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ABSTRACT Robust automatic pavement crack detection is critical to automated road condition evaluation.
However, research on crack detection is still limited and pixel-level automatic crack detection remains
a challenging problem, due to heterogeneous pixel intensity, complex crack topology, poor illumination
condition, and noisy texture background. In this paper, we propose a novel approach for automatically
detecting pavement cracks at pixel level, leveraging on multi-scale neighborhood information, and pixel
intensity. Using pixel intensity information, a probabilistic generative model (PGM) based method is
developed to calculate the probability of a crack for each pixel. This produces a probability map consisting
of the probability of each pixel being part of the crack. We demonstrate that the neighborhoods of each
pixel contain critical information for crack detection, and propose a support vector machine (SVM) based
method to calculate the probability maps using information of multi-scale neighborhoods. We develop a
fusion algorithm to merge the multiple probability maps, obtained from both PGM and SVM approaches, into
a fused map, which can detect cracks with accuracy higher than any of the original probability maps. We also
propose a weighted dilation operation that relies on the fused probability map to enhance the recognition
of borderline pixels and improve the crack continuity without increasing the crack width improperly.
Experimental results demonstrate that our algorithm achieves better performance in terms of precision,
recall, f1-score, and receiver operating characteristic, in comparison with the state-of-the-art pavement crack
detection algorithms.

INDEX TERMS Pavement crack detection, probability map, multi-scale neighborhoods, probabilistic

generative mode, support vector machine.

I. INTRODUCTION

Surveys and analysis of pavement distress is important for
the maintenance and evaluation of pavement safety, which
requires accurate information about the state of the pavement
surface [1], [2]. The most direct manifestation and important
indicator to evaluate the condition of the pavement distress is
the production of cracks. Thus, accurately and timely detec-
tion and quantization of cracks, which usually have complex
topology in physical form, can provide important information
for quantifying the quality of pavement surfaces as well as
preventing and controlling the pavement distress. As such,
crack detection is an essential part of road maintenance sys-
tems and is attracting more and more attentions in recent
years. Moreover, automatic crack detection will also benefit a
wide range of applications in other industrial fields, including
civil infrastructures like tunnels [3], bridges [4], and dams [5],
as well as metallic surface [6] and rock surface [7].

Traditionally, a common method used in evaluating road
surface distress is via human visual inspection, which has
proven effective for new and variable pavement crack detec-
tion tasks. However, different people often produce differ-
ent judgment results for the same pavement condition due
to inherent human subjectivity. In addition, human visual
inspection is often time-consuming, labor-intensive and can-
not consistently produce results that are objective in quanti-
tative aspect. Therefore, a robust automatic pavement crack
detection method is crucial for evaluating the pavement con-
dition automatically and conducting the necessary road main-
tenance activities.

To accelerate the detection speed as well as achieve reliable
and consistent detections, many algorithms for automated
pavement crack detection have been developed over the past
several decades with the improvement of image process-
ing capabilities. In the earlier works, the intensity-threshold
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algorithms and filter-based methods are the most commonly
adopted approaches.

The intensity-threshold algorithm [8]—[11] is based on the
assumption that a crack has a lower intensity value than that of
the background image. By setting different threshold values,
this algorithm can quickly judge the results of input images.
This assumption can be accepted in many general cases since
cracks always absorb more light than other areas and often
appear as dark curves or tapes in the image. However, when
there exist a certain amount of noisy pixels whose intensities
are lower than crack pixels, there will be a serious decline in
detection performance.

Since the cracks and edges have many similarities in
morphology, many researches [12], [13] apply filter based
methods that have been developed for edge detection to
detect cracks on pavement images. In recent years, some
researches also employ graph theory technique to detect
cracks, e.g. Minimal Path Selection (MPS) [14], [15] and
Minimum Spanning Tree (MST) [16], [17]. They extract
simple contour-like curves when given different endpoints in
an image. These methods are robust to the background noises
but cannot perform well when dealing with complex topology
of cracks.

However, all the above mentioned approaches cannot
achieve satisfactory results, as fully automatic pavement
crack detection is inherently a challenging task. This is
because 1) the pavement images always subject to a certain
degree of noise in the process of acquisition, quantification
as well as transmission; 2) the cracks contained in pavement
distress images are of heterogeneous intensity, have complex
topology in morphology, and are often under bad illumination
condition; 3) due to the various illuminations, crack shape and
noise, one method that works well for a particular situation
of pavement cracks inspection often yields poor performance
for other situations.

