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ABSTRACT With the development of cloud storage, more data owners are inclined to outsource their data
to cloud services. For privacy concerns, sensitive data should be encrypted before outsourcing. There are
various searchable encryption schemes to ensure data availability. However, the existing search schemes
pay little attention to the efficiency of data users’ queries, especially for the multi-owner scenario. In this
paper, we proposed a tree-based ranked multi-keyword search scheme for multiple data owners. Specifically,
by considering a large amount of data in the cloud, we utilize the TF × IDF model to develop a multi-
keyword search and return the top-k ranked search results. To enable the cloud servers to perform a secure
search without knowing any sensitive data (e.g., keywords and trapdoors), we construct a novel privacy-
preserving search protocol based on the bilinear mapping. To achieve an efficient search, for each data owner,
a tree-based index encrypted with an additive order and privacy-preserving function family is constructed.
The cloud server can then merge these indexes effectively, using the depth-first search algorithm to find
the corresponding files. Finally, the rigorous security analysis proves that our scheme is secure, and the
performance analysis demonstrates its efficacy and efficiency.

INDEX TERMS Multi-keyword ranked search, multiple data owners, security, cloud storage.

I. INTRODUCTION
Cloud storage enables ubiquitous, scalable, and on-demand
network access to a shared pool of digital data resources [1].
More enterprises and individuals tend to outsource their per-
sonal data to the cloud server, and utilize query services to
easily access data anytime, anywhere and on any device.
As one exemplary popular cloud storage services, Dropbox
has 500 million users and 8 million business customers as
of December 2017. The Cisco survey predicts that the global
storage capacity would reach 1.1ZB, which is almost twice
the space available in 2017. Besides, the ‘‘Cloud Storage
Market by Solution (Primary Storage, Disaster Recovery &
Backup Storage, Cloud Storage Gateway & Data Archiv-
ing), Service, Deployment Model (Public, Private & Hybrid),
Organization Size, Vertical & Region - Global Forecast to
2021’’ reports that the cloud storage market is expected to
grow from $23.76 billion in 2016 to $74.94 billion by 2021,
and reach $97.41 billion by 2022.

Searchable symmetric encryption (SSE) [2]–[15] is often
considered as a way to guarantee data privacy and data

efficiency. However, various data owners encrypt their data
with different keys leading to the following two drawbacks:
(1) data users need to manage multiple keys for different data
owners; (2) data users need to generate multiple trapdoors
for data owners’ data even for the same query condition.
In this paper, we focus on multiple data owners top-k query,
whereby the cloud server can merge multiple data indexes
encrypted with different keys and efficiently support top-k
query.

A. MOTIVATION
Data sharing is another crucial utility function, i.e., sharing
data files with each other. In personal health record system,
data user (e.g., a patient) should have the ability to access
his/her top-k data files about a specific case from different
data owners (e.g., health monitors, hospitals, doctors). Simi-
larly, the employees in an enterprise should have the ability
to search data files outsourced by other employees.

Recent work [16] proposed a privacy-preserving ranked
multi-keyword search in a multi-user model (PRMSM),
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which addresses the multi-keyword search problem in the
multiple data owners model. However, PRMSM is inefficient
and potentially expensive for frequent queries due to match-
ing various ciphertexts from different data owners even for
the same query.

B. CHALLENGE
In contrast to the single-user scenario, developing an efficient
scheme for multiple data owners becomes a new challenge.
To implement privacy preservation and efficient searches,
we commonly build a tree-based index structure for each data
owner’s encrypted data. For a specific query condition, data
users need to generate a trapdoor for each data owner, and
the cloud should also search each index. This is obviously
inefficient, due to the linear relationship of the number of
trapdoors and data owners. A simple way to overcome this
limitation is to let each data owner utilize the same key to
encrypt their data files. Nevertheless, any one of the owners
being compromised may lead to a system crash.

C. APPROACH
In this paper, we consider a multi-source cloud system,
in which each data owner (viewed as a source) generates a
tree-based index for his/her data files and encrypts these data
with his/her corresponding key. To implement both privacy
preservation and efficiency searches, we propose an efficient
tree-based ranked multi-keyword search scheme (TBMSM).
In this scheme, the cloud server is allowed to effectively
merge multiple encrypted indexes, and securely perform the
multi-keyword search without revealing the data owners’ sen-
sitive information, neither data files nor the queries. We con-
struct a novel search protocol based on bilinear pairing, which
enables different data owners to use different keys to encrypt
their keywords and trapdoors. In order to rank the search
results, we utilize the TF × IDF scheme to model relevance
scores of data files and propose a ‘‘Depth-First Search’’(DFS)
algorithm to obtain the ranked results. Finally, we confirm the
security and efficiency of our scheme through comprehensive
theoretical analysis and extensive experiments with a real
dataset.

