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ABSTRACT Wireless sensor networks (WSNs) have been pushed to the forefront in the past decade, owing
to the advert of the Internet of Things. Our research suggests that the reliability and lifetime performance
of a typical application in WSNs depends crucially on a set of parameters. In this paper, we implemented
our experiments on the nearest closer protocol with the J-Sim simulation tool. We then analyze the closure
relationships among the density, reliability and lifetime, and reveal the trade-off among them based on our
analysis on the experiment results. Next, we propose five intelligent evaluation models that are applicable to
such situations. Our research allows the WSN users to predict the significant evaluation parameters directly
from the settings while costly simulations are no longer necessary.

INDEX TERMS Evaluation model, nearest closer, routing protocol.

I. INTRODUCTION
The next generation networks have the potential to offer
heterogeneous connectivity, especially for the IoT sys-
tems. When the transmission speed reaches 10Gbps, 10 to
100 times faster than that of the 4G networks, massive types
of wireless communications demand can be fulfilled [1]–[3].

IoT systems must allow things to be inexpensive,
highly power efficient, ubiquitous, safe and reliable [4]–[6].
Research related to sensors is a significant research point for
IoT. The research of Wireless Sensor Networks (WSNs) is a
subset research area of IoT. The sensors should be assigned
with a routing protocol, so that instead of transmitting data
directly to the end-user, they choose to transmit their data
via a number of other sensors subject to the condition that
the data will eventually arrive at the end-user (multi-hop
protocol). 5G can provide a reliable backhaul infrastructure
for many IoT systems. In addition, the communication secu-
rity [7]–[9] and security of sensor networks [10]–[13] are
also very important. It is necessary to prevent the monitor-
ing data from being stolen and to obtain forged monitoring
information.

The main problems in the primary research area of WSNs
are conserving sensor energy [14]–[17] and improving data
accuracy [18], [19]. For instance, Raghunathan et al. dis-
cuss several key factors, including architecture and protocols,
which are related to energy-efficient design of sensor nodes in
a WSN [20]–[22]. The properties of data security and energy
consumptions in wireless networks are highly depend on the
physical neighborhood and the transmission power, which
makes previous theories for wired networks no longer viable.

Although many of the researches realize that energy con-
sumption and reliability are the important parameters for
a WSN, which are also influenced by the features of the
network, there have been very few research works focus on
the trade-off between the important factors of reliability, life-
time, and node density empirical. They also haven’t proposed
effective evaluation models among these parameters.

Maity and Gupta [23] considered a randomly distributed
wireless sensor network covering a large area. They wished
to find an estimate for the number of nodes required with
the minimum critical communication distance to ensure net-
work connectivity and stability. Using results from graph
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theory certain mathematical formula-based algorithms
already existed for a relatively small number of sensors;
however, the authors proposed a new formula based on
mathematical simulation, which minimized the inter-node
critical radius prediction for a large number of nodes. They
chose MATLAB as their simulation tool and constructed a
regression equation between the radius and number of nodes.
The theoretical model provided better results if the number of
nodes is less than 250, but their regression equation provided
smaller answers for the radius to preserve connectivity for
larger numbers of nodes. In our research, we will combine
three parameters together and propose the evaluation model
among these parameters. The model can also provide good
results even if the number of nodes is greater than 250.

This research seeks to develop some evaluation models,
which will serve to inform the organization of a high effi-
ciency wireless sensor network without prior use of simu-
lations. Such mathematical models will avoid the necessity
to undertake simulations for the deployment of sensor nodes
resulting in a saving of both time and money.

In this paper, we choose the Nearest Closer protocol as
a typical routing protocol for location-based routing pro-
tocols [24]–[27]. After obtaining several useful results via
simulations, several evaluation models based on the Nearest
Closer routing protocol [28] in wireless sensor networks will
be proposed.

II. MATERIALS AND METHODS
A. SIMULATION TOOLS
Before the real deployment of sensors to the real area, to do
simulation is really significant. From the simulation results,
users can conclude how the routing protocols work. After
comparisons of simulation results, users can select the most
suitable routing protocol for their applications.

There exist several simulation tools, such as: NS-2 [29],
Omnet++ [30], TOSSIM [31], J-Sim [32]–[33]. J-Sim will
be selected as the simulation tool for this paper. The reason
can be explained as follows:

J-Sim is an open-source simulation tool.
J-Sim has provided a strong energy model to the users.
J-Sim has a good user interface and is convenient for the

users to invoke the existing methods.
J-Sim is a Java-based simulation tool, it will be possible

to combine the energy model with the Java-based sensor’s
energy model in future design.

