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ABSTRACT In this paper, we concern ourselves with the development of a localization system that permits
multiple robots to localize themselves simultaneously within a given area, which has been outfitted with a
network of stationary radio modules. We derive a clock synchronization scheme for the radio modules, show
how each module is able to compute its position within the network, and finally demonstrate how multiple
robots are able to operate simultaneously within the space by using time-difference-of-arrival measurements
to localize themselves. Since robots are passive receivers in this system and are able to compute their position
based only on received and local information, multiple robots can operate simultaneously and without the
need for central coordination or centralized localization infrastructure. All results presented in this paper are
supported by experimental results, and the functionality of the system is demonstrated by multiple micro-
quadrocopters localizing and flying simultaneously within a space.

INDEX TERMS Clock synchronization, robot localization, robot sensing systems, state estimation, ultra
wideband technology.

I. INTRODUCTION
In this paper we concern ourselves with the development of a
localization system that permits multiple robots to localize
themselves simultaneously within an area, which has been
outfitted with stationary radio modules, hereinafter referred
to as anchors. Each anchor transmits packets according to a
given transmission schedule and robots operating in the area
record the reception time of these packets. The difference in
reception times of two subsequent packets is proportional to
the difference in the robot’s distance to the two transmitting
anchors. By calculating this difference for multiple pairs of
measurements, a robot is able to localize itself—this is often
referred to as time-difference of arrival (TDOA) localization,
multilateration, or hyperbolic localization. Since the robot is
not active in the communication (only receiving, akin to GPS-
receiver operation), multiple robots can operate and localize
simultaneously. Furthermore, since each robot computes its
location independently and based only on local information,
localization is anonymous—no central infrastructure is aware
of the robot’s presence or necessary to facilitate localization.
The layout and interaction of this system is depicted in Fig. 1

After reviewing related literature in Section II, this paper
presents the development of such a localization system in
three stages:

1) In Section III we derive a distributed clock syn-
chronization algorithm for the anchor network, which

FIGURE 1. A network of anchors communicate, allowing them to
synchronize their clocks, measure their pair-wise distances, and construct
a coordinate system. Through passive reception of these communications,
multiple robots are able to localize themselves, and to operate
simultaneously in the space.

allows each anchor to adhere to a transmission
schedule.

2) In Section IV we discuss self-localization of the anchor
network, that is, how each anchor within the net-
work is able to compute its position with respect to
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FIGURE 2. A network of eight such anchors was used for experimental
validation. Each anchor consists of a STM32F4 microprocessor (32-bit,
168MHz, single-precision floating-point unit, based on the ARM Cortex
M4F) connected to a Decawave DWM1000 UWB radio module.

the anchor network’s coordinate system. This self-
localization allows the anchor network to be setup
quickly and dynamically, since anchor positions are
computed as a byproduct of operation and must not be
manually measured or otherwise known beforehand.

3) In Section V we describe how TDOA measurements
can be used for robot localization and demonstrate
the simultaneous localization and control of multiple
Crazyflie 2.0 micro-quadrocopters.

Sections are interspersed with the presentation of pertinent
experimental results. These results are based on a network
of eight anchors. As shown in Fig. 2, each anchor con-
sists of a STM32F4 microprocessor (32-bit, 168MHz, single-
precision floating-point unit, based on the ARM Cortex
M4F) connected to a Decawave DWM1000 ultra-wideband
(UWB) radio module. The DWM1000 UWB module has a
timestamping precision of 15.65 ps, in which time a radio
pulse propagates 4.7mm in air. The paper is concluded in
Section VI, where the current limitations of the system are
discussed and directions for future research are proposed.

II. RELATED WORK
This paper finds itself at the intersection of two broad research
fields: clock modeling and synchronization in wireless net-
works and UWB-radio-based localization. Although many
of the concepts and methods presented in this paper are
related to proposals in existing literature, the core novelty
and contribution of this paper lies in their adaptation and
combination for the context in which they are applied. In this
section, we review relevant and related literature and place
this paper in a broader context.

A. CLOCK SYNCHRONIZATION
Clock synchronization of networked devices is a thoroughly-
studied problem with many robust algorithms having been
proposed; for example, the Network Time Protocol [1]
is deployed world-wide and has proven robust in the
context of the internet. Synchronization of wireless sen-
sors can pose additional difficulties such as limited band-
width, energy, memory, and computation; potential motion
of the sensors; and signal interference/multi-path. Tailored
approaches to the synchronization of wireless sensor net-
works have therefore been a target of more recent research,
with early results summarized, for example, in the survey
papers [2], [3].

Of particular relevance is research focused on the gradient
clock synchronization property. Proposed in [4] and with
algorithms suggested in, for example, [5]–[8], the gradient
clock synchronization property requires that the logical clock
skew between two nodes in a network be bounded by a non-
decreasing function of their distance; that is, closer nodes are
more closely synchronized. This is in contrast to standard
clock synchronization algorithms, which aim to minimize
global skew and thus often require maintaining or optimizing
global state, rather than relying only on local information.
In [6] it is shown that a simple approach based on distributed
averaging performs well in the context of gradient clock
synchronization, while requiring minimal computation and
storage, and remaining robust to changes in network topol-
ogy. For these reasons the approach of [6] was adapted for
this paper.

This approach to network synchronization relies on accu-
rate pairwise clock synchronization. We opt to track this
pairwise clock behavior using a Kalman filter, an approach
similar to, for example [9]–[11], as well as similar to [12],
who additionally note the effectiveness of a Kalman filter
at compensating for packet loss. Similar to [12], we base
our clock model on a system identification of the pairwise
clock behavior; however, our implementation differs in that
we use this system identification to determine parameters for
a continuous-time clock model and use exact discretization to
arrive at the discrete time dynamics and process noise covari-
ance, thus allowing the model to correctly handle varying
reception periods, as is encountered during clock synchro-
nization or due to packet loss.

