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ABSTRACT This paper proposes a deep cerebellar model articulation controller (DCMAC) for adaptive
noise cancellation (ANC). We expand upon the conventional CMAC by stacking single-layer CMAC
models into multiple layers to form a DCMAC model, and derive a backpropagation training algorithm
to learn the DCMAC parameters. Compared with the conventional CMAC, the DCMAC can characterize
nonlinear transformations more effectively because of its deep structure. Experimental results confirm that
the proposed DCMAC model outperforms the CMAC in terms of residual noise in an ANC task, showing
that the DCMAC provides enhanced capability to model channel characteristics.

INDEX TERMS Cerebellar model articulation controller, deep learning, adaptive noise cancellation.

I. INTRODUCTION
The goal of an adaptive noise cancellation (ANC) system is
to remove noise components from a signal. In ANC systems,
linear filters are widely used for their simple structure and
satisfactory performance under general conditions, where
least mean square (LMS) [1] and normalized LMS [2] are two
effective criteria to estimate the filter parameters. However,
when the unknown system has a nonlinear and complex
response, a linear filter may not provide optimal performance.
Accordingly, some nonlinear adaptive filters have been devel-
oped. Successful examples include the unscented Kalman
filter [3], [4] and the Volterra filter [5], [6]. Meanwhile,
the cerebellar model articulation controller (CMAC), which
belongs to the feed forward neural networks, has been used
as a complex piecewise linear filter [7], [8]. Experimental
results confirmed that CMAC can provide satisfactory per-
formance in terms of mean squared error (MSE) for nonlinear
systems [9], [10].

A CMAC model is a partially connected perceptron-like
associative memory network [11]. Owing to its peculiar
structure, it overcomes fast growing problems and learn-
ing difficulties when the amount of training data is lim-
ited as compared to other neural networks [8], [12], [13].
Moreover, because of its simple computation and good gen-
eralization capability, the CMAC model has been widely
used to control complex dynamical systems [14], nonlinear
systems [9], [10], robot manipulators [15], and multi-input
multi-output (MIMO) control [16], [17].

More recently, deep learning has become a part
of many state-of-the-art systems, particularly computer
vision [18]–[20] and speech recognition [21]–[23].
Numerous studies indicate that by stacking several shallow
structures into a single deep structure, the overall system
could achieve better data representation and, thus, more
effectively deal with nonlinear and high complexity tasks.
Successful examples include stacking denoising autoen-
coders [20], stacking sparse coding [24], multilayer non-
negative matrix factorization [25], and deep neural networks
[26], [27]. In this study, we propose a deep CMAC (DCMAC)
framework, which stacks several layers of single-layered
CMACs. In addition, we derive a backpropagation algorithm
to train the DCMAC effectively and efficiently. Experimental
results on ANC tasks show that the DCMAC provides better
results than conventional CMAC in terms of MSE scores.

The rest of this paper is organized as follows:
Section 2 introduces the structure of the CMAC and the
learning algorithm to compute the parameters, and presents
the structure of the DCMAC and the backpropagation
algorithm. Section 3 shows the experimental setup and
results. Finally, the conclusion and future work are presented
in section 4.

II. PROPOSED ALGORITHM
A. SYSTEM OVERVIEW
Fig. 1 shows the block diagram of a typical ANC sys-
tem containing two microphones, one external and the
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FIGURE 1. Block diagram of an adaptive noise cancellation system.

other internal. The external microphone receives the noise
source signal n(k), while the internal microphone receives
the noisy signal v(k). The noisy signal is a mixture of the
signal of interest s(k) and the damage noise signal g(k).
Therefore, v(k) = s(k) + g(k), where g(k) is generated
by passing the noise signal n(k) through an unknown chan-
nel F(·). The transformation between n(k) and g(k) is usually
nonlinear in real-world conditions [28]. The ANC system
aims to compute a filter, F̂(·), which transforms n(k) to h(k),
so that the final output, (v(k)− h(k)), is close to the signal of
interest, s(k). The filter F̂(·) is modeled by a parametric func-
tion, whose parameters are usually estimated by minimizing
the MSE.