The authors of J-Sim have performed detailed performance
comparisons in simulating several typical WSN scenarios
in J-Sim and NS-2. The simulation results indicate J-Sim
and NS-2 incur comparable execution time, but the memory
allocated to carry out simulation in J-Sim is at least two orders
of magnitude lower than that in NS-2. As a result, while
NS-2 often suffers from out-of-memory exceptions and was
unable to carry out large-scale WSN simulations, the pro-
posed WSN framework in J-Sim exhibits good scalability.

J-Sim models are easily reusable, so users can combine the
components in the framework freely.

B. NEAREST CLOSER PROTOCOL
The Nearest Closer protocol is both a typical location-based
routing protocol and a multi-hop routing protocol. Conse-
quently, this work has implemented the protocol in J-Sim as
an example. To implement this protocol each node has to
know its own position, the position of its neighbors within
its transmission range, and the position of the sink node. The
main idea in the Nearest Closer protocol is that the transmitter
sensor will transmit to its nearest neighbor that is closer to
the sink node (the distance between the neighbor and the sink
node is less than the distance between the sensor node and
the sink node; choose the nearest neighbor from the sensor
node).

Slotted ALOHA protocol has been selected as the MAC
layer protocol. Slotted ALOHA is a type of TDMA transmis-
sion system and it improves contention management through
the use of beaconing. Slotted ALOHA can make a single
active sensor nearly continuously transmit at full channel rate,
thus better results can be obtained for the Nearest Closer
protocol.

C. REASON TO SELECT NEAREST CLOSER PROTOCOL
The location-based routing protocols, of which there are a
large number, but difficult to be implemented in J-SimGreedy
Perimeter Stateless Routing (GPSR) essentially allows back-
tracking if a dead end is reached, so within any implemen-
tation program for GPSR and other similar routing protocols
there must be a large number of nested conditional statements
of the ‘IF’ and ‘THEN’ form. This means that the behavior
of the protocol can fundamentally change during a simulation
depending on the geographical and/or power status of the
network, so that trends in results obtained from simulations
using such protocols will be difficult (if not impossible) to
analyze. The choice in this thesis, to avoid such conditionality
and the apparent complexity of any resultant mathematical
model, came down to Nearest with Forward Progress (NFP)
or Nearest Closer (NC) for the work. The routes in NFP along
which sensors transmit data to the sink node will be very
jagged (with lots of ‘ups’ and ‘downs’) compared to those
in NC by definition. Thus NC presents, at face value at least,
a more sensible approach to transmitting data from a sensor
to the sink node and hence our choice of it as a representative
for location-based protocols.

D. EXPERIMENTAL SET-UP
The simulated area for the following experiments is defined
as a 10meter by 10meter square. All the sensor nodes are ran-
domly deployed. The routing protocol is the Nearest Closer.
The sink node is in the middle of this simulation area. There
exists a fixed target node in each simulation experiment, and
this target node will generate a stimulus every one second.
All the sensors are active at the start of the simulation (For the
NC protocol, the sensor nodes can only transmit its data to the
nearest neighbor sensor as the routing map will be generated
before data transmission.). The simulation time is enough for
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obtaining data in each separate experiment. All the points (in
the figures) in this paper are the average value from 5 separate
experiments. In each experiment the sensors are static once
placed, and the sensor nodes are re-positioned randomly for
the 5 experiments. The Network Lifetime will be measured
in seconds. Themaximum simulation time for all experiments
in this paper is 100,000 seconds.

III. RESULTS
A. EVALUATION PARAMETERS
1) RELIABILITY
This paper bases its experiment on the concept of Reliability,
which is defined as:

Reliability

=
the number of packets received by the sink node

the number of packets sent directly to the sink node
(1)

2) LIFETIME
Network Lifetime has various definitions. Some researchers
may select the time when the all the sensors run out their
energy to define the Lifetime, however, if the key sensors in
thisWSN are dead, this sensor network will never continue to
work anymore. So this is not a good choice for the definition
of Lifetime. Some researchers may select the time when
the first sensor is dead to define the parameter of Lifetime.
But this is not a suitable moment for Lifetime as the sensor
network may work well. In this paper, we will select the time-
point when the last packet sent from sensors is received by the
sink node to define the Lifetime.