B. UWB-BASED ROBOT LOCALIZATION
The usage of UWB radio for data transmission and local-
ization has gained significant interest since the legalization
of its unlicensed usage by the U.S. Federal Communications
Commission in 2002 [13]. Development of a communication
and localization standard by the IEEE [14], [15] has further
paved the way toward the technology’s commercialization.

An overview of UWB radio as a method of localization,
the positioning schemes it enables, as well as a discussion
of the schemes’ fundamental limitations is presented in the
review paper [16], and later in the book [17].
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Early results using a UWB radio network as a means of
localization include [18], who use centralized TDOA to local-
ize a transmitting agent; [19], who suggest using a particle
filter to combine a dynamics model, IMUmeasurements, and
UWB range measurements in order to facilitate agent track-
ing; and [20], who extend this particle-filter based approach
to the case of mobile-robot tracking, while also presenting an
analysis of tracking performance in line-of-sight (LOS) and
non-line-of-sight (NLOS) environments.

A similar analysis of UWB performance in NLOS envi-
ronments is presented in [21], and further expanded upon in
the subsequent work [22]–[24]. In these works, small robots
use UWB to localize themselves within an area. Accurate
localization is facilitated by a UWB measurement model
incorporating the probability of both LOS and NLOS mea-
surements, as well as by robots measuring and sharing their
pair-wise distances and bearings.

Many of these early results employ custom electronics to
transmit and receive UWB signals. Further examples of early
UWB localization systems can be found in, for example [25],
who demonstrate that robots receiving measurements from
externally-synchronized, actively-transmitting anchors are
able to self-localize using a TDOA approach; and [26], who
demonstrate the feasibility of the inverse approach (active
robots, passive anchors), while also analyzing the importance
of anchor placement for TDOA-localization.

In more recent years, the advent of small, low-power
UWB ICs (for example, the Decawave DW1000 [27], used
in this paper) has simplified the integration of UWB local-
ization with more-standard robotic systems. Combined with
increases in the performance of embedded processors, UWB
localization has become a promising solution for real-time,
on-board localization and control. This is demonstrated
in [28] who augment a standard quadrocopter with a UWB
module and, by using two-way ranging for range measure-
ment and an extended Kalman filter for state estimation,
demonstrate trajectory flight using only on-board measure-
ments and control. A similar approach is used by [29] who
demonstrate controlled trajectory tracking in a multitude of
indoor and outdoor environments; and by [30] who demon-
strate the flight of multiple quadrocopters by coordinating
their ranging requests using TDMA. Reference [31] demon-
strate similar results using TDOA localization, where a
quadrocopter localizes itself through passive observation of
anchor transmissions; [32] tackle the inverse problem of
localizing an actively-transmitting ground robot using a pas-
sive network of anchors.

One of the largest issues with UWB localization, as identi-
fied bymany of the aforementioned papers are time-stamping
inaccuracies leading to biased range measurements. Recent
work in [33] and [34] suggests that multiplexing antennas
(each mounted in a different orientation) and transmission
channels can be used to generate a diversity of ranging mea-
surements and improve measurement accuracy and precision.
Related work in [35] considers a frequency-domain band-
stitching approach to improve the accuracy of timestamping.

Reference [36] address a similar issue by developing an
antenna bias model to compensate for timestamping inaccu-
racies, which they show are partially influenced by antenna
orientation as well as distance.

The fusion of UWB localization with other sensors has also
been investigated as a way to mitigate UWB biases. In partic-
ular, vision sensors have received significant attention. Ref-
erence [37] show that by augmenting UWB localization with
visual odometry, local maneuver accuracy can be improved.
Reference [38] tackle the inverse problem, augmenting a
visual SLAM system with UWB localization to reduce the
computational overhead of vision-based localization, assist
with visual loop closure, and to mitigate problems with visual
localization in feature-sparse environments or environments
with many specular reflections.

In this paper we extend existing literature in the space of
UWB-based localization by

1) developing a synchronization algorithm for wireless,
stationary UWB anchors, allowing them to synchronize
with enough accuracy to facilitate accurate distance
measurement (keeping in mind that a 1ns synchroniza-
tion bias is equivalent to a 300mm bias in distance
measurement);

2) leveraging this synchronization to allow anchors to
localize themselves and construct a coordinate system;
and

3) enabling robots operating within the space to local-
ize themselves based only on passive reception of
the anchors’ communications, thus allowing multiple
robots to operate simultaneously within the space.

As has been presented in this section, existing research has
tackled each one of these points to some extent; the novelty of
this paper lies in the adaptation, extension, and combination
of these into a functioning system.

III. CLOCK SYNCHRONIZATION
To enable a receiver (for example, a robot) to localize itself
using TDOA measurements, the network of anchors must
be synchronized to a common timescale, such that they can
maintain a time division multiple access (TDMA) trans-
mission schedule. Synchronization in the proposed network
architecture follows four distinct phases:

1) Upon startup, an anchor listens for incoming packets.
If no packets are received within a specified time-
interval, the anchor will begin transmitting. If packets
are received, the anchor first synchronizes individually
to each transmitting anchor, as described in Section III-
B.

2) Once the receiving anchor is synchronized with each
transmitting anchor, it then synchronizes to the net-
work’s consensus-based logical clock, as described in
Section III-C.

