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ABSTRACT The rapid development of social media and location-based service has generated a myriad of
spatial data tagged with geo-information. Constructing a network of tourism hotspots using these geotagged
data would improve our understanding of tourism activities. Thus, using Flickr data, we built a spatially-
embedded tourism hotspot network for Beijing and applied complex network analysis to study the network
characteristics. The results indicate that the tourism hotspot network in Beijing is scale-free and small-
world. In the hotspot network, the interconnected triplets have a tendency to be formed by the edges with
greater weight values, and a high-weighted edge is often connected by two high-degree vertices. Moreover,
the statistics of the network provides insights for additional travel bus routes in Beijing. Finally, this paper
provides a guide for building spatially-embedded hotspot networks based on geotagged social media data,
which helps to understand the laws of travel and provides decision support for the development of tourism
resources.

INDEX TERMS Tourism hotspot network, complex network, geotagged data, social media, big data.

I. INTRODUCTION
The mobile Internet and social media have developed rapidly
in recent years. When travelling, tourists typically upload
photos, text, videos and other data to the Internet, recording
their travel behaviors thereby. In addition to being rich in text-
and image-based information, social media data are also rich
in geo-information. Both tourism hotspots and travel trajec-
tories of individuals could be extracted from geotagged social
media data [1]–[3]. Geotagged social media data enable a
new environment to observe travel behaviors (e.g., popular
attractions and routes) from a large number of travelers.

Complex network theory, which is widely used in geo-
graphical studies [4], [5], provides a new perspective to
investigate human mobility patterns based on social media
data. Numerous trajectories extracted from social media data
provide a basis to construct a spatially-embedded network of
tourism hotspots. Therefore, applying network theory to large
amounts of social media data containing geo-information
represents a powerful method to examine the characteristics

of tourism networks, which helps us better understand travel
behaviors.

Many complex real-world systems can be described
in the form of networks, including the World Wide
Web [6]–[8], the Internet [9], [10], and social net-
works [11]–[13]. A network, which is also called a graph,
consists of vertices or nodes and edges or links. Given that
tourism has become one of the most significant forces for
change in the world [14], the application of complex network
theory to tourism geography has the potential to reveal the
complex characteristics of tourism hotspot networks and to
realize the multi-view deep perception of places, routes, and
networks. We are capable of exploring the space-time distri-
bution patterns and laws of tourism hotspots. Furthermore,
it is expected to provide insights for the recommendation of
attractions, route prediction and other studies.

Beijing is the political, cultural and scientific center
of China and contains more than 200 tourist attractions.
Flickr is an image- and video-hosting service used by travel
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enthusiasts from all around the world. Whereas Flickr is not
used extensively by Chinese users, a large number of foreign
users who travel to China post photos and videos on Flickr,
making it possible to use Flickr data in Beijing to study travel
behaviors especially for foreigners.

In this study, we extracted tourist attractions from geo-
tagged Flickr data in Beijing and utilized the travel trajec-
tories of users to construct a spatially-embedded tourism
hotspot network and then evaluated its characteristics. The
main contributions of this paper are: 1) a method for
constructing a spatially-embedded tourism hotspot network
based geotagged social media data; and 2) an analysis of
the characteristics of the spatially-embedded tourism hotspot
network. The results are expected to provide insights for the
identification and development of attractions, routes predic-
tion and travel bus route design.

The remainder of this paper is organized as follows:
Section II illustrates related work; Section III elaborates on
the method used to construct the tourism hotspot network;
Section IV details the characteristics of the tourism hotspot
network; and Section V describes conclusions and future
work.

II. RELATED WORK
With the rise in the popularity of social media and the
emergence of big data, many scholars have exploited social
media data to build complex network models and uncover the
characteristics of complex networks [15]–[18]. For instance,
Centola [16] studied how social networks affect the spread
of behavior. Mislove et al. [18] demonstrated the power-law,
small-world and scale-free characteristics of online social
networks by retrieving data from more than 11.3 million
users and 328 million links of Flickr, YouTube, LiveJournal
and Orkut. Kumar et al. [19] presented a model of network
growth for the Flickr and Yahoo! 360 online social networks
communities.

