We are using the DENSO
VS-Series six-axis articulated robot. There are some clear
advantages of using this robotic arm in our test automation.
It offers high precision that is important when we require it to
rotate the device to a certain angle. It keeps the test device at a
precise distance from the test subjects. The compact design of
the robotic arm helps us save lab space. The six-axis motion
design makes it highly flexible. It can perform continuous
motions and difficult angular motions that the human arm
cannot do. Figure 1 shows the test setup.

23584 VOLUME 6, 2018



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

FIGURE 1. Robotic arm lab Setup for executing the hand jitter reduction
verification tests.

D. HAND JITTER TEST AUTOMATION ALGORITHM
The test automation algorithm for hand jitter reduction using
the robotic arm is illustrated in Figure 2.

E. THE ADVANTAGE OF USING A ROBOTIC ARM SETUP
FOR TESTING HAND JITTER REDUCTION TESTS
The advantage of using the robotic arm setup for testing hand
jitter reduction is that we can simulate injections of jitter at
various points of the camera’s motion. For example, if a user
is running a camera use case, such as camera preview, jitters
can be introduced. The jitters can be injected in a repeatable
fashion at specified time intervals, say every 10 milliseconds.
The goal of running these tests is to check the quality of
the camera use cases while these jitters are induced. We can
program these jitters in the robotic arm setup.

Statistically, a software program can generate these injec-
tions of jitters in the robotic arm at either randomized or a
repeatable fixed instance of time. These will help to simulate
real-world scenarios where the user of a camera is traveling
in a vehicle that may have a jerk while turning, braking, or in
another action. We will evaluate the effect of these jitters in
the camera application software.

We have worked closely with the computer vision systems
and software team to calibrate the effect of these jitters and
divide the test cases as functional and adversarial tests. Func-
tional tests are the ones where the software algorithm can
conceal the effect of these jitters, whereas the adversarial tests
are higher than the permissible level where the software can
conceal these jitters.

F. GENERATING A COSINE WAVE MOTION
USING ROBOTIC ARM
To simulate hand jittering in our computer vision testing,
we need to generate different kinds of motions that a human
hand is likely to exhibit while holding a phone. For example,
in the panorama use case, one of the motions that a human
hand would likely perform while taking a long panoramic

FIGURE 2. Hand Jitter Reduction Test Automation Algorithm.

picture is a sine or cosine wave-like motion. People take
panoramic pictures by holding the camera with their arms
stretched out and rotate around the area on which they stand.
During this panning motion, it is very likely that their arms
go slightly up and down to adjust the camera’s level. In this
case, the panning motion is similar to a sine/cosine wave.

We have designed a program using WINCAPS 3 software
to perform such a cosine wave using the robotic arm. The
concepts related to creating cosine wave motions include the
following:

1. Create multiple periods of cosine wave to exercise hand
jittering removal algorithm.

2. Create irregular cosine waves that vary in amplitude
and period length to simulate a real-life scenario.

3. Provide smooth transitions between waves.

VOLUME 6, 2018 23585



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

In WINCAPS 3 software, sine or cosine wave paths can be
designed using ARCHMOVE commands. First, we define the
initial starting position P1 and destination position P2 in the
ARCHMOVE parameters. In this case, we want to start right
from P1 and end at P2 for a continuous arc motion. Then,
it needs to define the arc shape and amplitude by assigning
two PASS positions P3 and P4. Themotion pathwill approach
these points and pass by them in an arc shape. We combine
the parameters P1, P2 and P3, P4 and feed them into the
ARCHMOVE command, which creates a defined arc path.
Figure 3 illustrates this.

FIGURE 3. Cosine wave motion design diagram.

We repeat the same arc creation process multiple times
with the defined position parameters P5, P6, P7, P8, P9,
P10 to create an irregular, smooth cosine-like path. We simu-
late this arc motion in theWINCAPS3 software 3D simulator,
where it rotates starting from facing one poster on the left
and ends facing the second poster on the right. Please refer
to Fig. 4.

FIGURE 4. 3D simulation of robotic arm moving from P1 to P8.

During the rotation, the tip of the robotic arm draws the
cosine path, scanning through both posters. This is a use
case for hand jittering scenario in camera panorama testing.
We can use this program to test how well the panorama
software’s HJR algorithm removes the jitter caused by this
cosine motion.