D. CONTRIBUTIONS
In summary, this paper makes the following contributions:

1) We construct a novel privacy-preserving search pro-
tocol, which allows the cloud server to perform an
efficient secure multi-keyword ranked search without
knowing data owners’ sensitive information.

2) To achieve query efficiency, we introduce a consolida-
tion strategy to implement multiple index trees. With
this strategy, each data owner can encrypt their own
tree-based index, and the cloud can be permitted to
effectively merge indexes without knowing index con-
tents.

3) We perform extensive experiments to evaluate the effi-
ciency of the TBMSM scheme on a real-world dataset
and achieve a logarithmic search time.

E. ROADMAP
The rest of the paper is organized as follows. First, we review
the related work in section II. Then, we formulate the prob-
lem in section III and introduce the proposed scheme in
section IV. Section V presents security and performance anal-
ysis. Section VI presents the performance evaluation. Finally,
we conclude the paper in section VII.

II. RELATED WORK
In this section, we review two categories of related work:
searchable encryption and order-preserving encryption.

A. SEARCHABLE ENCRYPTION
Searchable encryption provides a secure search service over
encrypted data. Song et al. [2] proposed the searchable
symmetric encryption(SSE) scheme that achieved ciphertext
search. Goh [3] proposed a more secure SSE scheme using
Bloom filter. However, a false positive may cause misjudg-
ment [4]. Later, Curtmola et al. [5] proposed other schemes:
SSE-1 and SSE-2. In term of efficiency, SSE-1 was better
than SSE-2. In term of security, SSE-2 was safer. However,
these works mostly focus on the single keyword or boolean
search and don’t support ranked search. Wang et al. [7] raised
a secure ranked keyword search scheme which returned the
top-k relevant files and was only designed only for single-
keyword search.

The multi-keyword ranked search allows users to input
multiple query keywords for personalized queries. In [9], Cao
et al. proposed the first secure multi-keyword ranked search
scheme over encrypted cloud data (MRSE), and the docu-
ments are ranked by the ‘‘inner product’’ between file vectors
and query vectors. However, they do not consider the weight
of different keywords. The work of [10]–[12] enriched the
multi-keyword search. Wang et al. [13], Chuah and Hu [14]
proposed multi-keyword fuzzy search scheme aimed at the
tolerance of both slight typos and format inconsistencies for
users’ input. Zhang et al. [16] proposed a secure rankedmulti-
keyword search scheme in a multi-owner model (PRMSM)
that not only allows the cloud server to perform a multi-
keyword search without knowing any sensitive information,
but also enable the data owner to flexibly change the encryp-
tion key. However, these schemes rarely focus on query
efficiency.

Practically, query efficiency is one of the most
important indicators of the user experience.
Kamara and Papamanthou [17] proposed a secure search
scheme based on the tree-based index, which can efficiently
perform searches. However, it is designed only for a single
keyword search. Later, Xu et al. [18], [20] presented an
efficient multi-keyword ranked search scheme (MKQE) that
enabled a dynamic keyword dictionary and improved the
precision of the search. Sun et al. [19] created a privacy-
preserving multi-keyword text search scheme. They divided
the vector index into multiple layers and proposed a tree-
based index structure by applying theMD-algorithm [21] that
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realized more efficient search functionality, yet resulting in
a loss of precision. Xia et al. [22] constructed a tree-based
index structure and proposed a greedy depth-first search
(GDFS) algorithm that achieved higher search efficiency.
Unfortunately, these works don’t consider multiple data own-
ers scenario. Dong et al. [23] considered a practical scenario
where multiple users share data via an untrusted third party.
To implement it, the authors proposed a novel multi-user
searchable data encryption scheme based on proxy cryp-
tography. Different from the existing searchable encryption
schemes, their scheme allowed the users to update the shared
data set and each user can be reader and writer simultaneouly.
Furthermore, the rigious proof had been represented to prove
the security of their scheme. Popa et al. [24] focused on web
applications and proposed a new platform Mylar which is a
combination of system techniques and novel cryptographic
primitives, including data sharing, computing over encrypted
data and verifying application code. The results with 6 appli-
cations showed that Mylar is a good multi-user web appli-
cation with data sharing. Cui et al. [25] proposed a secure
and effective Near-duplicate detection (NDD) system over
encrypted in-network storage which supportedmulti-user and
multi-key searchable encryption. However, those schemes
cannot solve the multi-keyword ranked search problem in the
multi-user setting. Therefore, their schemes cannot directly
be deployed for addressing our problem. In [26], Yao et al.
proposed a multi-source encrypted indexes merge (MEIM)
mechanism, where the cloud canmerge the encrypted indexes
from data owners without knowing the index content. They
focused on personal health records, and only considered a
numerical ‘‘attribute value’’ for each attribute while ignoring
queries on data files that must be built on vectors.