With the development of the computing capabilities
and image acquisition equipment, many machine learning
algorithms such as artificial neural network (ANN) [18],
Random Forests (RF) [19], and Bayesian Data Fusion [6]
have been introduced into pavement crack detection and
achieved acceptable results. However, most of these algo-
rithms detect cracks in block-level, i.e. they first partition
images into pixel blocks and detect a block as crack block
if it contains crack pixels. These approaches neglect the
actual borders and the widths of the cracks to be detected,
thus do not accurately measure cracks for subsequent
applications.

In this paper, we focus on pavement crack detection at
pixel-level, which produce the details about the borders and
the widths of the cracks. It supports fine-grained characteriza-
tion of the cracks, thus can provide more critical information
for pavement distress analysis. In particular, with the accurate
detection of pavement cracks, it is easy to achieve accurate
result on various types of pavement cracks, e.g., longitudinal,
transverse, diagonal, block, alligator [20], [21] and even some
irregular shapes. Also, crack geometric features like width,
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length, and orientation are also important indicators to iden-
tify the road distress level.

In this work, we aim to design efficient methods to achieve
pixel-level pavement crack detection. We propose novel prob-
ability based methods that jointly consider pixel intensity and
multi-scale neighborhood information. That is, for each pixel,
we estimate the probability of each pixel being a crack using
different point of views, i.e. based on the pixel intensity, and
based on information of neighborhoods with sizes of 7 x 7,
13 x 13, 19 x 19 and 25 x 25, respectively. The probabil-
ity based on pixel intensity is calculated using Probabilistic
Generative Model (PGM) based approach, while probabili-
ties based on neighborhood information are calculated using
Support Vector Machine (SVM) based method. The multi-
ple probabilities of each pixel are further fused together to
improve detection accuracy. In addition, the probability infor-
mation is also used to enhance the recognition of borderline
pixels through a weighted dilation operation.

The contributions of this paper can be summarized as
follows: 1) we first develop a PGM based method to cal-
culate the probability of a crack pixel for each pixel using
intensity information, and illustrate and analyze the detec-
tion capability using only pixel information; 2) we design
SVM based approach to calculate the probability of a crack
pixel using neighborhood information, and then compare
the detection capability using information of different scale
neighborhoods; 3) by demonstrating and analyzing the results
of different fusion strategies, we propose a novel method
to fuse the multiple probabilities of each pixel, which can
significantly improve the detection accuracy; 4) we propose
a weighted dilation operation that relies on the fused prob-
ability to enhance the recognition of borderline pixels and
improve the crack continuity without increasing the crack
widths improperly; 5) Finally, we evaluate the performance
of the proposed approach using public data set in comparison
with two state-of-the-art crack detection algorithms.

The remainder of the paper is organized as follows.
Related works on pavement crack detection are discussed in
Section II. Section III introduces the problem description and
motivational examples. Section IV discusses the details of
the proposed method for pavement crack detection, including
procedures of probability maps generation, fusion method
and weighted dilation operation, respectively. We evaluate
the performance of the proposed approach in Section V using
public pavement image dataset, and Section VI concludes the

paper.

Il. RELATED WORKS
Over the past decade, the problem of pavement crack detec-
tion has received wide attention. In this section, we review
related works and highlight their differences with ours. These
related works can be categorized into the following cate-
gories.

Intensity threshold based algorithms are the most com-
mon way to identify pavement cracks by setting different
local or global threshold values, based on the observation
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that crack pixels are usually darker than the surroundings and
thus have lower intensity [9]-[11]. These works segment the
cracks from the background using intensity histogram and
dynamic thresholding. The thresholding based algorithms are
easy to implement and can obtain acceptable results on cer-
tain road images with good conditions. However, they failed
to produce satisfactory results when the contrast of cracks
and the background is not strong. Furthermore, the unevenly
distributed illuminate conditions will have a large impact
on the final detection results. On the other hand, when the
background is noisy and has a complex texture, intensity-
threshold methods will not be able to detect the complete
cracks, and they also cannot successfully detect complete
cracks that have complex topologies.