Recently, the concept of deep learning has garnered great
attention. Inspired by deep learning, we propose a DCMAC
framework, which stacks several layers of the single-layered
CMAC, to construct the filter F̂(·), as indicated in Fig. 1.
Fig. 2 shows the architecture of the DCMAC, which is com-
posed of a plurality of CMAC layers. The A, R, and W
in Fig. 2 denote the association memory space, receptive field
space, and weight memory space, respectively, in a CMAC
model. In the next section we will detail these three spaces.
In Fig. 2, the DCAMC is formed by L CAMCs. The input
signal to the DCAMC is x, and the output signal is yL . The
output of the first layer CMAC (y1) is treated as the input for
the next CMAC layer. By using such multi-layer processing,
the DCMAC can better characterize the nonlinear transfor-
mations, and thus achieve an improved noise cancellation
performance.

FIGURE 2. Architecture of the deep CMAC (DCMAC).

B. STRUCTURE OF A CMAC MODEL
This section reviews the structure and parameter-learning
algorithm of the CMAC.

FIGURE 3. Architecture of a CMAC.

1) STRUCTURE OF A CMAC
Fig. 3 shows a CMAC model with five spaces: an input
space, an association memory space, a receptive field space,
a weight memory space, and an output space. The main
functions of these five spaces are as follows:

1) Input space: This space is the input of the CMAC.
In Fig. 3, the input vector is x = [x1, x2, · · · , xN ]T ∈ RN ,
where N is the feature dimension. We quantize each input
variable into discrete regions, and the number of regions is
denoted by Ne.
2) Association memory space: This space holds the excita-

tion functions of the CMAC, and it has a multi-layer concept.
Please note that the layers here (indicating the depth of asso-
ciation memory space) are different from those presented in
Section 2.1 (indicating the number of CMACs in a DCMAC).
To avoid confusion, we call the layer for the association
memory ‘‘AS_layer’’ and the layer for the CMAC number
‘‘layer’’ in the following discussion. Fig. 4 shows an example
of an associationmemory space with a two-dimensional input
vector, x = [x1, x2]T with N = 2. The LB and UB are
lower bound and upper bound, respectively. We first divide
x1 into blocks (A, B) and x2 into blocks (a, b). Next, by
shifting each variable an element, we obtain blocks (C, D) and
blocks (c, d) for the second AS_layer. Likewise, by shifting

FIGURE 4. Architecture of the CMAC with a two-dimensional vector
(N = 2).
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another variable, we can generate another AS_layer. In Fig. 4,
we have four AS_layers, with each AS_layer having two
blocks, and therefore, the block number is eight (NB = 8)
for one variable; accordingly, the overall association memory
space has 16 blocks (NA = NB × N ). Each block contains an
excitation function, which must be a continuously bounded
function, such as the Gaussian, triangular, or wavelet func-
tion. In this study, we use the Gaussian function [as shown
in Fig. 4]:

ϕij = exp

[
−
(
xi − mij

)2
σ 2
ij

]
for j = 1, 2, · · · ,NB

and i = 1, 2, · · · ,N , (1)

where mij and σij represent the mean and variance, respec-
tively, of the i-th input of the j-th block in the association
memory space.

3) Receptive field space: In Fig. 4, areas formed by blocks
are called receptive fields. The receptive field space has eight
areas (NR = 8): Aa, Bb, Cc, Dd, Ee, Ff, Gg, and Hh. Given
the input x, the j-th receptive field function is represented
as [9], [10]:

bj =
∏N

i=1
ϕij = exp

[
−

(∑N

i=1

(
xi − mij

)2
σ 2
ij

)]
. (2)

In the following, we express the receptive field functions in
the form of vectors, namely, b = [b1, b2, . . . , bNR ]

T . In this
study, we set NR = NB.
4) Weight memory space: This space specifies the

adjustable weights of the results of the receptive field space:

wp =
[
w1p,w2p, . . . ,wNRp

]T for p = 1, 2, . . . ,M , (3)

whereM denotes the output vector dimension.
5) Output space: From Fig. 3, the output of the CMAC

is [9], [10]:

yp = wTp b =
∑NR

j=1
wjpexp

[
−

(∑N

i=1

(
xi − mij

)2
σ 2
ij

)]
,

(4)

where yp is the p-th element of the output vector,
y = [y1, y2, · · · , yM ]T . The output of state point is the
algebraic sum of outputs of receptive fields (Aa, Bb, Cc, Dd,
Ee, Ff, Gg, and Hh) multiplied by the corresponding weights.