Complex networks have been successfully applied in
tourism research as well. Miguéns and Mendes [20] dis-
cussed the importance of weights on the network connections
by analyzing the global travel network. Baggio et al. [21]
summarized the application of network science in tourism
research and concluded that network science methods are
highly valuable for enhancing our understanding of tourism
systems. Baggio and Cooper [22] demonstrated the utility
of network analysis in helping deliver tourism destinations
competitiveness.

Combining complex network science with tourism can
help people clearly understand changes in tourism activities
and the relationships among tourism elements. It can also help
people establish a cognitive system for tourism economics,
sociology and geography. Finally, applying complex network
theory to tourism contributes to identifying and designing
tourism hotspots and providing insights related to recom-
mended travel routes, the development and protection of
tourism resources and the construction of tourism facilities.

As a conclusion, tourism research based on complex net-
work theory primarily involves the collaborative patterns of
tourism researchers, the construction and investigation of
tourism destination networks based on public data, and the
exploration of tourism research methodology. In addition,
some scholars have constructed user relationships in com-
plex networks based on social media data and studied the
social network characteristics, growthmodel and propagation
model.

On the other hand, increasing numbers of scholars have
begun to study the geo-information contained in social media
data. Researchers applied these data to the identification
of urban centers [23], geopolitics [24], public safety [25],
the identification of photo locations [26] and other fields.
However, slight studies have examined tourists travel behav-
iors by using complex network methods to analyze geotagged
social media data. In fact, the rich geographic information
contained in geotagged social media data has given people
a great opportunity to study the establishment of spatially-
embedded tourism hotspot network, explore travel laws and
provide novel services such as travel recommendation and
travel route planning.

III. CONSTRUCTION OF THE NETWORK MODEL
Network construction involved three steps: (1) preprocessing
the data and removing redundant data; (2) clustering; and
(3) constructing the topological relationship among hotspots
and building the hotspot network.

A. DATA PREPROCESSING
Flickr provides a free application programming interface that
allows developers to access data. This study used metadata
from 213,938 geotagged photos taken in Beijing, China, from
January 1, 2005 to January 1, 2016 from 22,354 users world-
wide. After removing the distorted and redundant photos, data
from 185,531 photos remained. Figure 1 illustrates the spatial
distribution of Flickr photos in Beijing.

FIGURE 1. Spatial distribution of Flickr photos.
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B. CLUSTERING METHOD AND RESULTS
There are several approaches for clustering big sensor
data [27]–[29]. To achieve spatially clustering the geo-
tagged Flickr photos, we used a novel clustering algo-
rithm named Clustering by Fast Search and Find of Density
Peaks (CFSFDP) [30], which is based on two assumptions:
1) cluster centers are surrounded by neighbors with lower
local density; and 2) centers are at a relatively large distance
from any points with higher local density. The clustering
process in the CFSFDP algorithm proceeds as follows.

1) COMPUTING LOCAL DENSITY AND DISTANCE
The local density ρi of each point and its distance δi from
points of higher density are computed. Both these quantities
depend only on the distances dij between data points, which
are assumed to satisfy the triangular inequality. The local
density ρi of data point i is defined as

ρi = 6jχ
(
dij−dc

)
(3.1)

where χ (x) = 1 if x < 0, and χ (x) = 0 otherwise, and dc is a
cutoff distance. Basically, ρi is equal to the number of points
that are closer than dc to point i. The algorithm is sensitive
only to the relative magnitude of ρi at different points; this
implies that for large data sets, the results of the analysis are
robust with respect to the choice of dc. Then, δi is determined
by computing the minimum distance between point i and any
other point with higher density:

δi = minj:ρj>ρi dij (3.2)

In this step, the cutoff distance dc has a great effect for
clustering results, and is determined by the prior knowledge.
If the dc value is set too high, the final cluster will be
too large; otherwise, the cluster will be too small. Hence,
a moderate value is appropriate. We recommend that dc be
set to 10-50 meters, and the specific value should be adjusted
according to the total density of the point set to be classified.
If the overall point density is high, this value can be set lower;
otherwise, it will be set higher.

2) NOISE FILTERING
The region density threshold ρthr is determined in this step.
If the region density value ρi of one point is smaller than the
threshold value ρthr , this point is considered noise and is not
considered when determining the cluster center.