Filter-based methods have also been widely adopted in
pavement crack detection. Based on the intuition that cracks
and edges are highly similar in morphology, some edge detec-
tors like the Sobel filter and Canny filter were employed by
researchers [22]-[25]. The major problem of these algorithms
is that they cannot identify complete crack profiles when the
cracks are of complex texture backgrounds. In recent years,
with the development of signal processing techniques, more
sophisticated and robust filters such as Gabor filters were
used for the pavement crack detection problem [12], [13].
Instead of using a single filter, the work in [26] uses many pre-
designed filters that strongly match cracks in pixel intensity,
shape, orientation, etc., and the cracks will be extracted from
the background after several filtering processes using the
pre-designed filters. This algorithm can well transform the
pavement image into a new space such that the cracks will
be preserved and background will be dropped. Nevertheless,
these matched filters are sensitive to the crack width, so that
they cannot correctly identify pixels at crack borders.

Minimal path selection techniques have drawn extensive
attention and emerged as a new approach in pavement crack
detection in recent years [14]-[17], [27]. The main idea of
minimal path selection is to find the best paths between
node pairs in a graph. In the context of pavement crack
detection, it can be used to identify continuous cracks using
the threshold of minimal distances, based on the assumption
that cracks are continuous at the pixel-level. In [15], Amhaz
et al. proposed a crack detection method that is based only
on the photometry and developed an algorithm for minimal
path searching that is faster than Dijkstra’s algorithm. Besides
minimal path selection, some graph model algorithms derive
minimal spanning trees instead of a minimum path for recov-
ering continuity in pavement crack detection. For example,
in [16], a crack detection framework called CrackTree was
designed by Zou et al., which addressed the shadows and dis-
continuity problems in pavement crack detection. However,
these approaches assume that cracks fragments are connected
trough minimum path or minimum spanning tree, which is
not true for many real cases. In addition, they only try to
recover the continuity of cracks based on physical distances
without fully utilizing other information contained in the
local neighborhood.
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Since the automation of pavement crack detection
generally requires robust algorithms of a high level of intel-
ligence, many machine learning algorithms have been intro-
duced and applied to pavement crack detection tasks. In these
algorithms, pavement images are first divided into many
sub-blocks and are manually labeled. Next, a crack detec-
tion classifier will be trained. The works in [18] and [28]
employ artificial neural networks (ANN5) for crack detection,
while in [29]-[32], other traditional classifiers such as KNN
(K-Nearest Neighbor), RBF (Radial Basis Function), etc., are
applied using features that were extracted from sub-blocks.
Due to the challenging tasks, developing sophisticated feature
descriptors is usually necessary to capture more information
about cracks, which help to improve the detection accuracy. It
has been shown that, the texture features [33], standard devi-
ation and mean parameters [36] contain important distinctive
information that distinguishes crack blocks from noncrack
blocks.

In recent years, deep learning has attracted significant
attention due to its outstanding performance, and was demon-
strated to be useful for road crack detection. In [34] and [35],
Deep Convolutional Neural Networks (DCNN) has been
designed for pavement crack detection. These algorithms
have achieved better performance both in accuracy and effi-
ciency for pavement crack detection. Nevertheless, deep
learning algorithms require a large number of labeled images
for training which are not easy to obtain.

IIl. PROBLEM DESCRIPTION AND MOTIVATION

A. PROBLEM DESCRIPTION

Pixel-level Crack detection: Given an input image I, the aim
is to associate a binary label ¢ € {O, 1} (where 0 represents
non-crack and 1 represents crack in this paper) with each
pixel in the image, to indicate whether this pixel belongs
to a crack or not, based on the observed data at each
pixel.

B. MOTIVATION EXAMPLES
Figure 1 shows 4 pixels with neighborhood information of
different scales, i.e. 7 x 7, 13 x 13, 19 x 19 and 25 x 25.

Pixel (1) is a crack pixel with very low intensity, thus
intensity information is positive for detection. From the fig-
ure we can also observe that in the 7 x 7 neighborhood, the
amount of crack pixels still form a relatively large ratio of the
neighborhood. However, with the increase of neighborhood
size, the ratio of crack pixels decrease significantly, meaning
that larger neighborhood size will have a negative impact on
the pixel.

Pixel (2) is a non-crack pixel but has low intensity, thus
intensity information is negative for detection. Its 7 x 7
neighborhood still have a negative impact on the pixel due to
the fact that relatively large amount of pixels within the neigh-
borhood have lower intensity. However, with the increase in
neighborhood size, the impact of neighborhoods on the pixel
tends to become positive.
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FIGURE 1. Intensity and neighborhoods information of crack and
non-crack pixels.

Pixel (3) is a non-crack pixel and has high intensity, thus
intensity information is positive for detection. Its 7 x 7
neighborhood also has strong positive impact on the pixel,
as its close neighbors also have high intensities. However,
since pixel (3) is not far away from the crack, the information
of large size neighborhood will have negative impact on the
detection.