3) DENSITY
In a fixed area, the number of sensors deployed can be used
to denote the Density.

B. RESULTS AND ANALYSIS
A series of experiments [34] was carried out with the number
of sensors starting at 10, and increasing in increments of 10 up
to 300 sensors. The transmission radius for each sensor was
fixed at 15 meters as this is large enough to transmit data
anywhere within the square.

In Figure 1, we observe a clear relationship between the
number of sensors and the Reliability, which, in this applica-
tion, increased as the number of sensors increased to 40, when
it reached its highest value. It then essentially decreased as the
number of sensors increased from 40 to 300, when it reached
its lowest value. This may be explained by observing that: as
the Density increases, more sensors will join the data trans-
mission process and consequently communication among the
sensors will become more and more complex. So, dropped
data due to data collision and latency cannot be ignored.
Consequently, it is reasonable to expect the Reliability to
decrease with the Density.

In Figure 2, the Lifetime meets its minimum value
when the number of sensors equals to 220, whereas the

FIGURE 1. Density, reliability relationship for NC.

FIGURE 2. Density, lifetime relationship for NC.

highest value of the Lifetime occurred when there were
10 sensors.

In the NC protocol, sending a packet to the sink node will
require each sensor to transmit its data down transmission
trees to the nearest sensors to the sink node. These nearest
sensors (only about two or three) will be receiving all the data
in the network and transmitting it all to the sink node, using
a large amount of energy. Thus, a NC network will generally
die fairly rapidly from the sink node outwards.

In Figure 1, note that when the number of sensors equals
40, the Reliability was 93.64%, its highest level, but with this
number the Lifetime is fairly short. This illustrates that it is
possible for users to choose an optimum Density value for
this application depending on the Reliability and Lifetime
required.

IV. BASE EVALUATION MODELS
A. LIFETIME MODEL
The energy requirement of a routing task can be largely
approximated by the hop count, under which circumstance
we assume a constant metric per hop. However, if nodes
can adjust their transmission power (knowing the location
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of their neighbors) the constant metric can be replaced by a
power metric u (d) = e + dα (or some variation of this) for
some constant value of α and e that depend on the distance d
between nodes. The value of e, which includes energy loss
due to start up, collisions, retransmissions, and acknowledge-
ments, is relatively significant, and protocols using any kind
of periodic hello messages are extremely energy inefficient.

Our motivation of proposing the NC protocol is based on
the consideration that the average energy consumption of
a sensor for data to its nearest neighbor can be calculated
by a simple formulae w (s)E

(
d2
)
, in which E

(
d2
)
is the

expectation of the squared distance between the sensors, and
w (s) is the average number (weight) of packets of data to be
sent to its nearest neighbor. In the NC protocol one possible
parameter that could affect the Lifetime is the number of
paths or trees formed by the sensors. This is not the case
as demonstrated by the following experiments, which are of
independent interest. Using J-Sim it is difficult to extract
the paths that sensors transmit along to the sink node. For
this reason, a program was written in the algebraic software
package Magma to not only compute the individual paths,
but to marry them together in order to form the initial distinct
trees. During the Lifetime of the network various sensors will
die, normally from the center outwards, and new trees will be
formed (The sink node is in the middle. Tree roots are close to
the sink node and they will die quickly as they do receive and
transmit data frequently. In this paper, all the common sensors
are randomly deployed and have the same power.). The mean
number of trees is shown in Table 1. The effect of randomly
placed sensors in each experiment can be ignored as the value
was averaged from the results of 1000 experiments.

According to Table 1, we conclude that the average number
of trees is independent of the number of sensors, and thus can
be discounted as having any effect on the Reliability or Life-
time. The reason that two or three trees may appear on
average can be fully explained by considering the diagram
below.

In the case of 300 sensors, the number of trees with
frequencies was one with frequency 1, two with frequency
42, three with frequency 53 and four with frequency 3. The
distributions for two trees took various values from (299, 1)
to (152, 148). For the cases of two trees the average length of
the two trees for 10 sensors was 6.69 and 3.31 with a sample
standard deviation of 1.199. The ratio between these average
lengths is 2.02. For 40 sensors the corresponding figures are
26.667 and 13.333 with a sample standard deviation of 4.646.
The ratio between these average lengths is 2. For 300 sensors
the corresponding figures are 213.929 and 86.071 with a
sample std. value of 39.38. The ratio between these average
lengths is 2.49.

