
Received January 17, 2018, accepted April 11, 2018, date of publication April 23, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2829142

An Improved Web Cache Replacement
Algorithm Based on Weighting and Cost
TINGHUAI MA 1,2, (Member, IEEE), YU HAO1, WENHAI SHEN3,
YUAN TIAN 4, AND MZNAH AL-RODHAAN4
1School of Computer Software, Nanjing University of Information Science and Technology, Nanjing 210-044, China
2CICAEET, Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210-044, China
3National Meteorological Information Center, Beijing100-080, China
4Computer Science Department, College of Computer and Information Sciences, KingSaud University, Riyadh 11362, Saudi Arabia

Corresponding author: Tinghuai Ma (thma@nuist.edu.cn)

This work was supported in part by the Special Public Sector Research Program of China under Grant GYHY201506080, in part by the
National Science Foundation of China under Grant 61572259 Grant U1736105, in part by the PAPD, and in part by the Research Center of
the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University.

ABSTRACT Cachememory plays an important role in improving the performance of web servers, especially
for big data transmission, which response time is constrained. It is necessary to use an effective method, such
as web cache. Because an outstanding cache replacement algorithm can not only reduce the users access
time but also improve the performance of the system. The traditional used weighting replacement policy
does not consider the size parameter, hence, it may perform poorly while the datasets are larger. In this paper,
we propose a novel, high-performance cache replacement algorithm for the web cache, namedweighting size
and cost replacement policy (WSCRP) bases on theweighting replacement policy. The algorithm recalculates
the objects weight with adding the cost attribute in the cache, then orders the weight. Additionally the
influence of various factors on the Web object as frequency, time, and cost value are considered. When
the cache space cannot satisfy the new request object, the replacement policy WSCRP replaces the largest
weighting and cost object. The experiments show that proposed algorithm has higher hit rate and byte rate
for different datasets, and can effectively improve the performance of web cache.

INDEX TERMS Web cache, replacement, weighting, cost.

I. INTRODUCTION
In recent years, the rapid increase of the World Wide Web
service has caused an exponential rise in web traffic and
access latency. To solve this problem, researchers have pro-
posed many methods and the web caching is one of the
most effective techniques [1]. In order to improve cache
performance effectively, two kind of methods are proposed:
One is increasing the cache size or decreasing latency time
by prefetching, but its cost is very large. The other one is
designing an useful cache replacement algorithm. Caching is
a famous performance optimization method which is widely
used inWeb Caching. If there is no cache, users every request
for data must be sent to servers. When the number of users
becomes larger, servers load will increase. It will cause the
network traffic and latency problem. So the replacement
algorithm becomes more important.

The web cache servers are widely deployed in many places
throughout the Web [1]. For web cache, there are three

different web cache patterns: client-side caching [2], [3],
server-side caching [4], and proxy caching [5]. Client-side
caching refers to caches that user-side stores users web
browsers page addresses and other information, and it can
reach the specified server with the information. However, it is
only for single user. Server-side caching refers to establishing
the cache on the web server side. The purpose of it is decreas-
ing the number of request for the server, so it can reduce the
server load [6]. Proxy caching usually serves as the middle
connection of user and center servers [7].When the user sends
a request to the server via a proxy server, server will response
the data to the user according to the original request path.
During this process, proxy server will decide whether to store
a copy in its cache or not because this data may be requested
in the future.

There are a lot of factors affecting the cache performance.
The most important factors are accessing frequency, the last
access time, cache block size and cache object size [12].

27010
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2320-1692
https://orcid.org/0000-0002-2307-8201


T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

For each factor, researchers have proposed the corresponding
algorithms. There are many cache replacement policies and
all of them have their own algorithm to decide which object
will be removed when the cache is full. The general goal of
cache replacement policies is to improve the cache hit ratio
and byte ratio [8]. Some researches show that a lot of data
is only visited once and won’t be visited again because of the
huge amount of data access, thuswe call this type data asOne-
Timers (OT) data. Similarly, we call data visited more than
once as N-Timer(NT) data [7]. In the cache, we should try our
best to store NT data as much as possible. In this research,
we propose a low-latency, high-hit rate cache replacement
policy for web cache to improve the performance of cache.
We consider time, frequency size and cost, then design a
new weight calculation method based on cost and give a
new algorithm Weighting Size and Cost Replacement Policy
(WSCRP). It can perform better than existing algorithms.