Pixel (4) refers to the center point of the different scales’
block and apparently has high intensity, but should be con-
sidered as a crack due to its location and the continuity
property. In this case, intensity information is negative for
detection, and information of small scale neighborhood has
strong positive impact on the detection.

From the above analysis, it can be concluded that neigh-
borhoods contain important information and neighborhoods
of different sizes have different impacts on the detection for
crack pixels. Thus in this paper, we will take the neighbor-
hood information into consideration and use probabilities
obtained based on the neighborhoods and pixel intensity as
the descriptor of the pixel for crack detection.

IV. PROPOSED METHODS

A. OVERVIEW OF PROPOSED METHOD

In this paper, we propose novel probability based approach
to achieve pixel-level pavement crack detection, by jointly
considering pixel intensity and multi-scale neighborhood
information. As shown in Figure 2, the proposed approach
consists of three stages: 1) probability map construction,
2) probability map fusion, and 3) weighted dilation operation.
In the first stage, the probability map based on pixel intensity
is constructed using a PGM method, while the probability
maps based on multi-scale neighborhood information are
constructed using an SVM method. In the second stage,
the multiple probability maps are fused together and further
used for crack detection. Then in the third stage, by relying
on the fused probability map, a weighted dilation operation
is performed on the cracks obtained from the second stage,
to enhance the recognition of borderline pixels as well as
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FIGURE 2. Framework of the proposed approach.

to improve the crack continuity without increasing the crack
width improperly.

B. PROBABILITY MAP BASED ON PIXEL INTENSITY
Traditionally, intensity threshold based algorithms use the
intensity to detect crack pixels because the crack pixels
usually have lower intensity values than non-crack pixels.
This is a fast and intuitive method, but often fails to obtain
acceptable results in many situations. On the other hand,
the pixel intensity provides important information that should
not be neglected for deciding if the pixels are cracks or not.
Thus in our approach, we extract the intensity information
of all pixels and compute the probabilities that indicate the
chances that each pixel should be regarded as a crack pixel,
using probabilistic generative model. The probabilistic gen-
erative model is a method for generating all values for a
phenomenon. And it has been shown to be able to obtain
better performance than intensity threshold based algorithms
in most binary classification problem.

We need to compute the posterior distribution Pr(c|x) of
pixel intensities, where x is the pixel intensity and ¢ € {0, 1}
is the label such that O stands for non-crack and 1 stands
for crack. To this end, we first need to specify likelihood
Pr(x|c) and prior Pr(c) using the training data-set which will
be explained later, and then based on Bayes’ rule we can
obtain,

Pr(x|c)Pr(c)
1
Y oo Pr(x|c)Pr(c)
Since the data are univariate and continuous, we choose
a univariate normal distribution and allow the variance o2

and the mean u to be functions of the binary state c. Thus,
we describe the likelihoods Pr(x|c) as,

Pr(clx) = (1)

5 1 _(x—pt)2
Pr(x|u,0°) = e 22 (2)
202
Explicitly,
Pr(x|u, 0%) = Normy[it, 0°] 3)
Pr(x|c = 0) = Normy[po, 03] 4)
Pr(x|c = 1) = Norm,[u1, 07] )
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FIGURE 3. Intensity distribution fitting of crack and non-crack pixels.

In the learning procedure, the parameters pg, 002, nmi, 012

are estimated based on the training data-set using Maximum-
a-Posterior (MAP) fitting method. In particular, we obtain
the wo, 002 from the subset of the training data-set where
¢ = 0 and uq, 012 from the subset where ¢; = 1. Figure 3
illustrates the fitting results for crack and non-crack data-set,
from which it can be seen that the crack pixels has a lower
mean and a higher deviation than non-crack pixels.

For prior Pr(c), the most common prior probability model
used in the binary classification problem is formulated as,

Pr(c) = A°(1 — )= (6)

The prior parameter should be learned from the real states
{ci}?; | (m is the total number of samples) and a common
method is to count the number of samples in each category.