The reason for using the average tree length as a test
statistic is that it can be generalized to more than two trees.
In the latter part of this paper it is assumed that the sensors
are equally distributed amongst the trees. The results above
indicate in the two-tree case that the ratio between the average
lengths of the trees is about 2 or 2.5 to 1. The reason for this

TABLE 1. Mean number of trees.

may be that the shape of the square influences the sensors into
one large and one small tree, this merits further investigation
from a mathematical or statistical perspective.
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FIGURE 3. Typical tree zones.

For the NC protocol the relation ‘is the closest neighbor to’
is not symmetric. In Figure 3, B might be the closest neighbor
to A, but without A being the closest neighbor to B. Thus, for
this protocol it is necessary to find the closest neighbor to a
sensor A, but with the stipulation that the neighbor is closer
to the sink node than A. It is also the case that the sink node
could be the closest neighbor to A, but the sink node is a fixed
point and therefore does not fit in with the assumption that
this work is dealing with a random distribution of sensors.

The second column of Table 2 lists the expectation of the
distance d between a sensor node and its closest neighbor
that should be closer to the sink, and the third column shows
the expectation of the squared distance d2. Finally, the fourth
column shows the average weight of the sensors, where each
branch in the various trees count as weight one. This is a
measure of the number of packets of data an average sensor
has to transmit to its nearest neighbor, and it is also the
average number of hops from the sensors to the sink node.
The results of these simulations are tabulated in Table 2
(In Table 2, E (d) denotes the expectation of the distance
between sensors, E

(
d2
)
denotes the expectation of the

squared distance between sensors, andw (s) denotes the aver-
age number (weight) of packets of data to be sent to its nearest
neighbor.)

Note that, for those sensors whose nearest neighbor is the
sink node that the distribution of the distance and squared
distance to the sink node is slightly different to those between
sensors, and the averages are always slightly higher than those
given in Table 2, with the exception of the 10 sensor case
when there is a significant difference.

We induce two conclusions from this table. First, the value
of w (s)E (d) is nearly constant which varies between
5.16 and 5.45, and is a measure of the average distance
from a sensor to the sink node measured along the hop path.
Second, the value of w (s)E

(
d2
)
decreases when the number

of sensors growth, which shows that the energy expended by a

TABLE 2. Expected distances and weights, variable sensors.

sensor in receiving and sending received packets to its nearest
neighbor decreases when the number of sensors increases.
It also represents a measure of the average amount of energy
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required to transmit one packet of data to the sink node. Two
theories are proposed to explain why the Lifetime decreases
as the number of sensors goes up.

In general, the Lifetime can be modelled by considering
only the roots of the forest, which normally consists of just
two or three trees. If there exists just one tree, which is an
interesting case for a small number of sensors, the system
should run until the only root sensor dies naturally, when the
systemmight interpret the death as a transmission break or the
next sensor(s) out will take over the role of the root(s).
In either case, the Lifetime is expected to be much longer for
just one tree. The basic model constructed here is of the form

E (T )K

nE
(
d2
) , (2)

where n is the number of sensors, K is the initial energy of
a sensor and E (T ) is the expected number of trees. Here
n/E(T ) represents the averageweight per tree and sinceE (T )
is nearly constant, the model should roughly resemble the
curve 1/n. Particularly, this model assumes that the sensors
are evenly distributed amongst the trees and is ignorant of
data build-up, so it can be deemed as an upper bound for the
Lifetime if the system runs at full capacity. The implication
is that the Lifetime decreases monotonically as the number
of sensors increases; however, this basic model assumes that
the system runs at full capacity from the start and ignores idle
slots in the slotted ALOHA design. Thus there is a base value
below which the Lifetime will not fall, as the system will
behave in a manner akin to a sparser system during its initial
phase and there will furthermore always be a number of idle
slots. This base value will be taken to be the smallest Lifetime
value of 223 that occurs when n = 220. So the revised model
is:

(1− λ (n))× 223+ λ(n)×
E (T )K

nE
(
d2
) , (3)

where λ (n) is a proportionality measure with λ (220) = 0.
Now from the Lifetime data λ (n) will be very close to 0 if
n ≥ 120. Setting λ (10) = 1 yields the value K = 16, 750.
The parameter λ (x) can be piecewise approximated by