C. PARAMETERS OF ADAPTIVE LEARNING ALGORITHM
To estimate the parameters in the association memory, recep-
tive field, and weight memory spaces of the CMAC, we first
define an objective function:

O(k) =
1
2

∑M

t=1
[et (k)]2 =

1
2

∑M

t=1
[yt (k)− dt (k)]2,

(5)

where the error signal et (k) indicates the error between the
desired response dt (k) and the filter’s output yt (k), at the
k-th sample. Based on Eq. (5), the gradient descent method

can be used to derive the update rules for the parameters in a
CMAC model:

mij (k + 1) = mij(k)+ µm
∂O
∂mij

,

where

∂O
∂mij
= bj

2(xi − mij)

(σij)2

(∑M

t=1
et (k)wjt

)
;

σij (k + 1) = σij(k)+ µσ
∂O
∂σij

, (6)

where

∂O
∂σij
= bj

2(xi − mij)2

(σij)3

(∑M

t=1
et (k)wjt

)
;

wjp (k + 1) = wjp(k)+ µw
∂O
∂wjp

, (7)

where

∂O
∂wjp

= ep(k)bj, (8)

whereµm andµσ are the learning rates for updating the mean
and variance in the association memory functions, and µw is
the learning rate for the adjustable weights.

D. PROPOSED DCMAC MODEL
This section describes the structure of a DCMAC (as shown
in Fig. 2) and the corresponding learning algorithm.

1) STRUCTURE OF THE DCMAC
From Eq. (4), the output of the first layer y1 is obtained by

y1p =
∑N 1

R

j=1
w1
jpexp

−
∑N

i=1

(
xi − m1

ij

)2
σ 12
ij


, (9)

where y1p is the p-th element of the output of y1, and N 1
R

is the number of receptive fields in the first layer. Next,
the correlation of the output of the (l-1)-th layer (yl−1) and
that of the l-th layer (yl) can be formulated as

ylp =
∑N l

R

j=1
wljpexp

−
∑N l

i=1

(
yl−1i − mlij

)2
σ l

2

ij


,

l = 2 ∼ L, (10)

where N l is the input dimension of the l-th layer (output
dimension of the (l − 1)-th layer); N l

R is the number of
receptive fields in the l-th layer; ylp is the p-th element of the
output of yl ; mlij, σ

l
ij, and w

l
jp are the parameters in the l-th

CMAC; L is the total number of CMAC in a DCMAC.
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2) BACKPROPAGATION ALGORITHM FOR DCMAC
Assume that the output vector of a DCMAC is yL =
[yL1 , y

L
2 , . . . , y

L
ML ]

T
∈ RM

L
, where ML is the feature dimen-

sion, the objective function of the DCMAC is

O(k) =
1
2

∑ML

t=1
[yLt (k)− dt (k)]

2
. (11)

In the following, we present the backpropagation algorithm to
estimate the parameters in the DCMAC. Because the update
rules for ‘‘means and variances’’ and ‘‘weights’’ are different,
they are presented separately.