With the likelihood Pr(x|c) and prior Pr(c) calculated
using the above mentioned method, we can classify a new
data point x as a crack or non-crack by Bayes’ rule,

Pr(x|c=1)Pr(c=1)
St _o Prixle = k)Pr(c = k)

Specifically, it will classify the pixel as crack if Pr(c =
1|x) > 0.5. We conducted an experiment to demonstrate
the classification capability using PGM method, as shown
in Figure 4. Two existing intensity threshold based
approaches, i.e. threshold, threshold-OTSU, are also imple-
mented for comparison. In addition, we also implemented
a second version of PGM method, by modifying the method
for calculating the prior, as

Pr(c) = Median(P,,) (8)

Pr(c =1lx) =

)

where P, = [P} -, P{5. 13 Plox 19> Phsyos] is a vector of
probabilities such that each of them indicates the probability
of v to be a crack pixel obtained based on v’s neighborhood
information. The detailed calculation method of P, will be
introduced in the next section.

Figure 4 shows the detection results obtained using four
methods (two intensity threshold based methods and two
PGM based methods), where ‘threshold’ method indicates
the results obtained via setting an optimal global threshold
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FIGURE 4. Detection results of threshold based methods and PGM based
methods. (From left to right and top to bottom: threshold,
threshold-OTSU, PGM using (6), PGM using (7).

value, ‘threshold-OTSU’ indicates the results obtained via
the OTSU method [37], ‘PGM using (6)’ indicates the results
obtained via the PGM method based on equation (6), while
‘PGM using (8)’ indicates the results obtained via the PGM
method based on equation (8). From the figure, it is evi-
dent that PGM methods outperform intensity threshold based
methods, and PGM using equation (8) performs better than
that which uses (6). However, the result by PGM using (8) is
still not acceptable for pavement crack detection.

This is because the intensity of pixels can only provide
limited information on the associated labels, making it very
difficult to detect cracks with high accuracy. On the other
hand, the neighborhood of a pixel also contain important
information that can be used to improve the crack detec-
tion accuracy. In the next section, we develop approaches
to explore the information contained in the neighborhood.
To distinguish with neighborhood information, we use Pjx1
to indicate the probability map generated using intensity
information without considering neighborhood information,
i.e. P1x1 is the set of Pr(c = 1|x) for each pixel x.

C. PROBABILITY MAPS BASED ON NEIGHBORHOOD
INFORMATION
As mentioned before, the neighbors’ information (informa-
tion of neighborhood) of a pixel is also crucial for deter-
mining whether the pixel is a crack or not. This is because
pixels of crack and non-crack have significant differences in
neighborhood, as we have demonstrated in the motivation
example in Section III(B). For each pixel, the surrounding
information of different size blocks can be significantly dif-
ferent. Moreover, as we have demonstrated in Figure 4, the
method ‘PGM using (8)’ obtained better results than ‘PGM
using (6)’, which implies that neighborhood contain more
distinctive information than the intensity of the pixel.
Therefore, it is essential to take neighborhood infor-
mation into consideration. In this section, we develop
methods to calculate the probability vector P, =
[Py, 7. Pl3y130 Ploy 19 Pasyas], where P . indicates the
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probability that the pixel should be regarded as a crack pixel
based on v’s neighborhood information with neighborhood
size of d x d. We next introduce the proposed method for
calculating P,

Foreachscaled xd € {7x 7,13 x 13,19 x 19, 25 x 25},
we extract the neighborhood areas for each pixel to form a
dataset 24, formally,

Qi ={Xi,y) | x;=1,2,3,...,m} C))

where m is the number of pixels, X; =< x; 1, xi 2, - . . § Xp g2 >
is the set of pixels in x;’s neighborhood, and y; € {0, 1} is the
label of pixel x; such that y; = 1 if x; is a crack pixel and
yi = 0 otherwise.

We develop an SVM method to calculate P}, , using
dataset 24. SVM solve problems based on a straightforward
idea: construct a hyperplane that sets apart the classes of
data [38].

Different from the previous methods, which describe a
block by extracting block features such as mean value, stan-
dard deviation matrix, histogram of oriented gradient (HOG),
local binary pattern (LBP) etc., we rely on the original
intensity of each pixel of the neighborhood block to char-
acterize the neighborhood information. The training pro-
cedure can be formulated as the following optimization
problem.

1 5 -
1 c ‘
min S flol + ;g
st.yilw-xi+b)>1-¢

>0 foranyi=1,...,m (10)

where w, b, ¢ are normal vector to the hyperplane, offset of
the hyperplane, and slack variables, respectively.

Then the problem is further converted as an unconstrained
optimization problem with loss function ¢ (w; x;, y;),

1 =
min = || |* + c;aw;xi,yo (1)
i=
where C > 0 is a penalty parameter, and ¢(w; x;, y;) is
formulated as

¢(@; xi,yi) = (max(0, 1 — yiw” x;))* (12)

Standard SVM output a class label instead of a indica-
tor of probability that the pixel should be detected to be
a crack pixel. As such, we adopted the strategy introduced
by John [39] to obtain the required probability indicator,
by transforming SVM predictions to posterior probabilities
using the following method.