G. INTRODUCTION OF GENERATING
RANDOMNESS IN MOTION
It is very important to introduce randomness in the motions
generated for testing hand jitter. The goal of these tests is to
simulate the hand jitter that real-world users generate using a
smartphone camera. Typically, we can create the randomness
in the software by creating a hash table that has keys linked
with values as the type of motions.

A randomizer algorithm generates a random number
between the ranges of the keys after definable time intervals.
For example, at the start of the test, it generates a random
number from 1 to 6. Now, this random number is associated
with the value of the key. The corresponding value for the
key is a sine wave. The robotic arm will start loading the sine
wave program from its program list, and it will move the test
device in a sine wave. Then, the script will again generate
another random number after the previous hand jitter program
completes.

We have programmed 6 total waveform programs that we
are likely to encounter during human hand jittering, as shown
in Table. 1. These waveforms cover most of the hand jittering
scenarios, such as people taking a video or a panoramic
picture while walking, riding in a moving vehicle or sitting on
a boat. Each of them is assigned an index key. When we run
the Randomizer program, it will generate different motions
over time that exercise most of the hand jittering motions
using the robotic arm.

TABLE 1. Waveform table with associating index numbers.

H. CONTROLLED TESTING SPEED
The robotic arm system offers adjustable movement speed
options. For each test scenario, we can run the designed hand
jitter movements at a certain speed. The higher the speed,
the higher the change rate between frames. Therefore, it is

23586 VOLUME 6, 2018



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

more challenging for the HJR algorithm to render a smooth
picture or video at higher speed. We have also designed a
robotic arm program to change the movement speed from
point to point during the hand jittering motion. This change
of velocity creates acceleration, which is a key scenario to
test real-life hand jitter since user’s hand jitter speed does not
stay constant. Additionally, by starting from a certain scale
of acceleration, we do expect HJR performance to decrease.
This test information will be critical for benchmarking
purpose.

V. RESULTS
As mentioned in the previous section, we have created a
robotic arm program that produces hand jitter in a cosine
wavemotion while taking a panoramic picture. Before we can
get meaningful test results, we must know how the robotic
arm actually moves, including the speed, the path and the
magnitude of the cosine wave. Therefore, we ran the program
on the robotic arm and placed laser measuring equipment on
the tip of the robotic arm to measure the altitude of the tip to
the ground, as shown in Fig. 5.

FIGURE 5. Laser equipment setup on the robotic arm for altitude
measurement.

The laser was programmed to take a reading every
1 second. The robotic arm finished the cosine panningmotion
in 21 seconds moving from one end to the other. The data was
collected as shown in Table 2.

TABLE 2. Device altitude data collected over 21 seconds.

From this table, we can see the device is moving up and
down approximately 1.5 meters above the ground. This is

FIGURE 6. Hand jitter simulation device position graph.

the height at which most people hold their cameras when
taking a panoramic picture. The absolute difference between
the highest and the lowest altitude is 5.8 centimeters, which is
a small magnitude of hand jitter in a panoramic path. We plot
the data into a graph and the graph does show the path forms
a cosine wave, as shown in Figure 6. Note that there are two
cosine periods in this designed path, which means there are
two local minimum points. We expect to see two peaks in
terms of image shift on the panoramic image taken.

After proving the robotic arm moves the test device in a
cosine motion as we designed. We started testing the HJR
algorithm in panorama software with the robotic arm. At the
first run, we tested it without the cosine hand jitter motion
by running the robot straight from the start point to the des-
tination. The result panoramic image is shown in Figure 7a.
We can see in the picture that all the key frames are stitched
together smoothly. Then, on the second run, we introduced
hand jitter by testing with the cosine wave robotic arm pro-
gram. The resulting picture is shown in Figure 7b. We did
observe two abnormal curvatures introduced by the hand
jitter motion with upward shifts located approximately at
the two local minimum points of the cosine wave (indicated
with red arrows), while the rest of the image are stitched
smoothly. This is due to the devicewas at the lowest altitude at
these two points. The poster images captured at these points
appear to be higher positioned compare to the adjacent key
frames. When stitching these key frames at different levels
the abnormal curvatures are likely to appear.