The rest of this paper is organized as follows.
Section 2 reviews related researches and discuss web caching
algorithms. Web cache replacement algorithm is discussed in
section 3. In section 4, we present the results of this research,
while section 5 provides the summary and conclusions.

II. RELATED WORK
When a new object needs to be stored and the cache
is full, a replacement algorithm must be used to deter-
mine which object should be removed to make space
for the new objects [5]. Cache replacement algorithms
decide which data could stay in the cache. An outstanding
cache replacement algorithm has few number of misses
in the cache and can improve the cache hit ratio and
byte ratio too. A lot of academic and industry researchers
are studying toward finding the cache replacement pol-
icy [9]. At present, cache replacement algorithms mainly
focus on the following categories: Least Recently Used
Algorithm, Least Frequently Used Algorithm, SIZE
Algorithm, Function-based Algorithm, Randomized-based
Algorithm and Weighting-based Algorithm [10].

(1) Least Recently Used Algorithm. In this type of
algorithm, time is the most primary factor. Least Recently
Used (LRU) algorithm is one of the most popular policies
in web cache [10]. Its main idea is that if the data has been
requested recently, the probability of it being requested in
the future will be higher. It is used to cache web browser
information, like pictures, etc. When cache is full, it removes
the least recently referenced objects. The advantage of this
algorithm is that it is easy to implement and has a good
performance in client-side. But it only considers the last
referenced time while ignoring the frequency of references
for a certain web object [11].

(2) Least Frequently Used (LFU) Algorithm. In this type of
algorithm, researchers consider the object popularity (or fre-
quency count) as the primary factor [15]. Its main idea is that
if the data has been requested more frequently, the probability
of it being requested in the future will be higher. It usually
caches the web URLs. When cache is full, it removes web

object with the lowest frequency. Its advantage is that it is
easy to implement too and has a good performance in proxy-
side [13]. But if one object has high frequency previously,
it will be stored in the cache although it will no longer be
accessed. We call it ‘‘cache pollution’’.

(3) SIZE Algorithm. In this type of algorithm, object size
is treated as the primary factor when caching the object [17].
Its main idea is that if the data has a bigger size, it may
occupy more cache space. When cache is full, it removes web
object with the biggest size. This type of algorithm usually
caches the entity objects those with real object size rather
than urls, etc. When the size is the same, it usually considers
time as the second factor. Its advantage is that it can remove
the big size objects timely. But for those objects with small
size in the cache, they will be stored in the cache although
they would not be accessed. Then it will also cause ‘‘cache
pollution’’ [17].

(4) Function-based Algorithm. This type of cache replace-
ment algorithm calculates the cache value of every web
object [5]. For example, Greedy Dual-Size algorithm calcu-
lates the object size, access latency, cost and etc. When the
cache is full, it removes the object according to the smallest
cache value. The cache values is calculated as:

Ki = Ci/Si + L (1)

Where Ci is the cost of retrieved object i, Si is the size of
object i, L is the aging factor. However, the method ignores
the frequency and other factors.

(5) Randomized-based Algorithm. In this type of algo-
rithm, no factor is treated as the primary factor when caching
the object. Its main idea is that every cache objects has the
equal value. When cache is full, it selects a random object
and removes [14]. It is easy to implement, but it has low
performance and its hit rate is unsatisfactory [16]. Because
server doesnt need analyze the objects attribute, it just remove
an object randomly [28]. But the objects are impossible to
request an object only once, so it may remove the data that
we call ‘‘hot data’’.

(6) Weighting-based Algorithm [18]. In this type of cache
replacement algorithm, researchers use weight to decide
which object should be removed from the cache. The weight
is sorted in descending order. Users could directly remove the
object with the highest weight value. The algorithm in [18] is
named Weighting Replacement algorithm(WRP), its weight-
ing value is calculated by equation (2).

Wi =
Li

Fi ×1Ti
(2)

Where Li is the last time the data being accessed, Fi is the
frequency of object i, 1Ti is the average value of every two
consecutive access time.

The hit ratio is a standard to measure the performance of
the web cache replacement algorithms [19]. The higher the hit
ratio, the better the replacement policy will be [20]. With the
development of the network bandwidth and cloud computing

VOLUME 6, 2018 27011



T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

technology, the speed of information transmission is increas-
ing. So transport and network consumption cost has become
a criteria to evaluate the cache replacement algorithms [21].