1

P@=1|C)=m (13)

where c is the output of the standard SVM and A and B are
parameters estimated using maximum likelihood estimation.
The gradient descent approach is used to find A and B.

By applying the SVM method on dataset Q27, 213, Q19,
Q25, we can calculate a  probability  vector
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FIGURE 5. Probability maps obtained using information of different scale
neighborhoods.

P, = [P} 4. Pl5. 13 Ployx19» Phsxns] for each pixel v. Each
probability of the vector can be used to classify v to be either
crack or non-crack pixel for pavement crack detection. Fig-
ure 5 shows the detection results based on the probabilities of
neighborhood of 4 different scales. From the figure, it can be
observed that using probability from large neighborhood, e.g.
P55, can produce more cracks with less noises, however,
the obtained crack width tend to be larger than the actual
width, which will result in negative impact on road quality
assessment. On the contrary, the detection using probability
based on smaller neighborhood, e.g. P;x7, obtains more
accurate result on cracks, but produces too many noisy results
(i.e. non-crack pixels that are classified as cracks due to small
intensity values).

D. DATA FUSION METHOD

By combining the pixel intensity based probability P}, | and
the neighborhood information based probability vector P, =
[P;X7, P¥3X 13 P¥9X 195 PESXZS], we obtain a probability vec-
tor Py = [Py, 1, P77 P33 Ploy 9 Pasyos] for the pixel
v, and each of them can be used to classify v to be either
crack or non-crack pixel but none of them can obtain very
high accuracy separately. In this section, we develop a novel
method to combine the five probabilities in order to achieve
better detection accuracy.

Figure 6 illustrates 4 probability maps which are obtained
by fusing the probability vector using Max operation, Min
operation, Multiply operation and Mean operation respec-
tively. Taking the first strategy, i.e. using Max operation as
an example, the new probability for pixel v of the fused prob-
ability map is obtained by taking the maximum probability
from the vector P, = [P, 1, P77, Pl3,13: Ploy 19+ Pasyas]-
Similarly, Min operation takes the minimum probability from
the probability vector P, to construct the fused probability
map, Multiply operation calculates the fused probability as
the product of the five elements of vector P,, and Mean
operation calculates the fused probability as the mean of
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Max operation

Multiply operation * Mean operation "

FIGURE 6. Fused probability map obtained using different fusion
methods.

FIGURE 7. Detection results using the probability maps illustrated
in Figure 6.

vector P,. The results indicate that Max operation can detect
the most number of cracks, as it tries to maximize the chance
of classifying each pixel to cracks. As aresult, a large number
of non-crack pixels are classified as cracks. On the other
hand, the Multiply operation only produces a small amount
crack pixels leading to a certain amount of missed cracks.
This is because a pixel, say v, can be classified as cracks
only if the product ofPY>< 1 P;X7, P‘1’3X13, P1{9><19 and PEszs
are large enough, which is a fairly strong constraint. The
advantages of Multiply operation is that only a few noises are
generated. The Min operation and Mean operation achieve
results between Max operation and Multiply operation.

For ease of presentation, we define probability map as a
matrix of all pixels probabilities. Formally, the probability
map Py consists of probability P}, for each pixel v a
the input image. In this way, five probability maps can be
constructed, i.e. P1x1, P7x7, P13x13, P19x19, and Py5x25. We
propose an efficient algorithm, as shown in Algorithm 1, to
fuse the 5 probability maps to improve the crack detection
accuracy.
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Algorithm 1 Algorithm for Probability Maps Fusion

Input: Probability map of
P, = [P1x1, P7x7, P13x13, P19x19, P25x25].

Output: Fusion result Ppgeq.
begin
T < mean(P,); /* Initialization */
foreach pixel v in the input image do
P, < 0;
vote < 0;
foreach d € {1,7,13, 19, 25} do

P, erU{Prjxd};

if P, > T then

L vote < vote + 1

if vote = 5 then
L P ;L,Sed < MaxOperation(P,)

else
L vaused <« MultiplyOperation(P,)

end

E. WEIGHTED-DILATION FOR CRACK CONTINUITY

Since we employ a strong constraint during the fusion pro-
cedure of probability maps, such that only pixels with high
probability (in the fused probability map) can be classified
as cracks. However, the pixels located at the borders of the
cracks usually cannot obtain high probability, thus cannot be
identified using the fused probability map. In this section,
we develop a novel method to recover the border pixels as
well as to improve the continuity of the cracks.