1) The update algorithm of means and variances: The
update algorithms of the means and variances for the last
layer (the L-th layer) of the DCMAC are the same as that
of CMAC (as shown in Eqs. (6) and (7)). For the penultimate
layer (the (L − 1)-th layer), the parameter updates are based
on:

∂O

∂zL−1ip

=
∂bL−1p

∂zL−1ip

∂O

∂bL−1p
, (12)

where bL−1p is the p-th receptive field function for the
(L−1)-th layer. We define δL−1zp =

∂O
∂bL−1p

of the p-th receptive

field function in the (L − 1)-th layer. Then, we have

δL−1zp =

NL
R∑

j=1

∂bLj
∂bL−1p

∂O

∂bLj

=

∑NL
R

j=1

∑ML−1

t=1

∂yL−1t

∂bL−1p

∂bLj
∂yL−1t

δLzj , (13)

where bLj is the j-th receptive field function for the L-th layer,
yL−1t is the t-th element of the yL−1, NL

R is the number of
receptive fields in the L-th layer, and ML−1 is the feature
dimension of yL−1. Notably, by replacing z with m and σ in
Eq. (13), we obtain δL−1mp and δL−1σp

.

Similarly, we can derive δL−2zp , for the p-th receptive field
function in the (L − 2)-th layer by:

δL−2zp =
∂O

∂bL−2p

=

∑NL−1
R

j=1

∂bL−1j

∂bL−2p

∂O

∂bL−1j

=

∑NL−1
R

j=1

∑ML−2

t=1

∂yL−2t

∂bL−2p

∂bL−1j

∂yL−2t
δL−1zj , (14)

where bL−1j is the j-th receptive field function for the
(L − 1)-th layer, yL−2t is the t-th element of the yL−2, NL−1

R
is the number of receptive fields in the (L − 1)-th layer, and
ML−2 is the feature dimension of yL−2.
Based on the gradient descent method, the learning algo-

rithm of mlip (the i-th mean parameter in the p-th receptive

field in the l-th layer) is defined as

mlip(k + 1) = mlip(k)+ µml
∂blp
∂mlip

δlmp; (15)

similarly, the learning algorithm of σ lij (the i-th variance
parameter in the j-th receptive field in the l-th layer) is defined
as

σ lip(k + 1) = σ lip(k)+ µσ l
∂blp
∂σ lip

δlσp , (16)

where µml in Eq. (15) and µσ l in Eq. (16) are the learning
rates for the mean and variance updates, respectively.

2) The update algorithm of weights: The update rule of the
weight in the last layer (the L-th layer) of the DCMAC is the
same as that for the CMAC (as shown in Eq. (8)). For the
penultimate layer (the (L−1)-th layer), the parameter update
is:

∂O

∂wL−1jp

=
∂yL−1p

∂wL−1jp

∂O

∂yL−1p
. (17)

where yL−1p is the p-th element of the yL−1. Then, we define
δL−1wp =

∂O
∂yL−1p

:

δL−1wp =

NL
R∑

j=1

∂bLj
∂yL−1p

ML∑
t=1

∂yLt
∂bLj

∂O

∂yLt

=

∑NL
R

j=1

∂bLj
∂yL−1p

∑ML

t=1

∂yLt
∂bLj

δLwt , (18)

Similarly, we have

δL−2wp =

NL−1
R∑
j=1

∂bL−1j

∂yL−2p

ML−1∑
t=1

∂yL−1t

∂bL−1j

∂O

∂yL−1t

=

NL−1
R∑
j=1

∂bL−1j

∂yL−2p

ML−1∑
t=1

∂yL−1t

∂bL−1j

δL−1wt . (19)

where yL−2p is the p-th element of the yL−2.
According to the gradient descent method, the learning

algorithm of wljp (weight for the j-th receptive field and the
p-th output in the l-th layer) is defined as

wljp(k + 1) = wljp(k)+ µwl
∂ylp
∂wljp

δlwp , (20)

where µwl is the learning rate for the weights.

III. EXPERIMENTS
A. EXPERIMENTAL SETUP
In the experiment, we consider the signal of interest s(k) =
sin(0.06k) multiplied by a white noise signal, normalized
within [−1, 1], as shown in Fig. 5 (A). The noise sig-
nal, n(k), is generated by white noise, normalized within
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[−1.5, 1.5]. A total of 1200 training samples are used in
this experiment. The noise signal n(k) will go through a
nonlinear channel generating the damage noise g(k). The
relation between n(k) and g(k) is g(k) = F(n(k)), where
F(·) represents the function of the nonlinear channel. In this
experiment, we used 12 different functions, {0.6 · (n(k))2i−1;
0.6 · cos((n(k))2i−1); 0.6 · sin((n (k))2i−1), i = 1, 2, 3, 4} to
generate different damage noise signals g(k). The signal of
interest s(k) and different noisy signals v(k), associated with
three channel functions, namely, F = 0.6 · (n(k))3, F (·) =
0.6 · cos((n(k))3), and F (·) = 0.6 · sin((n(k))3) are shown
in Figs. 5 (A), (B), (C), and (D), respectively.