B. ORDER-PRESERVING ENCRYPTION
The order-preserving encryption (OPE) is used to preserve
numerical order for plaintexts [27]. Boneh et al. [28], [29]
proposed the order-revealing encryption (ORE) schemes to
achieve the best-possible security. In [30], Chenette et al.
built the first efficiently implementable order-revealing
encryption. Yao et al. [31] proposed a novel multiple
order-preserving symmetric encryption (MOPSE) scheme to
encrypt personal health record under the multi-user setting.
However, these schemes cannot support additive order-
preserving. In addition, Yi et al. [32] proposed an order-
preserving function to encode data from different sensors in
the sensor network. Nevertheless, it only considered range
queries while ignoring the multi-keyword ranked search.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
In Fig. 1, three entities, i.e., data owners, the cloud server, and
data users, make up this system model. Data owners have a
large collection of files F . To enable efficient multi-keyword
search on the encrypted files, each data owner first builds
a secure searchable tree-based index I . Then, data owners

FIGURE 1. System model.

encrypt their data files F with their keys and outsource both
the encrypted tree-based index and data files to the cloud
server. When receiving the tree-based indexes, the cloud
server merges multiple encrypted indexes without compro-
mising data owners’ privacy. When the data user searches t
keywords over the encrypted files and fetch k encrypted files,
he first computes the trapdoors T , and submits T and k to the
cloud server. When receiving the trapdoors T and k , the cloud
server begins searching the merged index tree I and returns
the corresponding collection of the top-k ranked encrypted
files.

B. THREAT MODEL
In the TBMSM, we assume both data owners and data users
are trusted. However, we consider the cloud server to be
‘‘curious but honest,’’ which is the same as the previous
works [7], [9]. This means it follows the proposed protocol,
but curious about the actual information of encrypted files,
the trapdoor, and relevance scores. Preserving the access
pattern is too much expensive because the algorithm must
access the entire file set [33]. For efficiency, we do not protect
the access pattern in our scheme.

C. DESIGN GOALS
To enable an efficient ranked multi-keyword search for mul-
tiple data owners over encrypted cloud data, our scheme aims
to achieve the following goals:

1) Multi-keyword Ranked Search for Multiple Data
Owners: This scheme not only allows multi-keyword
searches over encrypted cloud data (which are
encrypted with different keys for different data owners)
but also allow the cloud server to return the ranked top-
k encrypted files.

2) Search Efficiency: We explore a tree-based index
structure and an efficient search algorithm. The cloud
server will merge encrypted indexes without knowing
the corresponding sensitive information. The authenti-
cated data user only needs to encrypt query keywords
once to efficiently retrieve all files of interest.
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3) Security: The scheme proposed should achieve the
following three security goals: (1) Keyword Semantic
Security (Definition 1). We will prove that TBMSM is
semantically secure against the chosen keyword attack
under the selective security model. (2) Keyword Secu-
rity (Definition 2).Wewill prove that TBMSM realized
keyword privacy in the random oracle model. (3) Rele-
vance Score Security. We need to ensure that the cloud
server cannot infer the actual value of the encoded
relevance scores.

Definition 1: Let A be a probability polynomial time
adversary, he can ask the challenger C to return the ciphertext
with the corresponding keywords. The adversaryA sends two
keywords w1 and w2 with equal length to C. Then the chal-
lenger C randomly sets ν ∈ {1, 2} and sends the ciphertext ŵν
to the adversaryA, who continues to ask the challenger C for
the ciphertext of keyword w, such that w /∈ {w1,w2}. Finally,
the adversary A outputs the guess ν′ ∈ {1, 2}. We define
the probability that the adversary A breaks TBMSM to be
P[ν′ = ν]. If P[ν′ = ν] is negligible, TBMSM is semantically
secure against the chosen keyword attack under the selective
security model.
Definition 2: Let A be a probability polynomial time

adversary, he can ask the challenger C to return the cipher-
text of corresponding keywords. The challenger C randomly
chooses a keyword w and sends the ciphertext ŵ toA. Finally,
the adversary A outputs the guess w′. We define the proba-
bility that A breaks the encrypted keyword to be P[w′ = w].
If P[w′ = w] is negligible, TBMSM realized keyword privacy.

D. NOTATIONS
For clarity, we introduce the main notations mentioned in this
paper.
• O - the collection of data owners, denoted as a set of m
data owners O = (O1,O2, ...,Om).