3) NORMALIZED PROCESSING TO OBTAIN
DECISION VALUES
The region density ρi and distance δi are calculated for each
point. These values are then used to obtain the normalized
region density ρ∗i and distance δ

∗
i . The decision values ωi are

calculated as ωi = ρ∗i · δ
∗
i . As mentioned before, the larger

the decision value ω of point has after removing noise points,
the more suitable it is to be selected as the cluster center.

4) GENERATING CLUSTERS
After the cluster centers are determined by ωi, the remain-
ing points are classified: an unclassified point pi belongs
to the category of the point whose distance from pi is δi;
after recursion any point would be assigned to the extracted
clusters.

Compared with the traditional spatial clustering method
such as DBSCAN, this clustering approach is significantly
higher in classification accuracy, enables distinguishing adja-
cent high-density areas, and has better adaptability in the
case of uneven density distribution [31]. Using this approach,
243 clusters i.e. ‘natural’ hotspots in Beijing were retrieved.
In addition to tourist attractions, we also retain some of the
hotspots closely related to travel, such as airports, hotels,
shopping malls and so on. Thus, there were 221 hotspots
as the data basis for building a spatially-embedded tourism
hotspot network. Two parts of the Beijing’s clustering results
are shown in Figure 2.

C. BUILDING THE NETWORK MODEL
We retrieved 221 hotspots, which are called vertices in the
network. Through clustering, the mapping between the user’s
historical check-in and the tourism hotspot was established.
In accordance with the chronological order, we generated
each user’s trajectory such as {Nanluoguxiang→ Tiananmen
Square → Palace Museum → Lama Temple → Summer
Palace}. Next, we considered two hotspots where one user
travels consecutively as one link between them. These two
hotspots are considered to be a hotspot pair and have only one
undirected connection between them. When a user accesses
a hotspot pair, tourist frequency (regardless of direction) on
the edge between the two hotspots increases by 1. Then,
we assigned tourist frequency as weights of edges in tourism
hotspot network. Thus, based on the extracted hotspots and
the topological links between them, a weighted and non-
directed network with 221 vertices and 3135 edges was
constructed.

The degree of network vertices ranges from 1 to 147, and
the built-up tourism hotspot network is visualized as Figure 3.
The spatially-embedded tourism hotspot network is explicitly
overlaid on the geographic map, with most edge weights less
than or equal to 10.

From the point of view of computational complexity, clus-
tering is the most time-consuming sub-process in network
construction. As for the clustering algorithm, the main cal-
culation steps are ‘‘computing local density and distance’’
and ‘‘generating clusters’’. When computing local density
and distance, there is a need to calculate the distance from
data point i to all other points, so the time complexity of this
step is O(n2). When generating clusters, it needs to iterate
through all the points, so the time complexity of this step is
O(n). In addition, as for the sub-process of preprocessing and
the sub-process of constructing the topological relationship,
all points need to be accessed, so the time complexity is O(n)
as well.
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FIGURE 2. Two parts of the clustering results. (a1) The Palace Museum without noise. (a2) The Palace Museum with noise. (b1) Drum and Bell
Tower-Shichahai without noise. (b2) Drum and Bell Tower-Shichahai with noise.

IV. NETWORK CHARACTERISTICS
A. SCALE-FREE CHARACTERISTICS
To describe the characteristics of the tourism hotspot net-
work, the following statistics are calculated.

The degree ki of vertex i is defined as the number of edges
connected to the vertex.

The degrees of vertices in weighted networks indicate the
topology of the network, that is, the most intuitive topological
measure of centrality [13]. The average degree of all vertices

in the network is the arithmetic mean of all vertex degrees,
defined as

〈k〉 =
1
N
6i= 1N ki (4.1)

where N is the number of vertices. The average vertex degree
reveals the universal state in which all vertices are connected
to others in a network.

The statistical results indicate an extremely uneven
distribution of tourism hotspots in Beijing; the average
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TABLE 1. Vertices ranking in top 10 in degree, strength and pressure.