In order to quantitatively analyze the panorama HJR result
images, an objective image processing method is needed.
We have came up with a post-processing solution that com-
pares four sets of images. First, we run the robotic arm
program without hand jitter. The automation controls the test
device to take camera snapshot every one second during the
panning process. Then we run the program with hand jitter
and take camera snapshots for every second as well. The
two sets of snapshot images are being paired by the time-in-
motion. And the only image difference in each pair should
came from the hand jitter effect. The two sets of snapshot
result images are processed using Matlab to find a similarity
score between each pair without considering color differ-
ences. This should capture the hand jitter effect magnitude in
term of image differences. And it should be proportional to
the cosine hand jitter waveform. After that, multiple sections
of images are extracted from the two panoramic result images

VOLUME 6, 2018 23587



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

FIGURE 7. (a) The panoramic image captured without hand jitter. (b) The panoramic
picture captured with hand jitter.

FIGURE 8. Similarity comparison between camera snapshot and
panorama images with & without hand jitter at 6th second.

that we captured. These pairs of extracted images should
have the same dimensions and match each set of the cam-
era snapshot images accordingly. Finally, we use the same
Matlab program to find the similarity score of each pair of
the extracted panoramic images. The comparison between
two pairs at the 6th second are illustrated in Fig. 8. Using
this method, we can have a reference to compare the hand
jitter effect to the result images, and therefore quantitively
find out the effect of the hand jitter reduction algorthim. With
the benefit of the precision and consistency using the robotic
arm, we can get relatively accurate results.

After finding the similarity scores of the four sets of
images, the similarity scores are converted into similarity
differences in percentage for better showing the hand jitter
effect to the images. The similarity difference data of the
twenty seconds of hand jitter motion in this case are presented
in table 3 below.

As we can see from this table, there are some image
noises from this image comparison solution which resulted in
between 5% to 10% image similarity difference. For exam-
ple, at 1st and 20th second, there are not much hand jitter
happening. This is due to the minor difference in image
capture timing and slight displacement between compared
images. However, we can clearly see the panorama hand
jitter reduction algothrim taking effect by aligning the key

TABLE 3. HJR result comparison table for camera snapshot and
panorama.

FIGURE 9. Panorama HJR comparison graph with camera snapshot.

frames properly. After converting the data on table 3 into a
graph shown in Fig. 9, we can see the two peaks in similarity
difference at the 6th second and 14th second, these are also
the same time where the cosine form hand jitter reached
its local minimum in altitude which is an expected result.
At these two peaks the panorama images similarity difference
is much lower than the camera snapshot. This means the
displacement in panorama image is smaller than the actual
displacement of the device when hand jitter happens. And at

23588 VOLUME 6, 2018



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

TABLE 4. Advantages of using the robotic-arm-based hand jitter
reduction algorithm test automation.

the time hand jitter is minimal, the similarity differences are
getting very close. This proves that our solution are able to
effectively identify and quantify the HJR effect on images.

VI. COMPARISONS WITH OTHER TEST SYSTEMS
Table 4 shows the advantages of using the robotic-arm-based
setup for hand jitter reduction.

The Table 3 compares the robotic arm-based test automa-
tion capabilities of the computer vision use case testing
with hand jitter reduction algorithm enabled with other test
systems. Computer vision use cases like camera panorama
which involves complex algorithms for taking snapshots of
reference frames based on motion vector changes and stitch-
ing all the reference frames to generate a panoramic image
is subjected to tests for measuring the effect of hand jitter.
The hand jitter reduction algorithm effect on the computer
vision usecases can be quantified and with this test setup.
The test results are consistently benchmarked across multiple
software product lines and we can programmatically scale the
test scenarios in the robotic arm setup.

VII. CONCLUSION
The test results illustrate that we can simulate the jittery
camera movements of real-world users. We have performed
tests to evaluate the quality of the computer vision use cases
like camera panorama when hand jitter is induced. We have
programmed the device under test to capture snapshots of
images at specific interval of times and then induce hand
jitter motions using the robotic arm. We use correlation to
compare the images with and without the hand jitter induc-
tion. We infer from the results that the image dissimilarities
between same usecases with and without jitter is directly
proportional to the amount of jitter induced. The software
algorithms for image stabilization tries to stabilize the effect
of hand jitter till a specific motion level and after this we
see distortions in the captured images due to hand jitter.
We have developedmotion sequences to benchmark these test
results across multiple software product and also categories
motion level as positive and negative test cases. Positive test
cases match to the expectation of the software to eliminate the
jitter by apply image stabilization and motion compensation
algorithms. The negative test cases are developed to test the
software capabilities to handle hand jitter to a higher level
of motion changes. These jitter values are above the permis-
sible level and it tests the software application resilience to
crash etc.