3) Once synchronized to the network’s logical clock,
the receiving anchor begins transmitting in accordance
with the network’s TDMA schedule. Other anchors
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in the network then begin synchronizing to the new
anchor (as in Section III-B), and its clock rate is
incorporated into the network’s consensus-based log-
ical clock (as in Section III-C).

4) Finally, the network synchronization can be improved
by each anchor sharing the times at which it has
received packets from other anchors, allowing the
packet propagation time between pairs of anchors to
be measured and accounted for in the synchronization,
as discussed in Section III-D.

After the network is synchronized and all anchors are trans-
mitting in accordance with the TDMA schedule, anchors
are able to self-localize (Section IV) within the network,
and robots are able to localize themselves based on TDOA
measurements (Section V).

A. NOTATION
We useA to denote a connected network of anchors. For pur-
poses of explanation andwithout loss of generality, we denote
anchors using capital letters. Let I and J refer to arbitrary
anchors within A, and let AI be the set of anchors capable
of bi-directional communication with anchor I. Let anchors
I and J be separated by a distance of dIJ = dJI meters,
and let packets sent between these anchors be delayed by a
propagation time of δIJ = δJI seconds.
We denote a packet sent from an anchor using the trans-

mitting anchor’s lowercased ID, and use a subscript to denote
the packet’s index; for example ik denotes the kth packet
transmitted from anchor I. If it is clear from context, we will
omit this subscript when referring to the most recent packet.

We refer to the transmission or reception of a packet as an
event, and use a superscript T or R to denote transmission and
reception events, respectively. Using this notation iTk refers to
the transmission of packet ik from anchor I, and iT to the most
recent transmission event from anchor I.

Each UWB anchor I ∈ A possesses a hardware clock,
whose value can be read exactly, which can be used to sched-
ule the transmission of packets to occur at an exact time, and
which can timestamp the reception of packets (with a degree
of uncertainty caused by the noisy transmission channel).
We denote the measurement of this hardware clock at real-
time t as hI(t).
For future notational simplicity, we define f [ε] := f (tε) to

be a sample of the continuous-time process f (·) at the real-
time instant corresponding to the occurrence of the discrete
event ε. Using this notation, hJ[iR] is the value of anchor J’s
clock at the real-time instant of the reception event iR, cor-
responding to the reception of the most recent packet from
anchor I.

We can further write ḣJ[ε] :=
dhJ
dt [ε] to mean the real-time

clock rate of anchor J’s clock at the occurrence of event ε.
Since there is no real-time reference in the system, this rate
cannot be measured; however, for purposes of network syn-
chronization we are only concerned with tracking relative
rates, for example the rate of anchor J’s clock relative to the

FIGURE 3. In order for anchor D to synchronize to anchor A, it timestamps
the arrival of packets from anchor A. By assuming the inter-clock
behavior has third-order dynamics, a Kalman filter was developed and
tuned to allow anchor D to track the value, rate and acceleration of its
clock relative to the clock of anchor A. Synchronizing each pair of clocks
is the first step towards achieving network synchronization.

rate of anchor I’s clock: dhJ
dt [ε]/

dhI
dt [ε] =

dhJ
dhI

[ε]. For future
notational simplicity, we denote this rate as

ḣ(I)

J [ε] :=
dhJ
dhI

[ε]. (1)

It follows that

ḧ(I)

J [ε] :=
d2hJ
dh2I

[ε], and (2)

...
h (I)

J [ε] :=
d3hJ
dh3I

[ε], (3)

denote the relative acceleration and jerk of anchor J’s clock
with respect to anchor I’s clock.

B. MODELING, IDENTIFICATION AND TRACKING OF
RELATIVE CLOCKS
We now consider a network of four anchors, which we label
A, B, C and D; noting, however, that these algorithms are
extendable to an unlimited number of anchors. We start by
considering the case where anchors A, B and C are syn-
chronized and transmitting, and where anchor D wishes to
begin transmitting, needing first to synchronize itself to the
network. The first step in the synchronization process is syn-
chronizing individually to each anchor in AD. We explicitly
and without loss of generality discuss the case of anchor D
synchronizing to anchor A and note that this method is per-
formed independently for each transmitting anchor in AD.

Fig. 3 shows the case where anchor A transmits packet ak
at its hardware clock time hA[aTk ], and anchor D receives this
packet at time hD[aRk ], measured in its hardware clock. Note
that the propagation delay δAD is not observable in the case of
uni-directional communication, and as such the inter-anchor
synchronization implicitly includes this delay, which is then
compensated for when synchronizing to the network’s logical
clock (Section III-C).
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We choose to model the behavior of anchor D’s clock with
respect to anchor A’s clock as a third-order linear system
driven by noise:

...
h (A)

D (t) = ν(t), (4)

where ν(t) ∼ N (0, σ 2) is the continuous-time process noise
driving the inter-clock relationship. This third-order model
assumption allows the value, relative rate and relative accel-
eration of anchor D’s clock with respect to anchor A’s clock
to be tracked. Tracking relative acceleration is particularly
important in the first few minutes of network operation as
the clocks of both radios warm from room temperature to a
more steady state, causing significant changes in the clocks’
rates.

We note that exact transmission scheduling allows trans-
mission timestamps hA[aTk ] to be known exactly and allows
the noise to be modelled as only affecting the reception times-
tamps hD[aRk ]. The above system can therefore be considered
a standard third-order linear system, where anchor A’s clock
forms the time-basis of the system and measurements hD[aRk ]
are corrupted by noise, which is a function of the transmission
channel and timestamping algorithm.