• I - the collection of data owners’ index, denoted as a set
of m indexes I = (I1, I2, ..., Im).

• U - data users collection, denoted as a set of n data users
U = (U1,U2, ...,Un).

• W - the collection of keywords, denoted as a set of η
keywords W = (w1,w2, ...,wη).

• Ŵi - the keyword collection encrypted by Oi, denoted as
Ŵi = (ŵi,1, ŵi,2, ..., ŵi,η).

• Fi - the plaintext file collection ofOi, denoted as a set of
d files Fi = (Fi,1,Fi,2, ...,Fi,d ).

• Ci - the encrypted file collection of Oi, denoted as a set
of d files Ci = (Ci,1,Ci,2, ...,Ci,d ).

• Qi - a subset of W , indicating the keywords in a search
request that are submitted by Ui, denoted as Qi =
(qi,1, qi,2, ..., qi,t ).

• TQi - the trapdoor for Qi, denoted as TQi =

(Tqi,1 ,Tqi,2 , ...,Tqi,t ).

E. PRELIMINARIES
In this subsection, we introduce some necessary techniques
used in the study.

1) BILINEAR PARING
Let G1and G2 denote two cyclic groups of prime order p.
We view G1 as an additive group and G2 as a multiplicative
group. A bilinear map e : G1 × G1 → G2 satisfies the
following properties:
• Bilinear: ∀g, h ∈ G1,∀x, y ∈ Zp, e(gx , hy) = e(g, h)xy.
• Computable: There is a polynomial time algorithm to
compute e(g, h) ∈ G2, for any g, h ∈ G1.

• Non-degenrate: If g is a generator of G1,the e(g, g) is a
generator of G2.

2) DECISIONAL BILINEAR DIFFIE-HELLMAN (DBDH)
ASSUMPTION
The DBDH problem is as follows: given a, b, c, z ∈

Zq as input, whether we can distinguish the tuple
(g, ga, gb, gc, e(g, g)abc) from the tuple (g, ga, gb, gc, e(g, g)z).
The DBDH assumption states that there is no polynomial-
time algorithm that has a non-negligible advantage in solving
the DBDH problem.

3) VECTOR SPACE MODEL
The vector space model along with TF × IDF rule is a
popular information retrieval model [34], where TF denotes
the frequency of a given keyword appearing in the file and
IDF is the logarithm of the total number of files divided by
the number of files containing the keyword and get value
obtained the logarithm. There aremany variations of the TF×
IDF weighting scheme.Without loss of generality, we choose
a commonly used formula to calculate the relevance score of
the document [35]. Given a data file set F = {F1, · · · ,Fd }
and a keyword set W = {w1, · · · ,wη}, we compute the
relevance score between Fb (b ∈ [1, d]) and an arbitrary
keyword wj (j ∈ [1, η]) with the following method.

Score(Fb,wj) =
1
|Fb|

(1+ ln fFb,wj ) ln (1+
N
fwj

), (1)

where |Fb| denotes the length of the file Fb, fFb,wj denotes
the frequency of the keyword wj in the file Fb, fwj denotes
the number of files containing keyword wj, and N denotes
the total number of files, i.e., |F |. Here, we denote the vector
of the relevance score of the keywords in the file Fb by Db =

{Score(Fb,w1), Score(Fb,w2), · · · , Score(Fb,wη)} =

{sb,1, · · · , sb,η}. Note that the length of the vector of all files
is the same (i.e., η); if the file Fb does not have the keyword
wj, the corresponding jth element in Db should be set as 0.

4) ADDITIVE ORDER AND PRIVACY PRESERVING
FUNCTION (AOPPF)
Chor et al. [33] proposed an additive order and privacy
preserving function, which helps data owners encrypt the
relevance score using a different function. It allows the cloud
server to accurately rank the search result files.

Fyaoppf (x) =
∑

0≤j,k≤τ

Aj,k .m(x, j).m(y, k)+ raof (2)
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where Aj,k and τ denote the coefficient of m(x, j).m(y, k) and
the degree of Fyaoppf (x), respectively. The function m(x, ·) is
used as preserving the order of relevance score x, the function
m(y, ·) is deployed for processing the data owner’s ID y, and
raof is the disturbing part. The function m(x, j) is defined as
follows: m(x, 1) = x,m(x, 0) = 1 and m(x, j) = (m(x, j −
1) + α · x) · (1 + λ) if j > 1, where α and λ are two
constant numbers. Since

∑
0≤j,k≤τ Aj,k ·(m(x+1, j)−m(x, j))·

m(y, k) ≥
∑

0≤j,k≤τ Aj,k · ((1+λ)
j−1
+α ·

∑
1≤i≤j−2(1+ λ)),

we let l to be an integer such that 2l−1 ≤
∑

0≤j,k≤τ Aj,k ·((1+
λ)j−1+α ·

∑
1≤i≤j−2(1+ λ)) ≤ 2l , and the parameter r is an

integer smaller than l − 1. Therefore, the disturbing part raof
belong to {0, 1, · · · , 2l−1}.