We also observe that computer vision usecases like camera
panorama is efficient in applying motion compensation and
stitching the reference frames to produce better results even
when the hand jitter is induced. However, camera snapshot
usecases with the same jitter values and test subject may show
distortions when hand jitter to a specific value is applied. The
robotic arm test automation has provided us the ability to
scale the test automation deployment over multiple software
products. The hand jitter reduction algorithms are tested and
benchmarked over multiple software products.

REFERENCES
[1] T. Kanstrén, P. Aho, A. Lämsä, H. Martin, J. Liikka, and M. Seppänen,

‘‘Robot-assisted smartphone performance testing,’’ in Proc. IEEE Int.
Conf. Technol. Practical Robot Appl. (TePRA), May 2015, pp. 1–6.

VOLUME 6, 2018 23589



D. Banerjee et al.: HJR Algorithm Software Test Automation Using Robotic Arm

[2] K. Hayashi, M. Tanaka, H. Kusaka, and H. Hashi, ‘‘New approach on
multi-axial analysis of camera shake,’’ in Dig. Tech. Papers Int. Conf.
Consumer Electron. (ICCE), 2010, pp. 39–40.

[3] F. Xiao, A. Silverstein, and J. Farrell, ‘‘Camera-motion and effective spatial
resolution,’’ in Proc. Int. Congr. Imag. Sci., 2006, pp. 33–36.

[4] K. Nishi and R. Ogino, ‘‘3D camera-shake measurement and analysis,’’ in
Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2007, pp. 1271–1274.

[5] E. M. Or and D. Pundik, ‘‘Hand motion and image stabilization in
hand-held devices,’’ IEEE Trans. Consum. Electron., vol. 53, no. 4,
pp. 1508–1512, Nov. 2007.

[6] M. E. Joorabchi, A. Mesbah, and P. Kruchten, ‘‘Real challenges in mobile
app development,’’ in Proc. ACM /IEEE Int. Symp. Empirical Softw. Eng.
Meas., Oct. 2013, pp. 15–24.

[7] D. Amalfitano, A. R. Fasolino, and P. Tramontana, ‘‘A GUI crawling-
based technique for Android mobile application testing,’’ in Proc. IEEE
4th Int. Conf. Softw. Test., Verification Validation Workshops, Mar. 2011,
pp. 252–261.

[8] D. Amalfitano, A. R. Fasolino, and P. Tramontana, ‘‘Rich Internet appli-
cation testing using execution trace data,’’ in Proc. 2nd Int. Workshop
Test. Techn. Experim. Benchmarks Event-Driven Softw. (TESTBEDS),
Apr. 2010, pp. 274–283.

[9] F. Belli, C. J. Budnik, and L. White, ‘‘Event-based modelling, analysis
and testing of user interactions: Approach and case study,’’ Softw. Test.,
Verification Rel., vol. 16, no. 1, pp. 3–32, Mar. 2006.

[10] A. Marchetto, P. Tonella, and F. Ricca, ‘‘State-based testing of Ajax Web
applications,’’ in Proc. Int. Conf. Softw. Test., Verification Validation, 2008,
pp. 121–130.

[11] A. M. Memon, L. Banerjee, and A. Nagarajan, ‘‘GUI ripping: Reverse
engineering of graphical user interfaces for testing,’’ in Proc. 10th Working
Conf. Reverse Eng. (WCRE), 2003, pp. 260–269.

[12] A. M. Memon and Q. Xie, ‘‘Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software,’’ IEEE Trans. Softw. Eng.,
vol. 31, no. 10, pp. 884–896, Oct. 2005.

[13] A. Mesbah and A. van Deursen, ‘‘Invariant-based automatic testing of
AJAX user interfaces,’’ in Proc. Int. Conf. Softw. Eng. (ICSE), 2009,
pp. 210–220.

[14] K. Mao, M. Harman, and Y. Jia, ‘‘Sapienz: Multi-objective automated
testing for Android applications,’’ in Proc. 25th Int. Symp. Softw. Test.
Anal. (ISSTA), 2016, pp. 94–105.