FIGURE 3. Tourism hotspot networks in Beijing.

degree 〈k〉 is 28.37, while the maximum vertex degree
(Sanlitun Swire) is 143. The degrees of the top 20 hotspots
in the network are all greater than 80, and the vertices of
these high-degree hotspots provide important connections
within the spatially-embedded tourism network. These high-
degree vertices containmany famous attractions (e.g., Beijing
Nanluoguxiang, Tiananmen Square, Lama Temple, Palace
Museum and Summer Palace), entry-exit transportation hubs
(e.g., Beijing Capital International Airport), Sanlitun Swire,
Yintai Center, Wangfujing, Beijing 798 Art Zone, National
Center for the Performing Arts and other areas that integrate
shopping, art, business facilities and hotels. These vertices
are visited frequently by tourists and are closely related to
the other vertices in the network, making it easier to connect
with other vertices.

A more significant measure of the weighted network is the
vertex strength si [13], defined as

si = 6j∈Niωij (4.2)

where Ni is the set of vertices connected to vertex i, and
ωij is the weight of edge eij that connects vertices i and j
together.

The vertex strength, which is a localized synthetic measure
of the vertex, indicates the topology of vertices, as well as
the characteristics of edges. It also measures the popularity
of attractions in the tourism hotspot network.

The vertex pressure is calculated as the ratio of strength si
and degree ki, defined as

pi =
si
ki

(4.3)

The vertex pressure is the average weight of the edges,
which indicates the general popularity of the edges connected
to the vertex.

As shown in Table 1, the vertices which rank in top 10 in
degree, strength and pressure are listed, respectively. The
attractions whose name in bold font (i.e., Tiananmen Square,
the Palace Museum, Temple of Heaven, the Summer Palace,
Shichahai and Beijing Olympic Park) rank in top 10 in all
three statistical indicators. Then, all popular attractions are
spatially exhibited in Figure 4, making readers aware of their
geographical distribution. It’s observed that most popular
attractions in Beijing are located in the downtown area within
the second ring road.

The log-log plots of cumulative frequency versus vertex
degree, vertex strength, vertex pressure and edge weight
are shown in Figure 5, respectively. If the distribution is a
power-law distribution, the curve fitted in the log-log plot
should be a straight line. It’s observed that the distribu-
tions were fitted with four linear regression equations with
adjusted coefficients of determination of R2(a) = 0.7256,
R2(b) = 0.9159, R2(c) = 0.9865, R2(d) = 0.9870. The plots
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FIGURE 4. Thematic map of attractions ranking in top 10 in indicators of
degree, strength and pressure.

present power-law distributions, especially with a down-
ward bend in the tail in 5(a) and 5(b). Amaral et al. [32]
found similar downward bends in the degree distribution
of power station networks in California. The explanation
is that distance has a large impact on the connections
in the spatially-embedded network. Vertices (i.e., attrac-
tions or power stations) are spatially scattered, and the vertex
tend to be connected with nearby vertices, so the greater the
degree value, the less the vertices.

In geography, the interaction between objects decreases
as the distance increases [33]; in the tourism hotspot net-
work, a vertex is more likely to be connected to a proximal
vertex (i.e., two places are visited consecutively). In other
words, if the next destination is near the current location,
the probability of visiting that destination is high. In contrast,
if the next destination is far away from the current location,
the probability of access is low. Although in modern soci-
ety the convenience of traffic reduces the cost of travelling
between attractions, the ‘‘downward-bend’’ fact indicates that
the distance effect is still an important factor in the formation
of spatially-embedded network topology.

The above results indicate that the distribution of tourism
hotspots and links of them in Beijing generally follows a
power-law distribution, and the tourism hotspot network has
obvious scale-free characteristics.

B. CLUSTERING COEFFICIENT
The clustering coefficient is divided into a local clustering
coefficient and a global clustering coefficient.

The clustering coefficient in the unweighted networks
characterizes both the local and global topological prop-
erties of the network. Suppose that the degree of a ver-
tex i in an unweighted network is ki; that is, there are
ki vertices connected to the vertex, and these ki ver-
tices are called the adjacent vertices of vertex i. Then,
C2
ki is theoretically the largest number of edges between

the ki vertices. The actual number of edges between the ki
vertices is Ei.