5) KEYWORD BALANCED BINARY TREE (KBB-TREE)
To improve the efficiency of the search, Xia et al. [22] first
proposed the keyword balanced binary tree. However, it does
not support the multiple data owners’ model. In our scheme,
each data owner builds a secure keyword balanced binary
tree and outsource them to the cloud server. The cloud server
merges those index trees and performs the efficiently multi-
keyword search. Each node in the index tree stores a vectorD
whose elements are the relevance scores. We define the node
in the index tree as

unode = 〈ID,FID,D,Pl,Pr 〉 (3)

where ID, FID, and OID denote the id of node, file and data
owner, respectively. Pr denotes the pointers to the right child
of the unode, and Pl denotes the pointers to the left child.
The detailed construction of the KBB-tree and the merging
method will be discussed in section IV.

IV. TREE-BASED MULTI-KEYWORD RANKED
SEARCH SCHEME
In this section, we detail our TBMSM scheme in the follow-
ing aspects: Overview, System Setup, Keyword Encryption,
Index Construction, Secure Indexes Merge, Trapdoor Gener-
ation, Efficient Search.

A. OVERVIEW
To meet the requirements of efficient multi-keyword ranked
search in multiple data owners model, we propose a novel
TBMSM mechanism. Fig. 2 shows the working processes of
TBMSM.

1) DATA OWNERS
(1) KeywordsEnc encrypts the keyword with data owners’
secret key koi,w ; (2)FilesEnc utilizes the traditional symmetric
encryption algorithm to encrypt data owners’ files; (3) Index-
esEnc builds the tree-based index for each data owner and
encrypts the KBB-tree with AOPPF. (4) data owners upload
encrypted keywords, files and KBB-trees to the cloud server.

2) DATA USERS
(1) TrapdoorGen generates trapdoors with data users’ secret
key kui,w , and then submits trapdoors and the number of

FIGURE 2. TBMSM working processes.

extracting files k to the cloud server; (2) FilesDec decrypts
encrypted files.

3) THE CLOUD SERVER
(1) IndexesMerg merges multiple encrypted KBB-trees;
(2) Multi-keyword Search runs the DFS algorithm to find
out the corresponding files and returns the corrected top-k
encrypted files to data users.

B. SYSTEM SETUP
Let k denote the security parameter. Both g and g1 are the
generators of cyclic groupsG1 andG2 with prime order p. Our
algorithm randomly produces kuj,w ∈ Z

+
p , koi,f ∈ Z

+
p , koi,w ∈

Z+p ← (0, 1)∗, where kuj,w is the private key of data user Uj
used to generate the trapdoor, koi,f and koi,w are the secret
keys of data owner Oi for encrypting files and keywords.
In addition, let H (•) denote a public hash function whose
output belongs to Z+p .

C. KEYWORD ENCRYPTION
To meet the security search requirements, keyword encryp-
tion should satisfy the following conditions. First, different
data owners can encrypt the same keyword with different
private keys, and don’t need to share the keys with others.
Second, the same keyword should be encrypted to different
ciphertext at different times.

We assume that data owner Oi wants to encrypt the ath
keyword wi,a

ŵi,a = (gkoi,w·H (wi,a)·ro , gkoi,w·ro ) (4)

where ro is a random number. For clarity, we let EK1 =

gkoi,w·H (wi,a)·ro and EK2 = gkoi,w·ro , so

ŵi,a = (EK1,EK2) (5)

D. INDEX CONSTRUCTION
Each data owner builds a KBB-tree for his/her data files.
Given a data file set F = {F1, · · · ,Fd }, data owner Oi
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FIGURE 3. Illustration of the DFS-algorithm on the KBB-tree.

first utilizes the identical method in Sect. III-E.3 to calculate
the vector space Db for each file Fb, where b ∈ [1, d].
To guarantee the security of the vector space Db, data owner
Oi adopts the AOPPF FH (IDi)

aoppf (•) to encode each element
in Db:

Vi,b,j = FH (IDi)
aoppf (Si,b,j) (6)

where H (•) denotes a public hash function, Vi,b,j is the
encoded data of Si,b,j. The vector Db will be encoded to D̂b,
where the jth element D̂b(j) is equivalent to Vi,b,j. Besides,
data owner Oi takes Si,b,j as the input of Eq. 7 to calculate
the function V i

b,j, and denotes the function vector as V̂b
=

{V i
b,1, · · · ,V

i
b,j} (b ∈ [1, d], j ∈ [1, η]).