Sincemeasurements hD[aRk ] only occur at the reception of a
packet, we exactly discretize (4) at the reception of packet ak ,
for the discrete sampling time 1 := hA[aTk ]− hA[a

T
k−1]:

Letting

q(A)

D [a
R
k ] :=

[
hD[aRk ] ḣ(A)

D [a
R
k ] ḧ(A)

D [a
R
k ]
]ᵀ
, (5)

this exact discretization results in the discrete-time state-
space model

q(A)

D [a
R
k ] = F q(A)

D [a
R
k−1]+ ω[a

R
k ]

zD[aRk ] = H q(A)

D [a
R
k ]+ ξ [a

R
k ], (6)

with

F =

1 1
1
2
12

0 1 1

0 0 1

, H =
[
1 0 0

]
, (7)

where zD[aRk ] is a measurement of anchor D’s clock at the
reception of packet ak , where ξ [·] ∼ N (0, ς2) is an addi-
tive measurement noise corrupting reception timestamps, and
where ω[·] ∼ N (0, 6) with

6 = σ 2


1
20
15 1

8
14 1

6
13

1
8
14 1

3
13 1

2
12

1
6
13 1

2
12 1

 (8)

is the discretized process noise driving the system.
Modeling the inter-clock behavior in continuous-time and

discretizing upon packet reception allows the synchronization
algorithm to implicitly and correctly account for packet loss,
for variation in hardware clock rates (e.g. due to temperature
changes), and for varying transmission periods required to

align with the network’s consensus-based logical clock (as
discussed in Section III-C).

Since the inter-clock behavior has been modeled using a
linear system with the assumption of white Gaussian noise,
anchor D implements a discrete-time Kalman filter to track
its hardware clock relative to the hardware clock of anchor A
using the standard equations for an autonomous linear system
with Gaussian noises:

Prediction Step:

q(A)

D,p[a
R
k ] = F(1) q(A)

D,m[a
R
k−1]

P(A)

D,p[a
R
k ] = F(1) P(A)

D,p[a
R
k−1] F

ᵀ(1)+6(1) (9)

Measurement Update:

K (A)

D [aRk ] = P(A)

D,p[a
R
k ] H

ᵀ
(
H P(A)

D,p[a
R
k ] H

ᵀ
+ ς2

)−1
P(A)

D,m[a
R
k ] = (I − K (A)

D [aRk ] H )P(A)

D,p[a
R
k ]

q(A)

D,m[a
R
k ] = q(A)

D,p[a
R
k ]+ K

(A)

D [aRk ]
(
zD[aRk ]− H q(A)

D,p[a
R
k ]
)
.

(10)

Note that the dependence of the discrete-time model on
the sampling period 1 allows the Kalman filter to correctly
handle packets arriving at a non-constant rate. The reader is
referred to, for example, [39] for further background on the
Kalman filter.

Since the behavior of a Kalman filter is determined by
the ratio of process and measurement noises, it remains to
determine the constants σ and ς : the standard deviation of
the process and measurement noise respectively.

This was achieved experimentally by placing pairs of
anchors at the network’s approximate operational dis-
tance (10m), and instructing one anchor of the pair to transmit
periodically at the network’s operational frequency (2ms),
while the other anchor recorded receptions. Measurements
were then used to update the Kalman filter as in (10). Since
the ratio of σ and ς determines the Kalman filter’s behavior,
σ was fixed at 1, and ς was adjusted such that the resulting
measurement noise was maximally white. Finally, from the
standard deviation of the resulting white measurement noise,
the real value of ς could be determined and the real value of
σ derived.
On the experimental platform, this tuning resulted in a

measurement noise with standard deviation ς = 0.13ns
(equivalent to a distance measurement error of 40mm),
as shown in Fig. 4, and a process noise with standard devi-
ation of σ = 51ns s−3.

C. NETWORK CLOCK SYNCHRONIZATION
In order to mitigate problems with transmissions interfering,
all anchors inAmust synchronize to a logical clock, and their
packet transmissions must adhere to a TDMA transmission
schedule. Having synchronized to each anchor individually
(discussed in Section III-B), anchor D is now required to syn-
chronize to the network’s logical clock. This is accomplished
using a consensus-based approach and in a manner similar to
the gradient clock synchronization algorithm presented in [6].
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FIGURE 4. Anchor A tracks its clock relative to the clock of anchor B using
a Kalman filter, based on the assumption of third-order random-walk
clock dynamics. The Kalman filter’s noise characteristics were tuned to
maximize the whiteness of the measurement noise after filtering,
resulting in measurement noise with a standard deviation of 0.13ns
(equivalent to a distance measurement error of 40mm).
(a) Autocorrelation of the resulting measurement noise. (b) Distribution
of the resulting measurement noise.

Each anchor I ∈ Amodels its relationship to the network’s
logical clock (denoted l(t)) as an affine function with parame-
ters φI and θI, such that at a given time instant t the network’s
logical clock can be expressed as a function of the anchor’s
hardware clock as:

lI(t) = φI(hI(t)+ θI). (11)

Synchronization with the network’s logical clock at time t is
therefore achieved by calculating an appropriate φI and θI,
herein referred to as synchronization parameters.

Considering now the case of anchor D synchronizing to
the network’s logical clock, we let hD[pR] be the timestamp
of the most recently received packet p from any other anchor.
Upon reception of p, anchor D predicts its synchronization to
each anchor I ∈ AD forward to the time of the most recent
reception event hD[pR]. Referring to (6), this is accomplished
by solving

hD[pR] = hD[iR]+ ḣ
(I)

D[i
R]1I +

1
2
ḧ(I)

D[i
R]12

I (12)

for1I, the time progression of anchor I’s clock corresponding
to a progression of anchor D’s clock by hD[pR]−hD[iR], such

that hI[pR] = hI[iT]+1I. Finally anchor D computes

ḣ(I)

D[p
R] = ḣ(I)

D[i
R]+1Iḧ

(I)

D[i
R], (13)

to arrive at the relative rate of the two clocks at the current
time.