The local clustering coefficient of unweighted networks is
the ratio of Ei and C2

ki [12], defined as

Cu
i =

Ei
C2
ki

=
2Ei

ki (ki−1)
(4.4)

The global clustering coefficient is measured based on the
vertex triplets. Triplet is divided into the closed triplet and the
open triplet.

The global clustering coefficient of unweighted net-
works [34] is defined as

Cu
=
Nct
Nt
=

Nct
Nct + Not

(4.5)

where Nct is the number of the closed triplets in the network,
Not represents the number of the open triplets, and Nt is the
sum of the two.

Considering the influence of the edge weights on the
formation of network topology, the clustering coefficient in
weighted networks are extended as follows.

The local clustering coefficient of weighted networks [13]
is defined as

Cw
i =

1
si (ki − 1)

6h, j

(
whi + wij

)
2

ahiaijajh (4.6)

where aij ∈ A, A is the adjacency matrix of the network; wij
indicates theweight of edge connected to vertex i and vertex j.

Obviously, only vertex j and vertex h, which constitute a
closed triplet with vertex i, and weights of edges ehi and eij are
involved with computation of the local clustering coefficient.
Thus, the value ofCw

i is between 0 and 1. The local clustering
coefficient in unweighted networks implies the probability of
that ‘‘friends’’ of vertex i are also ‘‘friends’’ with each other.
In weighted networks, the local clustering coefficient covers
not just the number of closed triplets in the neighborhood of
the vertex, but also their total weight relative to the strength
of the vertex [13].

The global clustering coefficient of weighted net-
works [35] is similar to that of unweighted networks,
defined as

Cw
=
Wct

Wt
=

Wct

Wct +Wot
(4.7)

where wct is the total weight of the closed triplets in the
network, wot represents the total weight of the open triplets,
and wt is the sum of the two.

Then, Cw(k) is defined as the average of the weighted
local clustering coefficient over all vertices with degree k ,
and Cu(k) is defined as the average of the unweighted local
clustering coefficient over all vertices with degree k . The
measure of Cw(k) provides global information on the corre-
lation between topology and weights. As shown in Figure 6,
it’s observed that almost 73% of Cw(k) values are greater
than that in the unweighted network, and only 15% of Cw(k)
values are less than the Cu(k) value. In addition, global
clustering coefficients Cw and Cu were calculated for the
tourism hotspot network, with values of 0.6643 and 0.4469,
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FIGURE 5. Log-log scatter plots of cumulative frequency versus vertex degree, vertex strength, vertex pressure and edge weight.
(a) Degree-frequency. (b) Strength-frequency. (c) Pressure-frequency. (d) Weight-frequency.

FIGURE 6. Cw (k) versus Cu(k) for the tourism hotspot network.

respectively (see Table 2). Inmost cases,Cw(k) is greater than
Cu(k), and Cw is greater than Cu, that is, the interconnected
triplets are more likely formed by the edges with greater
weights.

C. SMALL WORLD CHARACTERISTICS
In the graph theory, there is an illustrious conjecture named
‘‘six degree of separation’’, that is, the small-world theory.
The small-world characteristic is one of the most impor-
tant features of complex networks. In general, quantities
such as the clustering coefficient and the average path
length are utilized to illustrate small-world characteristics of

TABLE 2. The global efficiency and local efficiency of unweighted and
weighted tourism hotspot networks.

unweighted networks. However, the weight of edges should
not be neglected when portraying the small-world character-
istics of weighted networks. Thus, after defining the shortest
path length between vertices, a quantity, i.e. efficiency [36],
is introduced to determine whether a weighted network is
small-world.

1) SHORTEST PATH LENGTH
There are several approaches to identify the shortest path
in weighted networks [37], [38]. Dijkstra [37] proposed
an algorithm to find the path of least resistance, and the
edge weight represents the cost of transmitting [39]. How-
ever, in the spatially-embedded tourism hotspot network,
the edge weight, i.e. the frequency of visits, should not
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be resistance. Conversely, the greater the weight of the
edge, the less resistance to travel between the two vertices.
Therefore, numerical conversion should be performed to
explore the shortest path length. One of the most prevailing
method is to invert the tie weights [40], [41]. In addition,
Opsahl et al. [39] extended a shortest path algorithm by
taking into account the number of intermediary vertices,
which is adopted to compute the shortest path length in this
study.