V i
b,j = F iaoppf (Si,b,j) (7)

To build a KBB-tree for all data files, data owner
Oi generates a node for each data file Fb as ui,b =
〈IDi,Fb, D̂b, V̂b,Plb,P

r
b〉. Subsequently, the Algorithm 1

takes all nodes of each owner (linkedListi = {ui,1, · · · , ui,d })
as inputs,1 and outputs the root of the KBB tree.

Figure 3 takes four files (Fi = {fi,1, fi,2, fi,3, fi,4}) as an
example to show how to construct the KBB tree.

E. MULTI-SOURCE INDEXES MERGE
When having received the index tree set I = {I1, I2, · · · , Im}
from different data owners, the cloud server merges them into
one index tree Imerged according to the following steps.
First, the cloud server initializes an empty linkedList and

inserts ui,root (ui,root denotes the root of Ii, i ∈ [1,m]) to
linkedList. Second, the cloud server takes the linkedList as
inputs of the Algorithm 1 and gets the root of merged tree.

As data owners utilize different encoding functions to
encode their relevance scores, the cloud server therefore can-
not directly compare the size of the encoded scores from
different data owners. In what follows, we take two files
(F1 and F2) and the h-th keywordwh as an example to explain
how to compare the size of the encoded scores with different
encoding functions.

Assume the F1 of data owner O1 and F2 of data owner O2
contain the hth keyword wh. The relevance score S1,1,h and
S2,2,h are encoded to V1,1,h and V2,2,h. First, the cloud server

1Note that if the number of nodes is not power of two, some dummy nodes
(e.g., u = NULL) need be introduced for constructing the KBB tree.

Algorithm 1 BuildIndex
Input: linkedList
Output: Encrypted index tree I
if linkedList.size() == 1 then

return the element of linkedList;
else

Initialize an empty list tempNodeList;
i← 1;
for each pair 〈ui, ui+1〉 in linkedList do

Initialize an empty parent node u;
u.ID← IDi,i+1;
u.F ← NULL;
u.Pli,i+1← ui;
u.Pri,i+1← ui+1;
for j in [1, · · · , η] do

if D̂i(j) > D̂i+1(j) then
u.D̂i,i+1(j)← D̂i(j);
u.V̂i,i+1(j)← V̂i(j);

else
u.D̂i,i+1(j)← D̂i+1(j);
u.V̂i,i+1(j)← V̂i+1(j);

end
end
Insert u to tempNodeList;
i← i+ 2;

end
Replace linkedList with tempNodeList;
BuildIndex(linkedList)

end

chooses the function V i
2,h = F iaoppf (S2,2,h) (The cloud server

can also choose V i
1,h = F iaoppf (S1,1,h)) and substitutes ID1 for

the variable i and get V ID1
2,h . If V1,1,h > V ID1

2,h , the relevance
score of F1 is bigger than F2, otherwise, the relevance score
of F2 is bigger than F1.

F. TRAPDOOR GENERATION
In the multi-owner model, it is not advisable for the data
user to communicate with each data owner to generate the
trapdoor, so we should satisfy the following two conditions.
First, the data user can generate the trapdoor without commu-
nicatingwith others. Second, the same search keyword should
generate different trapdoors at different times.

We assume data user Ui wants to search keyword wt , and
then computes the trapdoor as

Twt = (gkui,w·H (wt )·ru , gkui,w·ru ) (8)

where ru is a random number. For clarity, we let T1 =
gkui,w·H (wt )·ru and T2 = gkui,w·ru , so Twt = (T1,T2) and
submits it to the cloud server.

G. EFFICIENT SEARCH
When the cloud server receives a search request, it first
converts the trapdoor into a search vector and then calls the
DFS-algorithm described in algorithm 2 and returns the top-k
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related files. We assume the cloud server received a trapdoor
Twt , and for every encrypted keyword in the keyword set Ŵi,
it first computes

e(EK1,T2) = e(gkoi,w·H (wi,a)·ro , gkui,w·ru )

= e(g, g)koi,w·H (wi,a)·ro·kui,w·ru

The cloud can judge whetherwt belongs to the keyword set
if the following equation is true and set the ath dimension of
the query vector to 1:

e(EK2,T1) = e(gkoi,w·ro , gkui,w·H (wt )·ru )

= e(g, g)koi,w·ro·kui,w.H (wt )·ru

= e(EK1,T2)