Having predicted the synchronization of its neighbors for-
ward, anchor D can now update its synchronization parame-
ters using a consensus-based approach. We begin by convert-
ing the synchronization parameters of an arbitrary anchor I
into anchor D’s hardware clock, firstly by equating the rates:

φD(hD[pR]+ θD − δID) = φi(hI[pR]+ θI)
d
dhI

φD(hD[pR]+ θD − δID) =
d
dhI

φI(hI[pR]+ θI)

φD
dhD
dhI

[pR] = φI
dhI
dhI

[pR]

φDḣ
(I)

D[p
R] = φI

φD =
φI

ḣ(I)

D[p
R]
; (14)

and then by equating the offsets

φD(hD[pR]+ θD − δID) = φI(hI[pR]+ θI)

hD[pR]+ θD − δID =
φI

φD
(hI[pR]+ θI)

θD = ḣ(I)

D[p
R](hI[pR]+ θI) (15)

− hD[pR]+ δID. (16)

Note that although this synchronization compensates for the
propagation time δID between anchors, this value is not
observable until anchor D has begun transmitting. Due to the
relatively small magnitude of this value in comparison to the
network’s transmission period (nanoseconds compared with
milliseconds), anchor D computes an initial synchronization
under the assumption that δID = 0 for all I ∈ AD, such that
it can begin transmitting, thus rendering the true value of δID
observable.

Averaging the synchronization parameters of all anchors
results in the consensus solution

φ∗D =
1

|AD| + 1

φD + ∑
I∈AD

φI

ḣ(I)

D[p
R]

 , and (17)

θ∗D =
1

|AD| + 1

θD + ∑
I∈AD

(
ḣ(I)

D[p
R](hI[pR]+ θI)

−hD[pR]+ δID

),
(18)

where φI and θI are communicated to anchor D by anchor I
in the contents of each packet. This update rule resembles the
gradient clock synchronization update from [6], which was
shown to provide accurate clock synchronization between
neighboring anchors, to scale to connected networks with-
out requiring complete connectivity, and to converge. Con-
vergence was shown by noting the row-stochasticity of the
update matrix.
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FIGURE 5. After synchronizing to the network’s logical clock all anchors are able to transmit in accordance with a
known TDMA schedule. Propagation delays between all anchors are rendered observable by each anchor
communicating the reception times of each received packet. The dashed red transmissions exemplify this: by anchor D
communicating both the reception timestamp hD[aR] and transmission timestamp hD[dT] to anchor A, anchor A is
able to compute the propagation delay δAD. By knowing the packet propagation delays between each pair of anchors,
network synchronization can be improved, and the physical distance between anchors can be estimated, allowing for
network self-localization.

D. SYNCHRONIZATION REFINEMENT
After anchor D has computed an initial synchronization,
it is able to begin transmitting in accordance with an
agreed-upon TDMA schedule. In this paper, we implement
a simple, round-robin TDMA scheme, where anchors are
allocated a predefined time-slice for transmission; more com-
plex schemes would be possible to implement, however are
beyond the scope of this paper.

After anchor D begins transmitting, by sharing the trans-
mission and reception timestamps in the contents of each
packet, propagation times between each anchor become
observable. Consider the red, dashed transmissions shown
in Fig. 5: by anchor D communicating the reception time
hD[aR] and transmission time hD[dT] to anchor A, anchor A
is able to estimate the propagation time δAD from a single pair
of measurements as

2δAD =
(
hA[dR]− hA[aT]

)
−

1
2

(
ḣ(D)

A [d
R]+ ḣ(D)

A [a
T]
) (
hD[dT]− hD[aR]

)
, (19)

where the relative clock rate ḣ(D)

A (t) is tracked by anchor A
as discussed in Section III-B. After computing the propa-
gation delay to each anchor, anchor A incorporates these
delays into the network synchronization (Section III-C).
Since anchors are known to be stationary, measurements of
propagation delay can be low-pass filtered to further reduce
noise.

On the experimental system, the performance of the net-
work synchronization is judged by anchor A estimating the
reception time of the next packet based its current network
synchronization parameters and the known TDMA schedule.
Upon arrival of the packet, anchor A computes the error
between the actual and the expected reception time, which
was found to be normally distributed with a mean of 0.77ps
(0.23mm) and standard deviation of 50ps (15mm). This is
shown in Fig. 6. It should be noted that the mean is significant
less than the 15.65 ps precision at which theDWM1000UWB
radio can timestamp incoming packets.

IV. NETWORK SELF-LOCALIZATION
As discussed in Section III-D and shown in Fig. 5 each anchor
can measure the propagation delay to every other anchor
by sharing transmission and reception timestamps. By relat-
ing inter-anchor distance to propagation delay, the distance
between each pair of anchors in the localization network can
be determined, facilitating the localization of each anchor in
the network.