[15] R. Mahmood, N. Mirzaei, and S. Malek, ‘‘EvoDroid: Segmented evolu-
tionary testing of Android apps,’’ in Proc. ESEC/FSE, 2014, pp. 599–609.

[16] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, ‘‘The oracle
problem in software testing: A survey,’’ IEEE Trans. Softw. Eng., vol. 41,
no. 5, pp. 507–525, May 2015.

[17] A. Abran et al., Guide to the Software Engineering Body of Knowledge
(SWEBOK(R)): Version 3.0. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2004.

[18] J. Bach, ‘‘Exploratory testing explained,’’ v.1.3 4/16/03. [Online].
Available: http://www.satisfice.com/articles/et-article.pdf

[19] J. Itkonen and K. Rautiainen, ‘‘Exploratory testing: Amultiple case study,’’
in Proc. ESEM, Nov. 2005, pp. 84–93.

[20] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing.
New York, NY, USA: Wiley, 2008.

[21] J. Itkonen, M. V. Mantyla, and C. Lassenius, ‘‘How do testers do it?
An exploratory study on manual testing practices,’’ in Proc. ESEM, vol. 9.
Oct. 2009, pp. 494–497.

[22] J. Itkonen, M. V. Mantyla, and C. Lassenius, ‘‘The role of the tester’s
knowledge in exploratory software testing,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 5, pp. 707–724, May 2013.

[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A.M.Memon,
‘‘MobiGUITAR: Automated model-based testing of mobile apps,’’ IEEE
Softw., vol. 32, no. 5, pp. 53–59, Sep. 2015.

[24] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, ‘‘Using GUI ripping for automated testing of Android
applications,’’ in Proc. ASE, 2012, pp. 258–261.

[25] T. Azim and I. Neamtiu, ‘‘Targeted and depth-first exploration for system-
atic testing of Android apps,’’ in Proc. OOPSLA, 2013, pp. 641–660.

[26] W. Choi, G. Necula, and K. Sen, ‘‘Guided GUI testing of Android apps
with minimal restart and approximate learning,’’ in Proc. OOPSLA, 2013,
pp. 623–640.

[27] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan, ‘‘PUMA:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps,’’ in Proc. MobiSys, 2014, pp. 204–217.

[28] W. Yang, M. R. Prasad, and T. Xie, ‘‘A grey-box approach for automated
GUI-model generation of mobile applications,’’ in Proc. FASE, 2013,
pp. 250–265.

[29] S. Anand, M. Naik, M. J. Harrold, and H. Yang, ‘‘Automated concolic
testing of smartphone apps,’’ in Proc. ESEC/FSE, 2012, pp. 59:1–59:11.

[30] C. S. Jensen, M. R. Prasad, and A. Møller, ‘‘Automated testing with
targeted event sequence generation,’’ in Proc. ISSTA, 2013, pp. 67–77.

[31] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, ‘‘Reducing
combinatorics in GUI testing of Android applications,’’ in Proc. ICSE,
2016, pp. 559–570.

[32] N. Mirzaei, S. Malek, C. S. Pǎsǎreanu, N. Esfahani, and R. Mahmood,
‘‘Testing Android apps through symbolic execution,’’ SIGSOFT Softw.
Eng. Notes, vol. 37, no. 6, pp. 1–5, 2012.

[33] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Robotic arm based 3D recon-
struction test automation,’’ IEEE Access, vol. 6, pp. 7206–7213, Jan. 2018,
doi: 10.1109/ACCESS.2018.2794301.

[34] K. Mao, M. Harman, and Y. Jia, ‘‘Robotic testing of mobile apps for
truly black-box automation,’’ IEEE Softw., vol. 34, no. 2, pp. 11–16,
Mar./Apr. 2017.

[35] V. Garousi and M. Felderer, ‘‘Worlds apart: Industrial and academic focus
areas in software testing,’’ IEEE Softw., vol. 34, no. 5, pp. 38–45, Sep. 2017.

[36] M. Harman, ‘‘Search based software testing for android,’’ in Proc.
IEEE/ACM 10th Int. Workshop Search-Based Softw. Test. (SBST),
May 2017, p. 2.