Algorithm 2 DFS
Input: The IndexTree’s node u, query vector q and

returned file number k
Output: The list RList of top-k ranked encrypted files
if the node u is not a leaf node then

if getRScore(u, q) > minScore then
DFS(u.getLeftNode(), q, k);
DFS(u.getRightNode(), q, k);

end
else

if getRScore(u, q) > minScore then
if RList.size() == k then

Delete the element with the smallest
encoded score from RList;

end
Insert a new element and sort the element of
RList;
Set minSocre to be equal to the smallest encoded
score in RList;

end
end

Fig. 3 shows an example of a search process with query
vector q = (0, 0, 1, 1), and the parameter k = 3. The search
starts at the root node, and reaches the first leaf node fi,4 with
the query relevance score 4.2. Then, the leaf node fi,3 and fi,2
are reached with relevance scores 1.9 and 4.5 respectively.
Next, the DFS-algorithm will reach the leaf node fi,1 with the
relevance score 1.3, which is smaller than the smallest score
inRList . Finally, the elements ofRList are sorted by relevance
score.

V. SECURITY AND PERFORMANCE ANALYSIS
A. SECURITY ANALYSIS
Data files are encrypted by a symmetric encryption algorithm
before uploading. As long as the algorithm is safe, the cloud
server will not know the contents of files.

1) KEYWORDS AND TRAPDOORS
We give the security analysis of keywords and trapdoors
according to the following two theorems.

Theorem 1: Based on the DBDH assumption, TBMSM is
semantically secure against the chosen keyword attack under
the selective security model.

Proof: We first consider a game played between adver-
sary A and challenger C. We assume adversary A has a non-
negligible advantage ε as the attacker in this game. In the
initialization phase, challenger C setsµ randomly. Ifµ = 0, C
sends (A,B,C,Z ) = (ga, gb, gc, gabc) toA; Ifµ = 1, C sends
(A,B,C,Z ) = (ga, gb, gc, gz) to A, where a, b, c, z ∈ Zp are
randomly generated.
Setup: Challenger C sends public keys (g, ga, gb, gc,Z ) to

the adversary A.
Phase 1: C initializes a set of keywords W and sets it

to an empty value. A can choose any keyword w and ask
C to generate corresponding keyword ciphertext ŵ. If w ∈
W , C just sends ŵ to A; Otherwise, C adds w to W and
sends ŵ to A.
Challenge: A sends two keywords w1 and w2 with equal

length to C, where w1,w2 /∈ W , C randomly sets ν ∈ {1, 2}
and sends the ciphertext ŵν = (ZH (wν ),Z ) to A.
Phase 2: A repeats phase 1 and the only limit is w /∈

{w1,w2}.
Guess: A outputs the guess ν′ ∈ {1, 2}. If ν′ = ν, then ŵν

is the ciphertext of wν , and A outputs µ = 0; Otherwise it
outputs µ = 1.

Evidently, A will output ν′ = ν with probability 1/2 + ε
and output ν′ 6= ν with probability 1/2. Therefore,A can win
the gamewith probability 1/2+ε/2. In other words, TBMSM
is secure against the chosen keyword attack. �
Theorem 2: Based on the discrete logarithm assumption,

TBMSM realized keyword privacy in the random oracle
model.

Proof:
We consider a game played between the adversary A and

the challenger C as follows.
Setup: The challenger C sends public keys (g, gk1 , gk2 ) to

the adversary A.
Phase 1: C initializes a set of keywords W and sets it to

an empty value. A can choose any keyword w and ask C to
generate corresponding keyword ciphertext ŵ. If w ∈ W , C
just sends ŵ toA; Otherwise, C addsw toW and sends ŵ toA.
Challenge: After A has submitted t search requests,

C randomly chooses keyword w′ and returns encrypted
keyword ŵ′ = (gk1·H (w′)·r1 , gk1·r1 ) and trapdoor Tw′ =
(gk2·H (w′)·r2 , gk2·r2 ) to A.
Guess: A outputs the guess w′′ for w′ and sends it to C.

C returns the encrypted keyword ŵ′′ toA. If Tw′ matches ŵ′′,
then A wins the game.

Before outputting the guess w′, A already has t keywords
and their encrypted keywords. Therefore, the remaining key-
word set is η− t , where η is the size of keywords. In addition,
because the discrete logarithm problem is hard in polynomial
time, the probability thatA guess the correctw′ from ŵ′ or Tw′
is a negligible probability ε. Therefore, A can win the game
with probability 1

η−t + ε. �
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FIGURE 4. Time cost of index construction. (a) keyword dictionary u = 4000. (b) data set d = 1000. (c) keyword dictionary u = 4000.

2) RELEVANCE SCORES
We encode relevance scores with the AOPPF proposed
in [33]. We assume the data owner inputs score s and IDi, and
sends the encoded score FH (IDi)

aoppf (s) to the cloud server. When
the cloud server collects m encoded scores for the same
score s, it can constructm equations. However, there arem+1
unknown variables, so the AOPPF cannot be broken based
on those information. Therefore, the privacy of the relevance
scores has also been protected.