III. WSCRP ALGORITHM
Our algorithm is based on weighting replacement algorithm.
In addition, we use a new weight and add a new cost model.
Our algorithm also uses the advantage of the existing cache
replacement algorithm, which makes our algorithm more
reliable and accurate. There are three main parts: weighting-
cost model, the cache storage structure and cache replacement
policy.

A. WEIGHTING-COST MODEL
The original weighting replacement algorithm is based
on LFU, which replaces pages that are not recently used and
pages that are accessed only once [30]. It has advantages in
caching for the URL and other small size objects. But for
those objects who have bigger size, this algorithm may cause
cache pollution. So wewant to improve the cache hit ratio and
propose an approach that can utilize cache space as much as
possible and avoid cache pollution. We recalculate the weight
of cache objects and add some new attributes like object size
to the formula of weight. When a request arrives, we mark
a hit and cresponses to client if the requested object is in
cache. However, if the requested object is not in cache and the
cache capacity is enough, we mark a miss and add the object,
into the cache which is obtained from server database. If the
requested object is not in cache, and the cache capacity is not
enough, the cache must remove any objects to store the new
object.

We improve the formula of weight by adding a new
attribute to equation(2), the size of object. The formula is
described in equation(3). Where Li is a parameter which
means the recency of block(L) i in the cache. Fi is a counter
which means the number of times that object i in the cache
has been referenced and the Si is the size of object i.
1Ti = Tci − Tpi is a time difference, where Tci is the last
accessed time of object i and Tpi is the penultimate accessed
time.

Wi =
Li

Fi ×1Ti
× Si (3)

When a new object k is put in the cache buffer, we should
set the original attribute value. For example, if k is the first
requested object, then Fk is set to 1, 1Tk is set to 1 and Lk is
set to 0 because K is being used now. And we will calculate
the objects size Sk . We consider the original δTk equals to
1 because the time of each reference to a block would be at
least one in its minimum case [7]. For every time the cache
buffer is accessed, if the request object j is just in buffer cache,
then a hit is occurred andwe update the parameters as follows:

1) Li = Li + 1, for every i 6= j.
2) For i = j, we first let 1Ti = Li, Fj = Fj + 1 and then
Lj = 0.
3) Update the W .

In the process of network transmission and storage, saving
network resource as much as possible is a goal we pursue
all the time [26]. So we use a cost value as a parameter for
judging the object is remove from cache or so. When all
objects have been accessed, we will get a general network
consumption, then we could calculate the the consumption
of one object. If one object has higher replacement cost,
we should cache it and save the cost. The cost-saving value
(csv) is calculated by the following equation:

csvi = cisihi/
n∑
i=1

cisiri (4)

Where ci is the network traffic consumption of object i,
si is the size of object i, hi is how many valid copy of i
is found in the cache, and ri is the total times a data was
requested. We obtain a new formula of weight as equation(5)
by combining equation(3) with equation(4).

WCi =
Li

Fi ×1Ti
×

si
csvi

(5)

For an object, it should be store in the cache if its csv is
larger because if we replace it, we will spend more cost on
caching them again. So we add csv into the formula of weight
to decide which object should be removed from cache when
the cache is full. It could improve the cache performance.

For parameter si, big size data will occupy more cache
space, if they become cache garbage, they could reduce the
hit rate, byte hit date and increase average access time. So for
cache, we priority to cache small data. For csvi, if one datas
replace cost is bigger than other, we could think it is more
important. Our algorithm is replacement the data that with
bigger weighting value [31], so we choose si as numerator
while csvi as denominator, combined to form the formula (5).

According to the above introductions, we propose our algo-
rithm WSCRP algorithm. Every time we access data from
cache, we should recalculate the WCi. WCi is calculated by
the equation(5). The algorithm 1 is the process of WSCRP.

Algorithm 1 WSCRP
Calculate the size of free cache space and mark as fs
Calculate the size of requested object ro and mark as rs
while fs < rs
if there is only one maximum WC

remove the object with maximum WC
else

remove an object with maximum WC and minimum
frequency value
Update all caching objectss WC value
end
Update WC table

B. CACHE STORAGE STRUCTURE
The key of our algorithm is to keep the most valuable
object in the cache. Table 1 describes the information of

27012 VOLUME 6, 2018



T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

TABLE 1. Cache framework table.

objects in cache. Every object has eight attributes, which are
object id in the cache, the object oid in the database server,
the time difference between the last access time and time
of penultimate(1Ti), the recency of object i(Li), the size of
object i(Si), Frequency(Fi), the number of how many valid
copy of object i(hi) after the object stores in the cache,
the traffic cost of transfer object i(ci) and objects WCi, WCi
is the weighting-cost value of cache object i, the computing
method has been introduced in 3.1.