The shortest path length [39] is defined as

dwα (i,j) = min
n ∈ pij
pij ∈ Pij

(
1

(wih)α
+ · · ·+

1(
whj
)α
)

(4.8)

where Pij is the set of all reachable path between vertex i
and vertex j, pij represents one of the paths, h is an inter-
mediary vertex, and α is a tuning parameter (assumed at
0.1 in order to smooth the difference between the edge
weights).

2) EFFICIENCY
A small world network has a high global efficiency and a
high local efficiency, which indicates that it is efficient in both
global and local communication [36]. The global efficiency
and the local efficiency of weighted networks are defined as
follows.

The global efficiency [36] of the weighted network is
defined as

Eglob = E (G) =
1

N (N−1)
6i6=j∈G

1
dij

(4.9)

where G indicates the whole network, N represents
the number of vertices in G, and dij is calculated by
Equation 4.8.

Suppose the local subgraph Gi is formed by the neighbor
vertices of vertex i, the local efficiency Eloc is defined as the
average efficiency of the local subgraphs [36]

Eloc =
1
N
6i ∈ GE (Gi) (4.10)

Even if considering the tourism hotspot network as an
unweighted one, that is, the weight of all edges is 1, the net-
work is still high efficient at global and local levels, with
global efficiency value 0.5352 and local efficiency value
0.7777. When taking into account the actual weight, Eglob
increases to 0.6049, and Eloc increases to 0.9523. The results
indicate that the tourism hotspot network is highly fault-
tolerant in addition to having the small-world characteristic.
This also means closure of few attractions would not have
a damaging impact on the overall structure of the tourism
network.

D. ASSORTATIVE NETWORK
In an unweighted network, if vertices with high degrees tend
to be connected with other high-degree vertices, the net-
work is said to have positive degree-degree correlation and

is called an assortative network. On the other hand, if high-
degree vertices tend to be connectedwith low-degree vertices,
the network is said to have negative degree-degree correlation
and is called disassortative network.

In order to quantify the assortativity of an unweighted net-
work, Newman [42] called degree-degree correlation as mix-
ing pattern and presented a method to calculate the Pearson
correlation coefficient, which is defined as the assortativity
coefficient of the network.

The Pearson correlation coefficient (i.e. assortativity coef-
ficient) of unweighted networks is defined as

r =
M−16eij∈Ekikj−

(
M−16eij∈E

(
ki+kj

) /
2
)2

M−16eij∈E
(
k2i +k

2
j

)/
2−
(
M−16eij∈E

(
ki+kj

)/
2
)2

(4.11)

whereM is the total number of edges of the network, E is the
edge set of the network, and ki and kj are the degrees of the
two vertices vi and vj of the edge eij.

The degree Pearson correlation coefficient r is in the range
of −1 ≤r≤ 1. When r is negative, the network is nega-
tively correlated (i.e., the network is disassortative). Alterna-
tively, when r is positive, the network is positively correlated
(i.e., the network is assortative). When r is zero, the network
is not correlated.

Then, the Pearson correlation coefficient can be extended
and applied to the weighted network as follows.

The weighted assortativity coefficient [43] is defined as

rw=
H−16eij∈Ewijk ikj−

(
H−16eij∈Ewij

(
ki+kj

) /
2
)2

H−16eij∈Ewij
(
k2i +k

2
j

)/
2−
(
H−16eij∈Ewij

(
ki+kj

)/
2
)2

(4.12)

where H is the total weight of all edges in the network,
and wij is the weight of the edge eij. Just like r , rw is also
between -1 and 1. In fact,rw would be reduced to r if the
weights of all edges are equal.

In real-world weighted networks with a positive assorta-
tivity coefficient, high-degree vertices could be connected to
small-degree vertices with less weights, while connected to
high-degree vertices with greater weights [43]. A case study
of world-wide airport network indicated that high-degree
airports could have a great number of flight directly to high-
degree airports, while have less number of flight to small-
degree airports [44]. The unweighted assortative coefficient
and weighted assortative coefficient of the tourism hotspot
network in this study were determined to be −0.2869 (r)
and 0.1087 (rw), respectively. On the one hand, the results
reveal that the unweighted assortativity coefficient is nega-
tive, which means the high-degree attractions tend to be con-
nected to low-degree attractions topologically. On the other
hand, the weighted assortativity coefficient is positive, which
illustrates the tourist flows among attractions are positively
correlated with the degrees of vertices.
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TABLE 3. Tourist flows of long-distance hotspot pairs.