FIGURE 5. (A) Signal of interest s(k). (B–D) Noisy signal v (k) with three
channel functions.

We followed reference [8] to set up the parameters of the
DCMAC, as characterized below:

1) Number of layers (AS_layer): 2 and 4
2) Number of blocks (NB) = 8.
3) Number of receptive fields (NR) = 8.
4) Association memory functions:

ϕij = exp
[
−(xi − mij)2/σ 2

ij

]
, i = 1; j = 1, · · · ,NR.

Signal range detection is required to set the UB and LB
necessary to include all the signals. In this study, [UB LB] =
[3 −3] gives the best performance. Please note that the main
goal this study is to investigate whether DCMAC can yield
better ANC results than a single-layer CMAC. Therefore,
we report the results using [3 −3] for both CMAC and
DCMAC in the following discussions. The initial means of
the Gaussian function (mij) are set in the middle of each
block (NB) and the initial variances of the Gaussian func-
tion (σij) are determined by the size of each block (NB). With
[UB LB] = [3 −3], we initialize the mean parameters as:
mi1 = −2.4, mi2 = −1.8, mi3 = −1.2, mi4 = −0.6,
mi5 = 0.6, mi6 = 1.2, mi7 = 1.8, mi8 = 2.4, so that the
eight blocks can cover [UB LB] more evenly. Meanwhile,
we set σij = 0.6 for j = 1, . . . 8, and the initial weights (wjt )
zeros. Based on our experiments, the parameters initialized

differently only affect the performance at the first few epochs
and converge to similar values quickly. The learning rates are
chosen asµs = µz = µw = µm = µσ = 0.001 (this learning
rates achieve better results in our preliminary investigation).
The parameters within all layers of the DCMAC are the
same. In this study, we examine the performance of DCMACs
formed by three, five, and seven layers of CMACs, which
are denoted as DCMAC(3), DCMAC(5), and DCMAC(7),
respectively. The input dimension was set as N = 1; the
output dimensions for CMAC and DCMACs were set as
M = 1 and ML

= 1, respectively.

B. EXPERIMENTAL RESULTS
This section compares DCMAC with different architectures
based on two performance metrics, the MSE and the conver-
gence speed. Fig. 6 shows the converged MSEs given by a
CMAC and a DCMAC under the three different structures
testing on the channel function F (·) = 0.6 · cos((n(k))3).
The three structures include (AS_layer = 2, Ne = 5),
(AS_layer = 4, Ne = 5), and (AS_layer = 4, Ne = 9), with
the three groups of results being demonstrated from the left to
right in Fig. 6. To compare the performance of the proposed
DCMAC, we have conducted experiments using two popular
adaptive filter methods, namely LMS [1] and the Volterra
filter [5], [6]. For a fair comparison, the learning epochs are
set the same for LMS, Volterra, CMAC, and DCMAC, where
there are 1200 data samples in each epoch. The parameters
of LMS and the Volterra filter are tested and the best results
are reported in Fig. 6. Please note that the results of LMS
and the Volterra filter are the same across the three groups of
results.

FIGURE 6. MSE of LMS, Volterra, CMAC, and DCMAC with channel
function F (·) = 0.6 · cos((n(k))3).