In Cache Structure Table, the objects in table are ordered
by WC . The id represents the order of objects enter the
Cache. When a request arrives at the cache, if the requested
object i exists in the cache, we update the Fi and other
attributes, meanwhile, recalculate WCi and reset the cache
data in ascending order ofWCi. We would reserve the objects
with smaller WC and remove the objects with larger WC .

If an objects WC is larger than any others, we think this
object is the most unimportant object and this object will be
removed first when cache is full. If there are two objects with
the maximumWC , we use Fi as the second attribute to decide
which object should be removed from the cache.

Comparing with original cache replacement algorithm
based on weighting, our algorithm considers more factors
which could influence the cache performance. So our algo-
rithm is more complicated.

C. CACHE REPLACEMENT POLICY
Our algorithm contains two parts: calculating the weighting-
cost value and replacing the cache items. Weighting-cost has
been introduced in 3.1, now we introduce the replacement
algorithm 2 ICRP.

Algorithm 2 ICRP
if request object ro in cache
Find the data item corresponding to the object ro in table1
Update table 1

else
Use WSCRP to deal with the request
Cache the object
Update table 1

end
Update WC table

In order to maximize the hit ratio and improve perfor-
mance, the data in the cache should be the one the user most
likely to request [27]. Nowadays, network transmission is

the main channel. Web cache is distributed in each node of
the network. During the process of data transmission, when
the system receives the request about object i, it will check
the web cache node firstly and check whether the object i
exists or not. If the object is in the cache, it returns the data
to user directly. If it is not exist, system returns the data to
user from server and adds the object into cache then our algo-
rithm will use the weighting-cost policy to calculate object i′s
weighting-cost value and update the Cache Structure Table by
this value in ascending order. If there is not enough space to
store object, we will remove object according to Algorithm 2,
ICRP(Improved Cache replacement Policy), until the space is
enough to store the new data.

IV. EXPERIMENT
In this section, we perform some experiments to evaluate our
proposed algorithm. We simulate our policy and compare it
with other policies like LRU, LFU and the original weighting
policy WRP. Firstly, we introduce the benchmark dataset
used in our experiment and the implement platform of our
algorithm. Thenwe explain the performancemetrics in cache.
Finally, we show the experiment results of the comparative
experiments and analyze them. Our platform is consisting of
client-side and server-side.

A. DATASET AND EXPERIMENT CONFIGURATION
In our experiment, we used 50000000 meteorological data
records (about 4T) from China Meteorological Data Sharing
Service System(CMDSSS) [22]. The data records contain six
months meteorological data. According to the charactors of
data, we divided these meteorological data into three data
types. In these data records some are request UR, some are
entity objects and some are mixture. We call them UTD(Url
test data), ETD(Entity test Data) and MTD(Mix test Data),
respectively. Each type has many datasets, and all of them are
used in our algorithm. Our experimental environment is based
on a Dell server, with the 64G RAM, running Linux system.
In order to simulate the network environment, the platform
of our program contains server side and client side. We run
our WSCRP algorithm and then compare the algorithm with
LRU, LFU, GDSF and WRP in our platform. The algorithm
is implemented by Java.

B. EXPERIMENT METRICS
In experiment, we mainly use three metrics -cache hit rate,
byte hit rate and average access latency, to evaluate our
algorithm performance.

1) CACHE HIT RATE
Hit Rate (HR) is one of the most important metrics used in
performance evaluation criteria. Cache hit rate is computed
according to the following equation:

HR =
N∑
i=1

ri/N (6)

VOLUME 6, 2018 27013



T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

FIGURE 1. Result of DataSet UTD.

TABLE 2. Result of DataSet UTD.

Where ri is a state of the object. It is a boolean value, where
’0’ represents miss and ’1’ represents hit.N is the sum of
requests. When all requests are finished, we could count the
hit times by summing up all ri value.

2) CACHE BYTE HIT RATE
Byte Hit Rate (BHR) is another most important metric used
in evaluating performance. Cache hit rate can be described by
the following equation:

BHR =
N∑
i=1

risi/
N∑
i=1

Si (7)

Where ri has the same meaning as that described in Hit Rate.
The parameter si is the size of object i. We record the size
of each cache object. When all requests are finished, we can
calculate the total object size, and then use formula (6) to
calculate the value of BHR.