1.1438571428571−0.01501071428514x, for 10≤x≤70,

(4)

and

0.3954−0.0029514285714286x, for 80≤x≤130 (5)

by fitting straight lines through the given values. An alterna-
tive that will yield better local approximations is to interpolate
between the known values of λ. Thus, if n≤x<n+10, then

λ (x) ∼=

(
1−

x − n
10

)
λ(n)+

x − n
10

λ(10+ n) (6)

The general equation obtained for 10 ≤ x ≤ 133 is

(1− λ (x))× 223+ λ (x)×
42712.5

xE
(
d2
) (7)

FIGURE 4. (a) Lifetime model (red), lifetime (blue), 10 – 70 sensors;
(b) lifetime model (red), lifetime (blue), 80 – 130 sensors.

and the value of E
(
d2
)
for x sensors can again either be

interpolated between the known values in Table 5 or by using
the fitted formula

4918141600.24
6653x2 + 68674970x + 125057800

, for 10 ≤ x ≤ 300.

(8)

Using the latter formula (which is a good fit) yields at
worst an implicit equation for the Lifetime for 10 ≤ x ≤ 130.
Finally, it could be stated that the Lifetime is essentially con-
stant for x ≥ 140 with a value between 223 and 250 depend-
ing on the topology of the sensors.

In both Figure 4 (a) and (b) the Lifetime model is nearly a
straight line and is clearly a better fit for ≤70 sensors.

B. RELIABILITY MODEL
Using the NC protocol three principal causes for data colli-
sion can be identified:

1. Out of range or connectivity: A sensor may have insuf-
ficient transmission radius to reach its nearest neighbor
at some stage, and from that time all its data (including
data that it receives from other sensors) will not reach
the sink node. This type of data loss does not occur in
the 10 by 10 meter simulated area considered in this
paper.
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2. Sensor complexity: Collisions may occur at the receiv-
ing end, when two or more sensors are sending data
to the same nearest neighbor, if they use the same
slot or slots. The larger the average weight of a sensor
(with the weight being a measure of the packets to be
transmitted) the more likely that such collision may
occur, since the number of transmission slots increases
accordingly.

3. Data collision at the sink node: The data collision at the
sink node is also amajor concern since different sensors
may transmit packets to the sink node simultaneously.
From Table 1 the number of trees for this application
is around 2.5. In other words, the number of sensors in
this application doesn’t affect the number of trees very
much. The larger the number of sensors, the longer the
time required to transmit data from sensors to the sink
node. So the sensors will contact the sink node more
frequently. The smaller the number of sensors, themore
data could be sent to the sink node in one application.
Thus, data collision at the sink node is more complex.

The Reliability obtained in the experiments measures the data
loss that arises from out of range sensors, sensor complexity
and data collision at the sink node. For a large radius there
are no out of range sensors, but then it is a question of which
out of complexity and data collision at the sink node is the
dominant cause of data loss, with the former increasing and
the latter decreasing as the number of sensors increases.

When the transmission radius is 15 meters the data col-
lision at the sink node is the dominant factor for less
than or equal to 40 sensors and from then on complexity
is the dominant factor. This would then explain why the
Reliability increases as the number of sensors increases to
40 sensors, and then decreases as the number of sensors
increases beyond 40.

There is a known result for the slotted ALOHA design
using the Single-hop protocol that is relevant here. This
measures the efficiency of the system, that is the long run
fraction of successful slots when there are n (assumedly a
large value) sensors each with many packets to send. The
efficiency is q (1− q)(n−1), where each sensor transmits a
packet in a slot with probability q. This result will apply
at each receiving sensor (and the sink node) individually
in the NC protocol although the result will depend on the
number of sensors transmitting to the receiving sensor in
question. However, trying to marry these results together for
the whole system under the NC protocol would involve a
detailed analysis of the trees and is certainly impractical to
analyze.