FIGURE 7. Proposed new travel bus route (1).

E. HOTSPOT PAIRS AND TRAVEL BUS ROUTE DESIGN
As mentioned in Section III-C, two hotspots visited consecu-
tively by a user are called a hotspot pair, and the two hotspots
in a pair have only one direct connection between them.When
a user accesses a hotspot pair, the tourist frequency on the
edge between the two hotspots increases by 1.

Table 3 illustrates the triangular matrix of tourist flows
of long-distance (i.e., more than 5 kilometers) hotspot pairs.
The vertices described in Table 1 are (a) Summer Palace,
(b) Beijing Olympic Park, (c) Beijing 798 Art District,
(d) Sanlitun Swire, (e) Temple of Heaven, (f) Tiananmen
Square–Qianmen area, (g) Palace Museum, (h) Wangfujing,
(i) Beijing Capital International Airport, (j) Lama Tem-
ple, and (k) Nanluoguxiang–Bell and Drum Tower area.
The high-flow values (greater than or equal to 50) are in bold
font, and corresponding hotspot pairs should be given priority
in the design of new travel bus routes.

FIGURE 8. Proposed new travel bus route (2).

Although most tourist attractions in Beijing can be
accessed by public transportation, visitors may have a poor
travelling experience because of the multiple transit modes,
numerous connections, and long transit time. In consideration
of the tourist hotspot network characteristics along with the
current bus routes in Beijing, we proposed two new travel
bus routes to accommodate tourists: (1) the Summer Palace –
Beijing Olympic Park – Lama Temple – the Palace Museum
– Tiananmen Square – Qian Men – Temple of Heaven; and
(2) Beijing 798 Art District – Sanlitun Swire – Nanluoguxi-
ang – Bell and Drum Tower – Tiananmen Square – Qian Men
(see Fig. 7 and Fig. 8). On the one hand, these two travel
bus routes cover as far as possible the high-flow and long-
distance hotspot pairs; on the other hand, these two travel bus
routes cross the roads with better traffic conditions and thus
complement the existing travel bus routes in Beijing.
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V. CONCLUSIONS AND FUTURE WORK
This research introduced the networks science methods to
build a spatially-embedded tourism hotspot network and pro-
vide insights for the identification of attractions and travel
route design. The network vertices were retrieved by the
clustering algorithm and the original Flickr dataset. Then,
a spatially-embedded tourism hotspot network was built up
and complex network analysis was performed. The results
indicate that the network possesses several interesting char-
acteristics:

1) The vertex degree, strength, pressure and edge weight
are generally subject to power-law distributions, and
the network has obvious scale-free characteristics.

2) Cw > Cu indicates that the interconnected triplets are
more likely formed by the edges with larger weights.
The same happens for Cw (k).

3) The network is efficient at global and local levels no
matter it is weighted or not. The network has obvious
small-world characteristics. The high value of local
efficiency indicates that the network is highly fault-
tolerant.

4) The assortativity coefficient rw of the network is posi-
tive, indicating that the tourist flows among attractions
are positively correlated with the degrees of vertices.

5) Based on tourist travel patterns and existing tran-
sit options, two new travel bus routes had been
suggested.

This study constructed a spatially-embedded tourism
hotspot network in Beijing using the complex network theory.
The results are expected to help visitors to understand the
layout of tourist attractions in Beijing and plan reasonable
travel routes. The constructed network can also help travel
agencies and other organizations design, operate and sell
travel products, and help government departments to adjust
and add travel bus routes to enhance the tourism industry in
Beijing.

Given the recent advances in big data and machine learn-
ing, this work could be expanded on in the future in the
following two ways:

1) Explore the artificial intelligence based growth model
of the tourism hotspot network to provide more sugges-
tions of tourism development.

2) Apply complex network theory to recommend attrac-
tions and route prediction.

We believe that researchers will increasingly utilize geo-
tagged social media data and complex network theory in the
future to expand the scope of research in tourism field.
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