3) AVERAGE ACCESS LATENCY
The AAL’s(Average Access Latency) value represents the
average access time during the whole dataset. AAL can be
described by the following equation:

AAL =
N∑
i=1

Ti/SUM (8)

Where the parameter Ti is the time when the program finished
accessing dataset i and the parameter SUM is the number of
datasets. The AAL is smaller, the performance of the cache

replacement algorithm is better. It means users can get objects
they requested without waiting for a long time.

C. EXPERIMENT RESULTS
Firstly, we test the performance of our algorithm and some
other algorithms as LRU [11], LFU [24], WRP [18] and
GDSF [25] in UTD data. Both data are URLs. LRU, LFU
and WRP we have been introduced in section 2, GDSF is a
function based algorithm based on size and frequency.We use
percentage to show the size of the cache, where 10% means
cache size is 10 percentage of the total cache size. For every
dataset, we sent 10000 requests. Each dataset will generate a
result of the three metrics in different cache size, and we use
the average results of them.

Figure 1 Result of DataSet UTD shows the information of
hit ratio, byte ratio and average access time. It’s a graphic
display of Table 2. When the cache is 10% all algorithms
performance are not obvious. But with the increase of cache
size, we can see our algorithm has better performance than
others in hit rate, byte hit rate and average access time. When
cache size arrive 100% while the hit rate and bite hit rate are
not 100%, we believe that this is due to the fact that the initial
cache is empty and it leads a number of miss. We can also see
that the performance of hit rate of LRU is better than LFU
when cache size is less than 50%. When cache size is larger
than 50%, LFU has better performance in hite rate. We think
LRU has certain advantages in the page cache or some small
data size cache, and the dataset UTD is URL format. And In
practical application, cache size rarely more than 50%, so if

27014 VOLUME 6, 2018



T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

TABLE 3. Result of DataSet ETD.

FIGURE 2. Result of DataSet ETD.

the cache object is page or url we should choose LRU first
if there are only LRU and LFU we can use. LRU and LFU
are only use one parameter as the judgment standard, while
GDSF and WRP are function based algorithms, so they have
better performance than LRU and LFU. GDSF algorithm
only consider parameters like frequency, time and size, while
WRP add weighting value in the algorithm, so WRP has the
better performance than GDSF. Our algorithm is based on the
weight and join the cost analysis, so it has more advantages
than other algorithms. Average access time is very smaller
with hit rate, because if hit rate is high, it means clients would
not wait for a long time.

Secondly, we use ETD to test our algorithm and keep other
conditions unchanged. This type data is mainly entity objects,
so our cache must store the real object. Because objects have
bigger size than URL, cache performance is also different
from the first type. Figure 2 Result of DataSet ETD shows
the hit ratio, byte ratio and average access time of different
cache size in this type data.

Figure 2 Result of DataSet ETD shows the results. It’s a
graphic display of Table 3. It is clearly in Figure 2 that our
WSCRP policy has better performance than LRU, LFU and
WRP. Our hit rate is 11.4% higher than LRU when cache
size is the 50%. Because in 50 percentage, algorithms have
the biggest difference value. Compared to UTD, this test
dataset has many differences in byte hit rate and average
access latency because this dataset is entity data and accessing
massive data need much more time, so average access time
in Figure 2 is larger than average access time in Figure 1.

We can also see LFU has better performance than LRU int
hit rate and byte hit rate, it can confirm that LRU are more
useful in caching pages. GDSFs main parameter is size, so it
has better performance than LRU and LFU. While WRP and
our WSCRP both contain parameter size and they have more
better improve so they have better performance than others.

Finally, we used the MTD for the final test and keep other
conditions unchanged. This dataset is mixed of Urls and
entity data. Although our algorithm has similar performance
to other algorithms when the cache size is small, our algo-
rithm is better than them in overall performance. Fig 3 shows
the hit ratio, byte ratio and average access time of different
cache size in this type data.

As Figure 3 Result of DataSetMTD shows, when the cache
size is 50%, the hit rate of our algorithm is almost 7.1%
higher than LRU. When the cache size is very small, it is
close to no cache, therefore all algorithms have almost the
same performance. Because this dataset is a mix of UTD and
ETD, so the performance of all algorithm is between UTD
and ETD. Figure 3 is a graphic display of Table 4.