B. PERFORMANCE ANALYSIS
1) INDEX ENCRYPTION
Assume that the keyword dictionary and file numbers for each
index are defined as u and d .O(d) nodes are generated during
the index tree construction, and for each node it takes O(u)
time to encrypt it. The time complexity of building an index
is O(ud).

2) INDEX MERGE
Assume that there are m index trees to merge. Merging m
indexes is equivalent to merging their roots. It takes O(um)
to merge these encrypted indexes. Therefore, the time com-
plexity of the merging index is O(um).

3) QUERY
We assume that the number of leaf nodes containing at least
one query keyword is n. The time cost to calculate the rel-
evance score is O(u), and the height of the merged index
is log d + logm. The search time complexity is less than
O(un(log d+ logm)), as the top-k queries of n are larger than
the number of required files k .

VI. PERFORMANCE EVALUATION
In this section, we evaluate the efficiency of the TBMSM.
First, we introduce the evaluation settings, then compare our
proposed scheme with the PRMSM.

A. EVALUATION SETTINGS
Our experiments are conducted using the Java programming
language on a PC with a 3.3 GHz Intel Core CPU and

FIGURE 5. Index size. (a) keyword dictionary u = 4000. (b) data set
d = 1000.

FIGURE 6. Time cost of generating trapdoors. (a) queried keywords
t = 100. (b) keyword dictionary u = 4000.

8 GB memory. We use the real datasets, the Internet Request
For Comments (RFC) [36] for simulation experiments. This
dataset contains 7875 plain text files with a total size of
approximately 393MB. Then we extract keywords from the
RFC files.

B. EVALUATION RESULTS
1) INDEX CONSTRUCTION
Fig. 4 shows the time cost of index construction. Fig. 4a
shows the time cost of index construction for the same size of
keyword dictionary, which is almost linear with the number
of files. This is consistent with our performance analysis. The
TBMSM consumes much less time than PRMSM. Fig. 4b
shows that, given the same number of files (d = 1000),
TBMSM grew by an average of 29.16s, while PRMSM grew
by an average of 45.12s. Fig. 4c shows the time cost of
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FIGURE 7. Time cost of search. (a) data set d = 2000 and keyword dictionary u = 100. (b) queried keywords t = 5 and keyword dictionary u = 100.
(c) queried keywords t = 5 and date set d = 2000.

the merging operation with the same keyword dictionary
(u = 4000) and grows linearly with the number of users.
When the number of data owners belongs to {500, 3000},
the time cost values within {1.403s, 8.399s}, which is accept-
able. On the other hand, as shown in Fig. 5 (due to the use of
balanced binary tree), the TBMSM needs more storage space
for the index. However, this is not a problem for the cloud
platform.

2) TRAPDOOR GENERATION
Fig. 6a shows that both the TBMSM and PRMSM are unaf-
fected by the keyword dictionary size for the same number
of queried keywords. The TBMSM requires approximately
2.769s to generate trapdoors, while the PRMSM requires
4.618s. In Fig. 6b, given the same number of keyword dic-
tionary sizes (u = 4000), the trapdoor generation time for the
TBMSM ranges from 2.769s to 23.588s, while it ranges from
4.618s to 41.044s for PRMSM.

3) SEARCH
Fig. 7 shows that our proposed scheme consumes less time
search compared to PRMSM, which matches our search anal-
ysis. Fig. 7a shows that given d= 2000 and u= 100, when the
number of queried keywords belongs to {1, 10}, the search
time in the PRMSM ranges from 4.992s to 46.932s, while
our method’s search time ranges from 0.572s to 0.72s. Fig. 7b
shows that the number of files in the dataset has little effect on
the search. Fig. 7c shows that given the same size of queried
keywords (t= 5), and the same dataset (d= 2000), when the
size of the keyword dictionary increases from 100 to 1000,
the TBMSM’s search time ranges from 0.63s to 0.834s, only
an average of 0.02s, while the PRMSM ranges from 23.31s
to 92.947s.

VII. CONCLUSION
In this study, we consider a multiple data owners model
in cloud computing and propose an efficient ranked multi-
keyword search scheme over encrypted data. First, we pro-
pose a novel secure search protocol that allows different data
owners to encrypt the files and indexes with different keys.

Then, we construct a tree-based index structure for each data
owner and encrypt with AOPPF. Meanwhile, the TBMSM
allows the cloud server to merge encrypted indexes without
knowing any information. The experiment results obtained
using the RFC dataset demonstrate that the TBMSM is an
efficient mechanism.
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