We divide the Reliability per unit LifetimeR (n) /L (n) into
three sections according to the value range of n, which are:
10 ≤ n ≤ 120, 130 ≤ n ≤ 210 and 220 ≤ n ≤ 300.
In the first of these regions the function R (n) /L (n) may be
approximated by

0.12609+ 0.002226n (9)

FIGURE 5. (a) R/L model (red), R/L data points (blue), 10 – 120 sensors;
(b) R/L model (red), R/L data points (blue), 220 – 300 sensors.

or equivalently since this work has determined L(n) in the
previous section

R(n) = 0.12609× L(n)+ 0.002226× n× L(n),

for 10 ≤ n ≤ 120. (10)

This indicates that 12.5% of the Lifetime figure represents
a lower bound for the Reliability, but that the Reliability per
unit Lifetime will increase by about 2% of the Lifetime as the
number of sensors is increased by 10.

In Figure 5, the rate R (n) /L (n) reaches its highest level
and stays constant at about 0.3779, so that the Reliability is
about 38% of the Lifetime figure for 130 ≤ n ≤ 210.
In the last region the rate decreases, this can be satisfacto-

rily explained by the fact that the Lifetime may be considered
to be constant in this region and thus increasing the number
of sensors just increases the complexity of communication to
the sink node. The rate R (n) /L (n) can be approximated by

0.549282− 0.000832666n, for 220 ≤ n ≤ 300. (11)

So, in this region 55% of the Lifetime is an upper bound for
the Reliability, but this decreases by about 0.8% for each extra
10 sensors.

The base evaluation model provides a simple analytic
relationship between Lifetime and Reliability. But also due
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FIGURE 6. A diagram of gaussian model for lifetime, obtained by the
gaussian fitting.

to its simplicity, the prediction ability is not satisfying,
and leaves more space for us to examine more modeling
methods.

V. GAUSSIAN EVALUATION MODELS
A. THE GAUSSIAN FITTING
The Gaussian distribution (a.k.a Normal distribution) is
a continuous distribution within the exponential family,
which is widely used in the scientific and engineering
areas. An one-dimensional Gaussian distribution is param-
eterized by its mean and variance, and is usually denoted
as N (µ, σ 2), whose probability density can be expressed
as:

p(x;µ, σ 2) =
1

√
2πσ 2

e−
(x−µ)2

2σ2 . (12)

The Gaussian distribution has a lot of good properties, among
which the most important one is that it has the maximal
entropy for a given variance within the continuous distri-
bution, i.e., it encodes the least prior information about the
data generation process. Moreover, the central limit theorem
ensures that when a large number of independent random
variables are summed up, their normalized sum tends toward
a normal distribution, even when their original variables are
not normally distributed.

In this section, we choose a more general form of the
Gaussian function to fit our observations. The key differ-
ence between the Gaussian distribution and this more general
Gaussian function is that the Gaussian distribution has to be
rescaled by a multiplier, commonly known as the partition
constant Z , to ensure it integrate to one. When our observed
data are not bounded to follow a probability distribution,
we can express the Gaussian function in this more general
form:

Gi (x) = Ai × exp

(
(x − Bi)2

C2
i

)
(13)

Fitting a Gaussian function involves finding the best values
for parameters A, B, and C that best fit the data we observed.

A technique called Maximum Likelihood Estimation (MLE)
is most widely used if the fitted function is a probability
density, which involves constructing the likelihood function
of product form and transform it into sum of log. Here, we are
fitting a Gaussian distribution with a similar idea, which
can be analogous to fitting a polynomial equation, but using
Gaussian function instead.

Assuming a dataset contains a list of number pairs (xi, yi),
for i = 1, 2, . . . ,N , which can be described by a Gaussian
function:

yi = ymax × exp

(
−
(xi − xmax)

2

S

)
(14)

where xmax, ymax, and S denote the peak-height, peak-
position, and half-width of the Gaussian curve respectively,
which are the three parameters of interest. Then, we can turn
both sides of the equation into the logarithm scale, and get the
following equation:

ln yi = ln ymax −
(xi − xmax)

2

S
5

=

(
ln ymax −

x2max

S

)
+

2xixmax

S
−

x2i
S

(15)

Now, let

zi = ln yi, b0 = ln ymax −
x2max

S
, b1 =

2xmax

S
, b2 = −

1
S
(16)

Thus, we can reduce the problem of fitting a Gaussian
distribution to the problem of fitting a polynomial equation.

zi = b0 + b1xi + b2x2i =
[
1 xi x2i

] b0b1
b2

 (17)