From the experiments results, we can see when the cache
size is 10% and 100%, the performance of all algorithms
is almost the same. We believe when the cache size is very
small like 10%, cache block can only cache several files and
the cache sequence is short, but we have a large number
of requests, so the cache performance of the algorithms are
not high. But when the cache size is 100%, it can cache all
files, so when different files are cached, the cache hit rate is
almost 100%. When cache size arrive 100% while the hit rate

VOLUME 6, 2018 27015



T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

TABLE 4. Result of DataSet MTD.

FIGURE 3. Result of DataSet MTD.

and byte hit rate are not 100%, we believe that this is due to
the fact that the initial cache is empty and it leads a number
of miss.

From the experiments results, we can also see that dataset
type and cache size can also influence the cache performance.
For different data sets, the same algorithm also has different
results. For cache size, as it increases, all algorithms perfor-
mance will be better than before. But we find when cache size
is 50%, algorithms have the biggest different value, so we
think cache size is not greater than 50%, because the cost of
cache is larger. Our algorithm can be used in different appli-
cations, then we can continue to compare the performance
with LRU, LFU, WRP,GDSF and other replacement policy.

Through the experiment we can see that our algorithm
is not only suitable for caching simple URLs, but also can
cache entity data. This is because our algorithm contains both
parameters of other algorithm and add the cost analyze. LRU
has better performance in caching pages and small data, if we
only have LRU and LFU, we should use them reasonable
in different application. Experiment can also prove our algo-
rithm can not only be used in the network nodes, but also can
be used in the server to cache data entity.

V. CONCLUSIONS
In this paper, we propose a newweb cache replacement policy
WSCRP in order to improve the hit rate ratio when cache
memory is limited. Our proposed replacement policy takes
the impacts of weight and cost into consideration. We com-
pare our proposed algorithm with other algorithms such as

LRU, LFU and WRP replacement policy in hit rate, byte
hit rate and average access time. Our experimental results
indicate that the proposed replacement policy can increase
the hit rate and is beneficial for the limited cache memory.

We believe that our algorithm must have a good perfor-
mance in web caching, especially in big data web site. Now
there are still some other factors can affect the cache effi-
ciency, so we will continue our research to make it better in
web caching.

REFERENCES
[1] D. Singh, S. Kumar, and S. Kapoor, ‘‘An explore view of Web caching

techniques,’’ Int. J. Adv. Eng. Sci., vol. 1, no. 3, pp. 38–43, 2011.
[2] S. M. Shamsuddin and W. A. Ahmed, ‘‘Integration of least recently used

algorithm and neuro-fuzzy system into client-side Web caching,’’ Int. J.
Comput. Sci. Secur., vol. 3, no. 1, pp. 1–15, 2009.

[3] W.-G. Teng, C.-Y. Chang, and M.-S. Chen, ‘‘Integrating Web caching
and Web prefetching in client-side proxies,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 16, no. 5, pp. 444–455, May 2005.

[4] K. Kim and D. Park, ‘‘Reducing outgoing traffic of proxy cache by using
client-cluster,’’ J. Commun. Netw., vol. 8, no. 8, pp. 330–338, 2006.

[5] X. Wu, H. Xu, X. Zhu, and W. Li, ‘‘Web cache replacement strat-
egy based on reference degree,’’ in Proc. IEEE Int. Conf. Smart
City/SocialCom/SostainCom, Chengdu, China, Dec. 2015, pp. 209–212.

[6] S. Hiranpongsin and P. Bhattarakosol, ‘‘Integration of recommender sys-
tem for Web cache management,’’Maejo Int. J. Sci. Technol., vol. 7, no. 2,
pp. 232–247, 2013.

[7] T. Ma et al., ‘‘KDVEM : A k-degree anonymity with vertex and edge
modification algorithm,’’ Computing, vol. 70, no. 6, pp. 1336–1344, 2015.

[8] S. Jin and A. Bestavros, ‘‘Popularity-aware greedy dual-size Web proxy
caching algorithms,’’ in Proc. Int. Conf. Distrib. Comput. Syst., 2000.
pp. 254–261, doi: 10.1109/ICDCS.2000.840936.

[9] A. Jain and C. Lin, ‘‘Back to the future: Leveraging Belady’s algorithm for
improved cache replacement,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp.
Comput. Archit. (ISCA), Jun. 2016, pp. 78–89.