A. RELATING DISTANCE TO PROPAGATION DELAY
In this paper, we make the simplifying assumption that

dIJ = c δIJ − β̄, for all anchors I, J ∈ A (20)

where c is the speed of light and β̄ is the pre-
calibrated average bias encountered when processing and
timestamping the reception of a packet. Initial observations
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FIGURE 6. Anchor A estimates the reception time of the next packet,
based on its synchronization to the network’s logical clock. Upon
reception of the packet, anchor A computes the error between actual and
estimated arrival time, which is normally distributed with a mean
of 0.77ps (0.23mm) and standard deviation of 50ps (15mm). This provides
a metric to assess the quality of network synchronization.

on the Decawave DW1000 [28], [31] show that a distance
measurement can be biased by up to ±300mm, and that
the bias depends primarily on the received signal strength,
which is a function of the transmitting and receiving anten-
nas’ relative radiation patterns as well as depending on
the distance between anchors [36]. If the relative position
and orientation of each pair of anchors I, J ∈ A remains
constant, the measurement bias βIJ also appears to remain
constant. In our experimental setup with stationary anchors,
this implies that dIJ = c δIJ − βIJ. Unfortunately, however, βIJ
is not observable given the measurements available from the
localization network [40], since a change in bias is indistin-
guishable from a change in distance between the anchors. For
this reason, we compensate all distance measurements using
the pre-calibrated average bias β̄.

B. ESTIMATING ANCHOR POSITIONS FROM
INTER-ANCHOR DISTANCES
In order for anchors to localize themselves within the local-
ization network, a coordinate system must be defined. This
can be done by, e.g. manually setting the positions of four
anchors, or by constraining their placement.

In this paper, we assume that the z-axis is perpendicular
to the plane spanned by the first three anchors, and that
anchor A lies at the origin, anchor B along the positive x-axis,
anchor C in the positive y-direction, and anchor D in the pos-
itive z-direction. All other anchors can be placed arbitrarily
within the space. These assumptions define the coordinate
system of the network, and allow the positions of anchors
in the network to be determined by minimizing the global
cost

J :=
∑
I∈A

∑
J∈AI

(dIJ − ‖pI − pJ‖2)2 , (21)

where pI := (xI, yI, zI) is the position of anchor I. Since each
anchor runs on an embedded system, we favor a distributed
and iterative approach to minimizing this cost, rather than a
centralized global optimization.

We begin by initializing the position of anchors A, B and C
in closed-form as:

(xA, yA, zA) = (0, 0, 0) (22)

(xB, yB, zB) = (dBA, 0, 0) (23)

(xC, yC, zC) =

(
x2B + d2CA − d2CB

2xB
,

√
d2CA − x

2
C, 0

)
. (24)

The position of each other anchor can then be initialized with
respect to these anchors as:

xI =
d2IA − d2IB + x

2
B

2xB
(25)

yI =
d2IA − d2IC + x

2
C + y

2
C

2yC
−
xCxI
yC

(26)

zI = ±
√
d2IA − x

2
I − y

2
I , (27)

noting that anchor D is constrained to have zD > 0, and where
the z-ambiguity of other anchors is resolved by observation of
their distance to anchor D.

After initialization, this position estimate is further refined
using distributed gradient descent, where each anchor updates
its position in an iterative manner by calculating and descend-
ing the cost gradients ∂J

∂xI
, ∂J
∂yI

, and ∂J
∂zI

. Each anchor com-
municates its position periodically to all other anchors in the
network, facilitating the minimization of (21) in a distributed
fashion.

It should be noted that the above method of initializa-
tion is dependent on each anchor being able to communi-
cate with (and thus measure distance to) anchors A, B, C
and D. Furthermore, since the initial positions are computed
in closed-form from the locations of anchors A, B and C,
the initialization is both heavily affected by errors in these
positions and is sensitive to their placement. This sensitivity is
investigated using the Cramér-Rao lower bound in, e.g. [16],
[36], [41]. To mitigate both these issues, initialization could
be computed based on three neighboring anchors, selected
such that the available Fisher information is maximized.

Further improvements on the above algorithm are possible
by exploiting known structure in anchor placement. In many
situations, anchor placement may be semi-structured; for
example, it may be known that a subset of anchors share
the same x, y or z coordinate, perhaps being placed along a
wall or ceiling; as a further example, it might be known that
a subset of anchors lie within a specific half-space. The for-
mulation in (21) allows anchor positions to be constrained to
known coordinates, or for additional penalties to be included
in the cost function tomodel inequality or equality constraints
on anchor coordinates or inter-anchor distances.

C. EXPERIMENTAL VALIDATION
In our experimental setup, eight anchors were placed in a
roughly-rectangular setup with side-dimensions of approx-
imately 6m × 7m × 3.5m. The ground-truth position of
each anchor was measured by hand. The anchor network
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TABLE 1. Position errors after network self localization. A network of
eight anchors were placed in a roughly-rectangular setup, and positions
were measured by hand. The network was reinitialized ten times and the
results of self-localization were recorded. Errors were calculated as the
difference between the hand-measured position and the estimated
position. Errors are shown as mean±standard deviation, where mean and
standard deviation are computed across the ten trials. Constrained
positions are denoted by a *. Note that anchors D, F, G and H were placed
on the ceiling, making hand measurement of their absolute positions
difficult; this is reflected in their relatively high errors. Since anchor E was
placed on the floor, it was constrained to have z = 0.

was reinitialized ten times, and positions resulting from self-
localization were recorded. Across all ten trials, the syn-
chronization and anchor localization algorithms presented
thus far enabled anchors within the network to self-localize
with a position root mean squared error of 97mm, resulting
from an x-position error of −30 ± 54mm, y-position error
of 19 ± 46mm, and z-position error of −34 ± 45mm; and
an inter-anchor distance estimation error of −12 ± 76mm.
Note that these errors are within the tolerances of manually
measuring the anchor’s actual positions, and are far less than
the inter-anchor distance measurement bias of ±300mm.
Given the structured placement of anchors it was possible
to further constrain the anchor coordinates that are known to
be equal. Given the already accurate localization, we did not
impose additional constraints on anchor positions, with the
exception of anchor E, which was placed on the floor and
thus constrained to have z = 0.
Table 2 shows a summary of range measurements upon

which the self-localization is based, while Table 1 shows
the results of the self-localization procedure discussed in this
section. Comparing measured and estimated distances gives
an idea of the influence and variation of measurement bias
within the space. Each measurement received by a robot will
be corrupted by a measurement bias within this range.