[37] J. Guiochet, M. Machin, and H. Waeselynck, ‘‘Safety-critical advanced
robots: A survey,’’ Robot. Auton. Syst., vol. 94, pp. 43–52, Aug. 2017.

[38] C. Yu and J. Xi, ‘‘Simultaneous and on-line calibration of a robot-based
inspecting system,’’ Robot. Comput.-Integr. Manuf., vol. 49, pp. 349–360,
Feb. 2018.

[39] M. Jasiński, J. Mączak, P. Szulim, and S. Radkowski, ‘‘Autonomous
agricultural robotp—Testing of the vision system for plants/weed clas-
sification,’’ in Proc. Conf. Autom. (AUTOMATION), vol. 743. 2018,
pp. 473–482.

[40] J. Brookes et al., ‘‘Robots testing robots: ALAN-Arm, a humanoid arm for
the testing of robotic rehabilitation systems,’’ in Proc. Int. Conf. Rehabil.
Robot. (ICORR), Jul. 2017, pp. 676–681.

DEBDEEP BANERJEE received themaster’s degree in electrical engineering
from the Illinois Institute of Technology. He has over 10 years of industry
experience in the field of software/systems engineering. He is the Soft-
ware/Systems Development Engineer and the Test Lead for the computer
vision project. He is currently a Senior Staff Engineer and an Engineering
Manager with the Qualcomm Technologies, Inc., USA. He is responsible
for the test automation design, planning, development, deployment, code
reviews, and project management. He closely involves with software/system
teams and gathers test requirements for the project. He has been involving
with the software test automation team, since the inception of the computer
vision project in Qualcomm Technologies Inc. He is also involved in manag-
ing and developing software for the Computer Vision Laboratory using the
robotic arm.

KEVIN YU is currently a Test Engineer with the Qualcomm Technologies,
Inc., USA, and has contributed to test automation validation for continuous
integration for validating computer vision algorithms. He has also validated
computer vision engine features, such as image rectification, for the Android
software products.

GARIMA AGGARWAL is currently a Test Engineer with the Qualcomm
Technologies, Inc., USA, and has actively involved on MATLAB post-
processing modules for CV features and various other automation projects.

23590 VOLUME 6, 2018

http://dx.doi.org/10.1109/ACCESS.2018.2794301

	INTRODUCTION
	MOTIVATION
	TEST REAL-WORLD USE CASES SINCE USERS CAN CAUSE JITTER WHILE USING CAMERA APPLICATIONS
	ABILITY TO INTRODUCE REPEATABLE MOTIONS THAT CAN CREATE A COMBINATION OF SINE WAVES, COSINE WAVES, ETC
	TEST THE RESILIENCE OF THE SOFTWARE ALGORITHM FOR NOISE CANCELLATION. PERFORM COMPETITIVE ANALYSIS OF THE NOISE CANCELLATION ALGORITHMS
	TEST THE DSP OFFLOAD VERSUS NON-HARDWARE ACCELERATED SOLUTIONS AND QUANTIFY THE GAINS FROM USING HARDWARE ACCELERATED SOLUTIONS FOR USING THESE NOISE CANCELLATION ALGORITHMS
	ABILITY TO BENCHMARK THE CHANGES OF THE HAND JITTER REDUCTION ALGORITHM IN A CONTROLLED LIGHT TEST SETUP SO THAT WE CAN OBJECTIVELY TEST THE ALGORITHM CHANGES.

	BACKGROUND AND RELATED WORK
	SOLUTION
	USE CASES TO BE TESTED FOR HAND JITTER REDUCTION ALGORITHM TESTS
	QUANTIFICATION OF THE IMPACT OF HAND JITTER (SHAKE) ON THE COMPUTER VISION ALGORITHMS TESTS
	TEST SETUP
	HAND JITTER TEST AUTOMATION ALGORITHM
	THE ADVANTAGE OF USING A ROBOTIC ARM SETUP FOR TESTING HAND JITTER REDUCTION TESTS
	GENERATING A COSINE WAVE MOTION USING ROBOTIC ARM
	INTRODUCTION OF GENERATING RANDOMNESS IN MOTION
	CONTROLLED TESTING SPEED

	RESULTS
	COMPARISONS WITH OTHER TEST SYSTEMS
	CONCLUSION
	REFERENCES
	Biographies
	DEBDEEP BANERJEE
	KEVIN YU
	GARIMA AGGARWAL