B. GAUSSIAN MODEL FOR LIFETIME
Based on the Gaussian model, we first experiment with the
Lifetime value with respective to the number of sensors.
In our baseline evaluationmodel, we break thewhole function
between the number of sensors and Lifetime into two parts.
However, we model this by simply creating a hard cut in
the domain, and fit the two separate sets of parameters for
each. A more sensible way is to introduce a ‘‘mixture’’ model
that consists of two sub-components, whose domains are both
the entire interval of the whole function, both contributing
to the final outcome by adding-up together their individual
values. When the Gaussian function is chosen, we have a
well-known Gaussian Mixture Model (GMM). According to
the definition of the Gaussian fitting, the function family our
fitting procedure searches through is in the following form:

y=a1×exp

(
−

(
x−b1
c1

)2
)
+a2×exp

(
−

(
x−b2
c2

)2
)

(18)
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After fitting the data subject to the confidence interval
of 95%, we get

y = 525.2 exp

(
−

(
x + 1.896
0.5519

)2
)
+ (1.504e+ 17)

× exp

(
−

(
x + 1464

251

)2
)

(19)

where x is normalized by mean 155 and std. 88.03. Then,
several significant parameters can be obtained as follows:

Goodness of fit:

SSE: 6524,
R-square: 0.9835,
Adjusted R-square: 0.98,
RMSE: 16.49.

From the points of the Lifetime, we find that these points
form a trend of decline in straight lines with the increase of the
number of sensors when the number of sensors is less than 50,
which shows that the Lifetime ismore sensitive to the changes
in the number of sensors in this phase.

When the number of sensors ranges from 50 to 100,
the speed of the Lifetime drop slows down, implying that the
sensitivity of the Lifetime on the number of sensors starts to
decrease, but its negative impact has not yet vanished. When
the number of sensors is greater than or equal to 100, the Life-
time curve tends to keep horizontal with slight negative slope,
until the function gradually converges to a value between
200 and 230, meaning that the number of sensors no longer
has impact on the Lifetime. Telling from this curve, we may
induce the conclusion that the Lifetime will continue to keep
stable at this value, when the number of sensors is above 300.

C. GAUSSIAN MODEL FOR RELIABILITY
Similarly, we also assume that the function between the num-
ber of sensor and the Reliability is a mixture of two Gaussian
functions, which can be written as:

y=a1×exp

(
−

(
x−b1
c1

)2
)
+a2×exp

(
−

(
x−b2
c2

)2
)

(20)

Subject to the 95% confidence bounds, the fitting result is

y = 7.26× exp

(
−

(
x + 1.417
0.3511

)2
)
+ 89.12

× exp

(
−

(
x + 0.4427

5.132

)2
)
, (21)

where x is normalized bymean 155 and std. 88.03. The fitting
result gives us a diagram shown in Figure 8, as well as an
analytic result shown below:

Goodness of fit:

SSE: 8.779,
R-square: 0.9871,
Adjusted R-square: 0.9844,
RMSE: 0.6048.

After study the experimental diagram, we observe that the
Reliability shows a trend of increase with a linear proportion
to the number of sensors when the number of sensors is less
than 40, and reaches its maximum value when the number of
sensors is 40, which implies that the number of sensors plays
a positive role in Reliability. When the number of sensors is
between 40 and 100, this number starts to play a negative role
in Reliability, which means that more sensors will cause the
decrease of the Reliability. When the number of sensors is
between 100 and 150, the curve of Reliability tends to keep
constant, whose valuemostly lies in the range between 87 and
90. This phenomenon proves that the number of sensors is the
main factor affecting Reliability. Therefore, we can predict
that Reliability will keep declining trend when the number of
sensors is over 300.

VI. MULTIVARIATE EVALUATION MODEL
In this part of the work, we use a three-dimensional polyno-
mial equation to model the relationship with regard to Reli-
ability, Lifetime and the number of sensors, using a surface
function in the form of:

f (x, y) = p0,0 + p1,0x + p0,1y

+ p2,0x2 + p1,1xy+ p0,2y2

+ p3,0x3 + p2,1x2y+ p1,2xy2 (22)

Subject to the confidence interval of 95%, we obtain that:

p00 = 1.329e+ 04 (−4.774e+ 04, 7.433e+ 04)

p10 = −298.4 (−645.5, 48.79)

p01 = −253.3 (−1581, 1074)

p20 = 0.4937 (0.05945, 0.928)

p11 = 5.523 (−1.468, 12.51)

p02 = 1.272 (−5.942, 8.486)

p30 = −0.0002371 (−0.0003863,−8.791e− 05)

p21 = −0.004449 (−0.008888,−1.006e− 05)

p12 = −0.02606 (−0.0611, 0.008984)