27016 VOLUME 6, 2018

http://dx.doi.org/10.1109/ICDCS.2000.840936


T. Ma et al.: Improved Web Cache Replacement Algorithm Based on Weighting and Cost

[10] T. S. Warrier, B. Anupama, and M. Mutyam, ‘‘An application-aware cache
replacement policy for last-level caches,’’ in Architecture of Computing
Systems—ARCS. Berlin, Germany: Springer, 2013, pp. 207–219.

[11] S. Pashmforoush, S. Pashmforoush, A. Akbari, M. Bagheri, and
N. Beikmahdavi, ‘‘Presenting a novel page replacement algorithm based
on LRU,’’ J. Basic Appl. Sci. Res., vol. 2, no. 10, pp. 377–383, 2012.

[12] J. P. Sheu and Y. C. Chuo, ‘‘Wildcard rules caching and cache replacement
algorithms in software-defined networking,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 1, pp. 19–29, Mar. 2016.

[13] T. Ma et al., ‘‘LED: A fast overlapping communities detection algorithm
based on structural clustering,’’ Neurocomputing, vol. 207, pp. 488–500,
Sep. 2016.

[14] W. Meizhen, S. Yanlei, and T. Yue, ‘‘The design and implementation of
LRU-based Web cache,’’ in Proc. 8th Int. ICST Conf. Commun. Netw.
China (CHINACOM), Guilin, China, Aug. 2013, pp. 400–404.

[15] J. S. Kushwah, J. K. Gupta, and B. Patel, ‘‘Modified LRU algorithm to
implement proxy server with caching policies,’’ Int. J. Comput. Trends
Technol., vol. 3, no. 10, pp. 337–343, 2011.

[16] W. Kin-Yeung, ‘‘Web cache replacement policies: A pragmatic approach,’’
IEEE Netw., vol. 20, no. 1, pp. 28–34, Jan./Feb. 2006.

[17] W. Ali, S. M. Shamsuddin, and A. S. Ismail, ‘‘A survey of Web caching
and prefetching,’’ Int. J. Adv. Soft Comput. Appl., vol. 3, no. 1, pp. 18–44,
2011.

[18] K. Samiee, ‘‘A replacement algorithm based on weighting and ranking
cache objects,’’ Int. J. Hybrid Inf. Technol., vol. 2, no. 2, pp. 93–104, 2009.

[19] N. Kamiyama, Y. Nakano, and K. Shiomoto, ‘‘Cache replacement based on
distance to origin servers,’’ IEEE Trans. Netw. Service Manage., vol. 13,
no. 4, pp. 848–859, Dec. 2016.

[20] Q. Li, X. Liao, H. Jin, L. Lin, X. Xie, and Q. Yao, ‘‘Cost-effective
hybrid replacement strategy for SSD in Web cache,’’ in Proc. IEEE Int.
Conf. Comput. Inf. Technol., Ubiquitous Comput. Commun. Depend., Auto.
Secure Comput., Pervasive Intell. Comput. (CIT/IUCC/DASC/PICOM),
Liverpool, U.K., Oct. 2015, pp. 1286–1294.

[21] Y. Lv et al., ‘‘An efficient and scalable density-based clustering algorithm
for datasets with complex structures,’’Neurocomputing, vol. 171, pp. 9–22,
Jan. 2016.

[22] CMDSSS. China Meteorological Data Service Share System (CMDSSS).
Accessed: Apr. 4, 2018. [Online]. Available: http://cdc.nmic.cn/home.do

[23] C. F. Kao and C. N. Lee, ‘‘Aggregate profit-based caching replacement
algorithms for streaming media transcoding proxy systems,’’ IEEE Trans.
Multimedia, vol. 9, no. 2, pp. 221–230, Feb. 2007.

[24] Tanwir, G. Hendrantoro, and A. Affandi, ‘‘Early result from adaptive
combination of LRU, LFU and FIFO to improve cache server performance
in telecommunication network,’’ in Proc. Int. Seminar Intell. Technol.
Appl., 2015, pp. 429–432, doi: 10.1109/ISITIA.2015.7220019.

[25] S. Jarukasemratana and T. Murata, ‘‘Web caching replacement algo-
rithm based on Web usage data,’’ New Generat. Comput., vol. 31, no. 4,
pp. 311–329, 2013.