V. (MULTI-)ROBOT LOCALIZATION
Having now synchronized and self-localized, the anchor net-
work can support the operation of multiple robots within the
space. By passively listening to the network traffic (Fig. 5)
and recording the reception time of measurements, a robot is
able to compute the time-difference of arrival of two packets.
This time difference is proportional to the difference in the
robot’s distance to the transmitting anchors. By collecting
multiple of these measurements, a robot is able to localize
itself.

TABLE 2. Distance measurement and estimation errors relative to anchor
C. Anchor positions were measured by hand and a ground truth Euclidean
distance between each pair of anchors was calculated. The network was
reinitialized ten times and the results of distance measurement and
estimation were recorded. Measurement errors are calculated as the
difference between the ground truth distance to anchor C and the
pair-wise distance measurement, as derived from the time-of-flight
measurement (20). Estimation errors are calculated based on the
difference between the ground truth distance to anchor C and the
Euclidean distance between the anchors’ estimated positions. Errors are
shown as mean±standard deviation, where mean and standard deviation
are computed across the ten trials. Note that the DWM1000 is able to
measure distances with a precision of 4.7 mm.

A. MEASURING THE DISTANCE DIFFERENCE
BETWEEN ANCHORS
With reference to Fig. 5, let hR[aR] and hR[dR] be the times
at which the robot receives the latest packets from anchors
A and D respectively. We assume that each packet contains
the position of its transmitting anchor, as well as the trans-
mission time expressed in the synchronized network time.
This additionally provides the robot with times lA[aT] and
lD[dT], as well as the positions of both anchors involved in the
communication. Letting φR denote the robot’s UWB clock
rate relative to the anchor network’s logical clock rate, and
x := (x, y, z) its positionwithin the anchor coordinate system,
we have that

lA[aT]+ δAR = φR(hR[aR]+ θR), and

lD[dT]+ δDR = φR(hR[dR]+ θR).

By computing the time difference of arrival, we arrive at

(lD[dT]− lA[aT])+ (δDR − δAR) = φR(hR[dR]− hR[aR])

c(lD[dT]− lA[aT]) = c · φR(hR[dR]−hR[aR])−(dDR−dAR)

c(lD[dT]− lA[aT]) = c · φR(hR[dR]− hR[aR])

+‖pA − x‖2 − ‖pD − x‖2. (28)

By including φR as an additional state in the state estimator,
time difference of arrival measurements can be incorporated
into the state estimate based on (28). The process noise
affecting theφR state was set in accordancewith the identified
clock model (6).

As discussed in Section IV-Awe found that rangemeasure-
ments were affected by a systematic bias. As also observed in,
for example, [28] and [31], this bias was found to be relatively
constant for a given position and orientation, but varied as
the robot moved around the space. Due to the sensitivity of
time-difference of arrival methods to measurement noise and
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FIGURE 7. One of the Crazyflie micro-quadrocopters used for these
experiments. A Decawave DWM1000 UWB radio is mounted on the
quadrocopter, allowing it to eavesdrop on UWB communications between
anchors. Improved control was achieved by controlling the speed of the
motors using an infra-red sensor, seen mounted below each propeller.
A battery holder mounted underneath the quadrocopter ensures
consistent placement and in-flight stability of the battery.

bias (discussed in detail in [31]), we were required to set
an artificially-high standard deviation of 800mm for these
measurements.

B. EXPERIMENTAL RESULTS
The following experiments were conducted using a Bitcraze
Crazyflie 2.0 micro-quadrocopter [42] (shown in Fig. 7),
flying within the eight-anchor setup described in Section IV-
C and with anchor positions given in Table 1. The presented
method of localization is, however, applicable to any number
of robots operating within a space spanned by at least four
anchors. This minimum of four is required to define the coor-
dinate system. Due to the sensitivity of the time difference
of arrival localization method to noise (see, e.g. [31]), it is
recommended that robots operate within the convex hull of
the anchors.

1) QUADROCOPTER EXPERIMENTAL PLATFORM
All quadrocopter control and estimation software ran on the
quadrocopter’s 168MHz, ARM Cortex-M4F microprocessor
(STM32F405, single-precision floating point unit, 196 kB
RAM, 1 MB flash). State estimates were sent at 30Hz from
the robot to a laptop computer for logging purposes only. The
laptop did not communicate with the quadrocopters, nor was
it required for their flight, since trajectory planning, control,
localization, and state estimationwere all performed onboard.

We model the quadrocopter as a rigid body using the
standard equations of motion [43]. An extended Kalman filter
based on the attitude-error approach of [28] and [44] was used
for state estimation. Trajectory tracking was achieved by a
high-level controller as in [45], which generates an attitude
reference signal for a quaternion-based attitude controller
based on [46]. Control of thrusts and body-rates employed
a thrust-speed-map, determined empirically through sys-

FIGURE 8. This figure shows two trials of an experiment, whereby a
quadrocopter flew a circle 20 times before landing. Trials were performed
a day apart, and the anchor network reset before each trial. The error
between the actual and estimated x , y and z positions was calculated as
function of the quadrocopter’s location on the circle. These plots show
the mean and standard deviation (shaded region) of these errors. Note
that errors vary with the quadrocopter’s position, and are repeatable. This
variation as a function of position is likely caused by UWB measurement
biases varying throughout the space, as also noted in [28], [31], and [36].

tem identification experiments [47]. Motor speeds were
controlled based on feedback from an infrared reflectance
sensor mounted below each propeller (since direct speed
control of the quadrocopter’s brushed DC motors is not pos-
sible). Localization was enabled by connecting a Decawave
DWM1000 UWB radio module to the quadrocopter’s micro-
processor, allowing it to eavesdrop on UWB communications
between anchors.