From Fig. 6, we see that DCMAC outperforms not only
conventional Volterra and LMS, but also CMAC under the
three setups. The results confirm the advantage of increas-
ing the depth of CMAC to attain better ANC performance.
We observed the same trends across 12 different channel
functions, and thus only the result ofF (·) = 0.6 · cos((n(k))3)
is presented as a representative.
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FIGURE 7. MSE of LMS, Volterra, CMAC, and DCMAC with three types of
channel functions. More results are presented in http://wimoc70639.
simplesite.com/419530354. (A) F (·) = 0.6 · (n(k))3. (B) F (·) = 0.6·
cos((n(k))3). (C) F (·) = 0.6 · sin((n(k))3).

Fig. 7 shows the convergence speed and theMSE reduction
rate versus the number of epochs, for different algorithms.
Speed is also an important performance metric in an adap-
tive filter. For ease of comparison, Fig. 7 only shows the
results of three-layer DCMAC (denoted as DCMAC in Fig. 7)
since the trends of DCMAC performances are consistent
across different layer numbers (as can be seen in Fig. 6). For
CMAC and DCMAC, we adopted AS_layer = 4, Ne = 5.
Fig. 7 shows the results of three channel functions, namely,
F (·) = 0.6 · (n(k))3,F (·) = 0.6 · cos((n(k))3), and
F (·) = 0.6 · sin((n(k))3). The results in Fig. 7 first show
that LMS and Volterra yield better performance than CMAC
and DCMAC when the number of epoch is few. On the
other hand, when the number of epoch becomes large, both
DCMAC and CMAC yield lower MSE scores compared to
that from LMS and Volterra, over all the three testing chan-
nels. Moreover, DCMAC consistently outperforms CMAC
with a lower converged MSE scores. The results also show
that the performance gain of the DCMAC becomes increas-
ingly more significant as the nonlinearity of the channels

increases. Finally, we note that the performances of both
DCMAC and CMAC became saturated around 400 epochs.
In a real-world application, a development set of data can be
used to determine the saturation point, so that the adaptation
can be switched off.

Simulation results of a CMAC and that of a DCMAC, both
for 400 epochs of training, are shown in Figs. 8 (A) and (B),
respectively. As compared with the results in Fig. 5, we note
that the proposed DCMAC can achieve better filtering perfor-
mance than that from the CMAC for this noise cancellation
system.

FIGURE 8. Recovered signal using (A) CMAC and (B) DCMAC, where
F (·) = 0.6 · cos((n(k))3).

Table 1 lists the mean and variance of MSE scores for
LMS, Volterra, CMAC, and DCMAC across 12 channel func-
tions. The MSE for each method at a channel function was
obtained with 1000 epochs of training. From the results, both
CMAC andDCMACgive lowerMSE than LMS andVolterra.
In addition to the results in Table 1, we adopted the dependent
t-Test for the hypothesis test on the 12 sets of results. The
t-Test results revealed that DCMAC outperforms CMACwith
P-values = 0.005.

TABLE 1. Mean and vairaince of 10 log10(MSE) scores for LMS, Volterra,
CMAC, and DCMAC over 12 channel fucntions.

IV. CONCLUSION
The contribution of the present study was two-fold: First,
inspired by the recent success of deep learning algorithms,
we extended the CMAC structure into a deep one, termed
deep CMAC (DCMAC). Second, a backpropagation algo-
rithm was derived to estimate the DCMAC parameters. Due
to the five-space structure, the backpropagation for DCAMC
is different from that used in the related artificial neural
networks. The parameter updates involved in DCMAC train-
ing include two parts (1) The update algorithm of means
and variances; (2) The update algorithm of weights. Exper-
imental results of the ANC tasks showed that the proposed
DCMAC can achieve better noise cancellation performance
when compared with that from the conventional single-layer
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CMAC. In future, we will investigate the capabilities of the
DCMAC on other signal processing tasks, such as echo can-
cellation and single-microphone noise reduction. Meanwhile,
advanced deep learning algorithms used in deep neural net-
works, such as dropout and sparsity constraints, will be incor-
porated in the DCMAC framework. We will also compare the
proposed deep models with other types of deep models in the
ANC task. Finally, similar to related deep learning researches,
identifying a way to optimally specify the number of layers
and suitably initialize parameters in DCMAC per the amount
of training data are important future works.
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