The dilation operation is a widely used approach for mor-
phological image processing, which uses a structuring ele-
ment for probing and expanding the shapes contained in
the input image. In the pavement crack detection problem,
binary dilation has been used to improve the connectivity
of obtained cracks by changing the label of border pixels
from non-cracks to cracks. However, the traditional binary
dilation often wrongly increase the width of the cracks and
thus decrease the detection precision.

In order to overcome this drawback as well as increase the
crack continuity, in this paper, we extend the binary dilation
operation to weighted-dilation operation which works on the
probability maps obtained in the previous procedure.

After the fusion procedure of probability maps, we obtain a
fused probability map in which crack pixels have probability
values close to 1 and non-crack pixels have probability values
close to 0. Since the neighborhood of pixel contain critical
information, in weighted-dilation operation, we first compute
the mean probability of the structuring element (covering the
neighborhood of the current pixel), and check if it is greater
than 0.5 as a condition to make a further decision on the
dilation operation.

Figure 8 shows a sub-region that contains two separate
cracks, one on the left and the other on the right. Light
color indicates higher probability and darker color indicates
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FIGURE 8. A sub-region of probability map where cracks are
disconnected.
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FIGURE 9. Comparison of results between traditional and weighted
dilation operation (From top to bottom: traditional dilation result,
weighted-dilation with mean kernel).

lower probability of being crack pixels. It can be seen that
in the middle of the dotted box, the probability of being
a crack pixel is 0.5, and thus it will not be considered as
a crack. However, this should be regarded as a crack pixel
due to the continuity property. Therefore, we develop the
weighted-dilation operation to achieve this goal. In Figure 9,
the first row is the result of the traditional dilation operation,
the second is the result obtained by weighted dilations that use
the mean value of the kernel (structuring element). It can be
observed that traditional dilation operation has widened the
cracks such that the pixels adjacent to crack borders are also
marked as crack pixels. However, this should not be the case
for many of them. The results of the second row show that our
weighted dilations selectively recover pixels from non-crack
to crack based on probability map. In this way, better accuracy
at crack borders can be obtained, which not only enhances the
continuity but also improves the detection precision.

V. RESULTS AND ANALYSIS

The proposed method as well as the baseline approaches
are implemented using Python 3.5 and OpenCV, running
on Intel(R) Xeon(R) CPU E5-1630v4@3.70GHz with 32GB
RAM, on a server with an operating system of Windows
10 Pro. The performance of our method is evaluated by com-
paring it with two state-of-the-art algorithms using a public
dataset.

A. DATASETS AND BASELINE APPROACHES
CFD data-set [19] is a public pavement image dataset that
consists of 118 images with the resolution of 480x320 pixels.
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TABLE 1. Confusion matrix of pavement crack detection.

actual crack  actual non-crack
predicted crack TP FP
predicted non-crack FN TN

The images in this data set contain a significant amount of
noisy pixels like oil spots and water stains, and some of them
are under the poor illumination condition. Similar to [19]
and [40], 60% data (70 figures) are used for training and 40%
(48 figures) for testing.

The CrackForest [19] is the first method that has achieved
relatively higher performance in CFD data set, and recently,
WEFCD and WMIP [40] have demonstrated better results than
CrackForest on the CFD data set. In this section, we evaluate
our approach by comparing it with two baseline approaches,
i.e. WFCD and WMIP.

B. EVALUATION METRICS

Table 1 shows a table of confusion matrix that consists of
two rows and two columns which reports the number of true
positives(TP), true negatives(7N), false positives(FP) and
false negatives(FN) that allows visualization of the perfor-
mance of a classification algorithm. Based on the 7P, FN and
FP, precision, recall and F1-score can be defined as follows.

TP

Precision = ——— (14)
TP + FP
TP
Recall = —— (15)
TP + FN
2 x Precision x Recall
F1 — score = (16)

Precision + Recall

In addition to the above indicators, we also compute the
Area Under the Receiver Operating Characteristic Curve
(ROC AUC), as shown in Figure 11. ROC curve is a com-
monly used graph that summarizes the performance of a
classifier over all possible thresholds.