2) SINGLE QUADROCOPTER
To verify the performance of the system, a quadrocopter was
commanded to fly a circle of radius r = 1m with a period
of T = 4 s (corresponding to the quadrocopter flying with a
linear velocity of 2πr

T ≈ 1.57m s−1). The quadrocopter flew
the circle 20 times in succession before landing. The error
between the quadrocopter’s estimated and actual position (as
measured by a motion capture system) was calculated for
each location on the circle (parameterized using the angle θ )
and error statistics were calculated over the 20 runs. In order
to investigate the variation of these statistics over time, this
experiment was repeated on a different day, with a reinitial-
ized localization network. Fig. 8 shows the estimation error
mean and standard deviation (shaded region) for both trials.
This analysis shows that estimation error appears to contain
position-dependent effects on the order of ±100mm, and
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that these effects are relatively constant in the short-term (as
indicated by the standard deviation) aswell as over the longer-
term (as indicated by a comparison of the two trials).

Both the magnitude of these effects and their position
dependence corroborate the observations of [28] and [31]
and can be explained by UWB measurement biases being
affected by the quadrocopter’s position and orientation rel-
ative to each anchor antenna. We expect future revisions of
the UWB ranging hardware to decrease these measurement
biases in both magnitude and variance. Machine-learning-
based approaches could also be used to compensate for these
biases, as investigated in [36] and discussed in Section VI.
Variation in these biases observed between trials is likely

due to slight variation in the placement and orientation of the
anchors, and variation in their calculated positions (on the
order of±40mm per axis for each anchor, see Section IV-C).
The offset in the z-axis can be explained by accelerometer
biases and discrepancies between expected and actual thrust,
whose effects on the state estimate are amplified by the
artificially-high TDOA measurement noise.

3) MULTIPLE QUADROCOPTERS
Since quadrocopters localize themselves based only on
received UWB signals the network supports the simultane-
ous operation of many quadrocopters. To demonstrate this,
the previous experiment was repeated using three quadro-
copters flying the same circle simultaneously. Since the
anchor network maintains a network time, and since each
quadrocopter knows its ID, quadrocopters were able to com-
pute their reference position as a function of network time
and thus avoid collisionswith other quadrocopters. A video of
this experiment can be viewed at http://mikehamer.info/uwb-
system.

As in the previous experiment, errors between each quadro-
copter’s actual and estimated position were computed as a
function of its position on the circle. The mean and standard
deviation of these errors are shown in Fig. 9. As previously
discussed, these estimation errors exhibit a dependence on
quadrocopter position; furthermore, similarities can be seen
between the quadrocopters.

VI. FUTURE WORK
A. ADAPTIVE TRANSMISSION SCHEDULING
Pairwise synchronization between anchors in the network
(Section III) is achieved by modeling the anchors’ clocks as
third-order linear systems and using a Kalman filter to track
the anchors’ relative clock offsets, rates, and accelerations.
Once synchronized, anchors adhere to a TDMA transmission
schedule, expressed in the network’s logical clock.

In our work, we used a fixed transmission schedule,
with 2ms between transmissions. This transmission rate was
manually tuned to trade off between a) distance measure-
ment accuracy and the accuracy of robot localization, which
is improved by using a faster transmission rate; and b)
robustness to variations in synchronization quality, which is

FIGURE 9. To demonstrate the system’s ability to support the operation of
multiple robots, three quadrocopters were commanded to simultaneously
fly a circle. Estimation errors were calculated as a function of each
quadrocopter’s position on the circle. These errors show a dependence on
position, and display similarities between quadrocopters. (a) Three
quadrocopters simultaneously fly a circle with a radius of 1m, centered at
(0, 0). (b) Estimation errors are repeatable and position dependent.

improved by allowing more spacing between transmissions
to avoid interference between poorly synchronized anchors.

In practice, with anchors experiencing only minor
packet loss, this fixed schedule worked well; however,
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we occasionally experienced a few seconds of high packet
loss (the cause of which seems to be RF interference), which
leads to a decrease in synchronization quality and thus less
accuracy in transmission scheduling, resulting in interference
between transmissions, further packet loss, and eventually,
a complete loss of synchronization.

We suggest that system performance could be improved
by using an adaptive transmission schedule, leveraging the
ability of each anchor to compute the quality of its synchro-
nization to the network’s logical clock based on its Kalman
filters’ state variances. By each anchor broadcasting its cur-
rent synchronization quality to the network, the network’s
transmission rate and inter-transmission spacing could be
adjusted tomaintain the highest possible rate while remaining
robust to interference.

B. COMPENSATION FOR SYSTEMATIC BIASES
Our experimental results (Section V) demonstrate that mul-
tiple robots are capable of operating simultaneously within
a space. These results also show that each robot is similarly
affected by a systematic, position-dependent bias, resulting
in a position-dependent offset between the robot’s estimated
and actual position.

Since the robot is equipped with an inertial measurement
unit, short-term changes its position can be estimated by
integrating accelerometer measurements. By observing the
deviation between this integration, and the position change as
estimated from TDOA measurements, systematic, position-
dependent biases may be rendered observable and could
potentially be compensated.
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