Goodness of fit:
SSE: 8743

R-square: 0.9778
Adjusted R-square: 0.9694

RMSE: 20.4
Meanwhile, we can also come up with a set of three-

dimensional distribution diagrams, as shown in Figure 8.
In Figure 8 (a), we notice that the Lifetime and Reliability

show a trend of decline in straight lines and relevant func-
tion becomes convergent with the increase of the number of
sensors. From the picture, we can screen out the range of the
number of sensors to achieve a compromise between Lifetime
and Reliability. For example, when Lifetime is greater than
260 and Reliability is greater than 85, the range of the number
of ranges from 50 to 100.

Mapping a surface to a two-dimensional direction will get
the distribution diagram of any two elements. In Figure 8(b),
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FIGURE 7. A diagram of gaussian model for reliability, obtained by the
gaussian fitting.

we see that 40 is a key point for the number of sensors.
In Figure 8 (c), when the number of sensors is between
20 and 60, Reliability shows an insensitive phenomenon.
However, when the number of sensors is over 60, there is a
significant change in Reliability, that is, positive in pre-stage
and negative in post-stage.

The overall analysis shows that the number of sensors
affects the performance of Lifetime and Reliability directly.
The number of sensors less than 50 is an important indicator
of building a sensor system, which ensures higher Lifetime
and Reliability.

This approach combines three significant evaluation
parameters together. This is great contribution of this paper
as we can discover the number of sensors if we set both
a good value of Lifetime and Reliability. According to the
above evaluation model, the suitable number of sensors can
be obtained. Thus, the simulation will not be necessary before
deploying real sensors.

VII. CRITIQUE
The main drawbacks of the approach can be explained as
follows:

The first disadvantage is that there are no experiments on
real sensors within this paper. The reason why such exper-
iments have not been undertaken is due to the high cost
for the large number of sensors that would be required. All
the equations obtained in this work are based on simulation
results. There probably exist differences between simulated
and real results, which can only be rectified by performing
some experiments on a test bed of real sensors.

Some real-life applications, such as detection of tempera-
ture and moisture in a vineyard, would have sensors placed
rather than randomly positioned. The simulations in this the-
sis do not cover this scenario, although placed sensors should
generally perform better than randomly distributed one from
the viewpoint of the user.

The setting of the simulation area is fixed and the sink node
is located in the middle of this area. The reason for this set-
up is that it has military (and other) applications, such as a
warship at sea (the sink node) deploying sensors to detect

FIGURE 8. A three-dimensional distribution diagram obtained by fitting
the polynomial multivariate model.

another vessel. Another obvious choice for the position of the
sink node is in one of the corners, but placing the sink node
in the center utilizes the symmetry of the square deployment
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area. So, the equations obtained in thesis have limitations as
well.

There may be limitations to which the results are scalable,
if the network area was increased to a 100 by 100 meter-
square, the results for a small number of sensors in such a
large area might demonstrate some new behavior.

VIII. CONCLUSIONS
In this paper, deriving from a series of experiments under-
taken in the J-Sim simulation tool several conclusions emerge
for NC:

The Reliability for this application increases as the num-
ber of sensors increases to 40, when it reached its highest
value. It then essentially decreases as the number of sensors
increases from 40 to 300.

The Lifetime decreases as the number of sensors increases
to 130, and then it fluctuates slightly as the number of sensors
increases to 300. The Lifetime reaches its lowest value when
the number of sensors is 220, whereas the highest value of the
Lifetime occurs when there exist 10 sensors.

Base evaluation models have been proposed in this paper.
It provides a simple relationship between Lifetime and Reli-
ability. However, the prediction ability of it is limited largely
due to its simplicity.

Gaussian fitting models have been proposed in this paper.
These models show significantly better fit result than our
base models. Based on these equations, the parameters of
Lifetime and Reliability can be predicted directly without
further simulations.

A multivariate evaluation model has been constructed in
this paper. Three significant parameters, Lifetime, Reliability
and Density respectively, are combined in this evaluation
model. Based on this evaluation model, the suitable number
of sensors can be obtained if the users set the value of Relia-
bility and Lifetime.
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