Since acquiring a high quality ground truth is difficult for
real images, existing works (such as CrackForest, WFCD,
WMIP, etc.) in [15], [19], and [40] allow a tolerance margin
for measuring the coincidence between the detected cracks
and the ground truth. They assume that TP pixels are included
within a 2 and 5-pixel vicinity of the ground truth. That
is the detected crack pixels which are no more than five
pixels away from the manually labeled pixel are true positive
pixels. In this paper, we also test the results with consideration
of tolerance margin, as shown in Table 2. However, since
‘5 pixel vicinity’ will hide important information of cracks
with respect to crack widths, we limit the tolerance margin to
no more than 2-pixel vicinity.

C. RESULTS AND ANALYSIS

The comparison of our proposed approach with the two base-
lines, in terms of Precision, Recall and F1-score is shown
in Table 2. The notation ‘O-pixel’ indicates that tolerance
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e P

FIGURE 10. Example of crack detection results. (From left to right: original image, ground truth, WFCD, WMIP, ours).

TABLE 2. Comparison of precision, recall and F1-score.

Precision  Recall Fl-score
ours with 2-pixels 0.907 0.846 0.870
MFCD with 2-pixels 0.858 0.597 0.689
WMIP with 2-pixels 0.773 0.581 0.643
ours with 1-pixel 0.789 0.829 0.800
MFCD with 1-pixel 0.788 0.567 0.650
WMIP with 1-pixel 0.712 0.560 0.606
ours with 0-pixel 0.471 0.757 0.567
MFCD with 0-pixel 0.548 0.489 0.500
WMIP with O-pixel 0.501 0.474 0.467

margin is not utilized while ‘1-pixel’ and “2-pixel’ indicate
that the tolerance margins of 1 and 2-pixel vicinity have
been used for results collection. From the Table 2, it can
be observed that, without using the tolerance margin, our
method significantly outperform the two baselines in terms
of Recall and F1-score while achieving Precision close to the
baseline approaches. When considering the tolerance margin,
our method performs even better. And when the tolerance
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FIGURE 11. Comparison on AUC of the ROC curves.

margin is set to 2-pixel vicinity, our method can achieve
Precision as high as 90.7%.

Figure 10 shows the visual comparison of results obtained
using our method and the two baselines, as well as the original
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FIGURE 13. F1-score with 0-pixel vicinity of tolerance margin for each
test image.

image and ground truth. We can observe intuitively that our
method outperforms the alternatives, as it not only produces
fewer noises but maintains the continuity of cracks. Both the
method WFCD and WMIP cannot perform well on images
with noisy pixels. As a result, they classify a lot of non-
crack pixels as cracks due to the lower intensities in their
neighborhood.

The ROC curves of the three methods are illustrated
in Figure 11. Based on this, it can be concluded that
our approach significantly outperforms the two baselines,
as our ROC curve subsumes the curves of both WFCD and
WMIP.

To show a more detailed comparison of our approach
and the two baselines, we demonstrate the results of AUC
value and Fl-score of the three methods on each of the
test image with the tolerance margin is set to O-pixel,
1-pixel and 2-pixel as shown in Figure 14, Figure 13
and Figure 15, respectively. The results indicate that our
method significantly outperforms the baselines in AUC and
F1-score.
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FIGURE 15. F1-score with 2-pixel vicinity of tolerance margin for each
test image.

VI. CONCLUSION

We address the pixel level pavement crack detection problem
by leveraging on multi-scale neighborhood information as
well as the pixel intensity, to meet the challenges posed
by heterogeneous pixel intensity, complex crack topology,
poor illumination condition, and noisy texture background
such as oil spots, water stains, shadow casting etc. We have
demonstrated that neighborhoods contain critical information
for crack detection and different size of neighborhoods have
significant impact on the detection results. We developed
novel PGM based method to generate probability map based
on pixel intensity information, and SVM based method to
generate probability maps based on multi-scale neighborhood
information. We also compared the results of probability
fusion strategies and designed a novel fusion algorithm to
merge the multiple probability maps into a fused map that can
detect cracks with high accuracy. To enhance the recognition
of borderline pixels as well as improve the crack continuity,
we have proposed a weighted dilation operation to further
optimize the detected cracks, which also relies on the fused
probability maps. Experimental results have demonstrated
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the superiority of our approach in terms of precision, recall,
fl-score and ROC, over the state-of-the-art pavement crack
detection algorithms. In future, we will continue to investi-
gate how the neighborhoods will affect the detection results
and determine features to extract from the neighborhoods. We
also plan to accelerate the detection by using CUDA as well
as further optimizing the detection algorithms.
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