[26] A. Sarhan, A. M. Elmogy, and S. M. Ali, ‘‘New Web cache replacement
approaches based on internal requests factor,’’ in Proc. 9th Int. Conf.
Comput. Eng. Syst. (ICCES), Dec. 2014, pp. 383–389.

[27] H. Rong, T.Ma,M. Tang, and J. Cao, ‘‘A novel subgraphK+ -isomorphism
method in social network based on graph similarity detection,’’ Soft Com-
put., vol. 22, no. 8, pp. 2583–2601, 2018.

[28] J.-Q. Niu, H.-R. Zheng, H. Li, and X.-F. Wang, ‘‘Limited history based
multi-LRU Web cache replacement algorithm,’’ J. Chin. Comput. Syst.,
vol. 29, no. 6, pp. 1010–1014, 2008.

[29] T. Ma, H. Rong, C. Ying, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan,
‘‘Detect structural-connected communities based on BSCHEF in C-
DBLP,’’ Concurrency Comput., Pract. Exper., vol. 28, no. 2, pp. 311–330,
2016.

[30] T. Banditwattanawong, ‘‘From Web cache to cloud cache,’’ in Advances
in Grid and Pervasive Computing. Berlin, Germany: Springer, 2012,
pp. 1–15.

TINGHUAI MA received the bachelor’s and mas-
ter’s degrees from the Huazhong University of
Science and Technology, China, in 1997 and 2000,
respectively, and the Ph.D. degree from the Chi-
nese Academy of Sciences in 2003. He was a Post-
Doctoral Associate with Ajou University in 2004.
From 2007 to 2008, he visited Chinese Meteorol-
ogy Administration. In 2009, he was a Visiting
Professor with the Ubiquitous Computing Labo-
ratory, Kyung Hee University. He is currently a

Professor of computer sciences with the Nanjing University of Information
Science and Technology, China. He has authored or co-authored over 100
journal/conference papers. His research interests include data mining, cloud
computing, ubiquitous computing, and privacy preserving.

YU HAO received the bachelor’s degree in com-
puter science and technology from the Nanjing
University of Information Science and Technol-
ogy, China, in 2014, where he is currently pur-
suing the degree in software engineering. His
research interests include Web cache replacement
algorithm.

WENHAI SHEN received the bachelor’s degree
in mathematics from Fudan University, China,
in 1982. He was with the Chinese Academy of
Meteorological Sciences, National Climate Cen-
ter, National Weather Center, for over 30 years. He
is currently a Professor with the NationalMeteoro-
logical Information Center. His research interests
include meteorological information design and
application.

YUAN TIAN received the master’s and Ph.D.
degrees from Kyung Hee University. She is cur-
rently an Assistant Professor with the College of
Computer and Information Sciences, King Saud
University, Saudi Arabia. Her research interests
are broadly divided into privacy and security,
which are related to cloud computing, bioinfor-
matics, multimedia, cryptograph, smart environ-
ment, and big data. She is a member of technical
committees for several international conferences.

She is an active reviewer of many international journals.

MZNAH AL-RODHAAN received the B.S. degree (Hons.) in computer
applications and the M.S. degree in computer science from King Saud
University, Riyadh, Saudi Arabia, in 1999 and 2003, respectively, and the
Ph.D. degree in computer science from the University of Glasgow, Scotland,
U.K., in 2009. She is currently the Vice Chair with the Computer Science
Department, College of Computer and Information Sciences, King Saud
University. She has participated in several international conferences. Her
current research interests include mobile ad hoc networks, wireless sensor
networks, multimedia sensor networks, cognitive networks, and network
security. She has served on the editorial boards for some journals, such as
the Ad Hoc journal (Elsevier).

VOLUME 6, 2018 27017

http://dx.doi.org/10.1109/ISITIA.2015.7220019

	INTRODUCTION
	RELATED WORK
	WSCRP ALGORITHM
	WEIGHTING-COST MODEL
	CACHE STORAGE STRUCTURE
	CACHE REPLACEMENT POLICY 

	EXPERIMENT
	DATASET AND EXPERIMENT CONFIGURATION
	EXPERIMENT METRICS
	CACHE HIT RATE
	CACHE BYTE HIT RATE
	AVERAGE ACCESS LATENCY

	EXPERIMENT RESULTS

	CONCLUSIONS
	REFERENCES
	Biographies
	TINGHUAI MA
	YU HAO
	WENHAI SHEN
	YUAN TIAN
	MZNAH AL-RODHAAN


