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ABSTRACT The decompressive laminectomy is a common treatment for lumbar spinal stenosis. Generally,
surgeons use grinding tools to remove laminae under the guidance of intraoperative medical images.
To improve accuracy and reduce surgeons’ burdens, robot-assisted surgery is gaining acceptance. This paper
proposes a method to plan grinding paths and velocities based on 3-D medical images in the context of
robot-assisted decompressive laminectomies. As the lesion areas to be grinded are irregular, an interactive
method with 3-D reconstruction is designed for surgeons to transfer discrete information about grinding
paths and velocities to the robot system. The path generation strategy is based on a ray casting algorithm
after space registrations, while the velocity generation strategy is based on the virtual force and mechanical
analysis is used to optimize temporal efficiency and stability. A complete system is developed to test and
explore the feasibility of this method. Results suggest that robot-assisted decompressive laminectomies can
be performed well.

INDEX TERMS Surgical robot, decompressive laminectomy, 3D image interaction, path planning, image-
driven velocity.

I. INTRODUCTION
Lumbar spinal stenosis (LSS) is a common orthopedic
complaint that causes a series of neurological symp-
toms [1], [2]. The decompressive laminectomy is a way of
treating LSS, in which the lamina is wholly or partially
removed, via unilateral or bilateral fenestration, using a high-
speed burr or piezosurgery to reduce the risk of spinal cord
injuries [3]–[6]. In long-time freehand operations, the grind-
ing allowance can be difficult to control and exacerbated by
surgeons’ physical fatigue, which may cause serious damage
to patients [7]. As shown in Fig. 1, hyperplasia or ossification
of the ligamentum flavum causes LSS, and the unilateral
lamina is grinded to a certain thickness to help relieve
compression.

Compared with freehand operations, surgical robots offer
advantages in terms of higher accuracy and reliability, ease

of interaction, substantially less scope for human fatigue,
and reduced risk of complications [8]–[10]. The first robot
system developed for assisting orthopedic operations was
the Robodoc system (Curexo Technology Corp, America).
Using this technology, surgeons can customize the grinding
scheme based on computed tomography (CT) images before
operations [11]. Later came the RIO system (MAKOSurgical
Corp, America), which can restrict operations by reverse driv-
ing force and real-time navigation [12]. For spinal surgery,
MazorX and Renaissance systems (Mazor Robotics Corp,
America) are series and parallel structures, respectively; they
are used to place pedicle screws based on CT images and nav-
igation [13]. These systems have different operation-specific
planning functions. For knee replacements, the femoral head
is completely labelled after 3D reconstruction, and such oper-
ations proceed using a constant grinding velocity. For spinal
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FIGURE 1. Compressed nerves caused by hyperplasia of ligamentum
flavum (left image) and normal nerves after unilateral fenestration
(right image).

implants, only two coordinates in a 3D image are needed to
determine the target screw path. However, the lesion areas
in decompressive laminectomies are irregular, and grinding
tends to be used locally with strict boundary requirements.
This paper proposes a methodology to plan the grinding path
and velocity based on 3D medical images for decompressive
laminectomies. The planning system includes 3D reconstruc-
tion, interaction, registrations, path generation, and image-
driven velocity.

The CT volume is grid structure data, where each cell is
assigned a volume fraction [14]. Lorensen and Cline [15]
developed a marching cubes algorithm to create triangle
models of constant density surfaces from volume data.
Lewiner et al. [16] configured more accurate topo-
logical models through look-up table improvements.
Lopes and Brodlie [17] modified the marching cubes algo-
rithm for isosurfacing to improve its robustness under pertur-
bations of the data and threshold value. Vignoles et al. [18]
proposed a simplified marching cubes algorithm without
the need for interpolation. The marching cubes algorithm is
important for the 3D reconstruction of CT data, which is the
basis of surgical planning. Segmentation is often performed
on medical images for diagnosis and treatment planning.
As medical images are noisy and lack contrast, segmentation
represents a major bottleneck in practical application [19].
Segmentation can be used to extract tissue and perform
independent reconstruction. Marian [20] automated the con-
ventional region-growing technique without initialization.
Stawiaski et al. [21] proposed an interactive segmentation
method based on graph cuts. Li et al. [22] proposed a
novel region-based level-set method for image segmentation.
Dakua and Abi-Nahed [23] developed a method for image
segmentation based on stochastic resonance theory. Although
these methods can improve the accuracy of reconstructions,
doing so is not necessary in practical applications. As the
lamina is objectively distinct from surrounding soft tissues
and lacks sharp edges and corners, reconstruction in this area
is usually smooth. Therefore, a bounding box is designed
for surgeons to extract the lamina structure freely and
conveniently.

In robot-assisted surgery, robot-to-patient and patient-to-
image registrations provide real-time position information

in the image system, which helps the surgeon to maintain
the requisite position and orientation. Intensity-based 3D to
2D rigid registration is the most common method used in
orthopedic surgery. Penney et al. [24] andKhamene et al. [25]
determined that the pattern intensity and gradient difference
performed best in registration. Maes et al. [26] explored
how various search strategies with respect to rigid and non-
rigid registration differentially affected precision and con-
vergence. Demirci et al. [27] introduced interpolation and
stent-editing techniques to handle occlusion and dissimilar-
ity during registration. Schwerter et al. [28] used this tech-
nique to recover and visualize the position of tools during
interventional surgery. Landmark-based registration exhibits
higher accuracy and clinical practicality because patient-
specific volume data can be collected during the operation.
Hajeer et al. [29] developed a software-based facial analysis
tool to evaluate the reproducibility of landmark identification.
Verhoeven et al. [30] assessed the efficacy of four regis-
trations for quantifying facial asymmetry. The most com-
mon algorithm used for registration is the iterative closest
point (ICP) algorithm. For further application, we construct a
registration block to realize space registrations automatically;
this avoids the errors and temporal inefficiencies associated
with manual operations by surgeons.

Velocity control during lamina grinding is important to
ensure the quality of operations and minimize robot inef-
ficacies caused by uncertainties inherent in complex envi-
ronments. Accordingly, intraoperative state recognition and
control techniques have received wide attention. State expres-
sions mainly include force and torque, current, sound and
vibration, etc. [31]–[41]. The force signal is widely used
as the input to the feedback control system of the robot
because its components are simple. With force coupling,
the current signal can also reflect the state of robot operations
after filtration. Wang et al. [42] proposed a robot grinding
system for decompressive laminectomies based on force con-
trol and revealed that the margin could be stably controlled
within 1 mm. Deng et al. [43] and Fan et al. [44] improved
the adaptivity of the robot to the complex surface of laminae
based on force fuzzy control. Zaheer et al. [45] proposed a
modular implementation scheme for fuzzy systemswith input
uncertainties. Jin et al. [46] and [47] derived an explicit bound
relationship between input noise and end-effector position
error. However, fuzzy control requires real-time feedback
from intraoperative signals, which may be noisy and lagged.
Moreover, the fuzzy rules need to be artificially designed,
and communication needs to be accurate during high-speed
transmission. Gray values in medical images contain prior
information about bone composition and thus exhibit a cou-
pling relationship with the force signal. Therefore, we define
a virtual force to plan the grinding velocity based on mechan-
ical analysis.

The remainder of the paper is organized as follows.
Section II describes an interactive 3D image-based methodol-
ogy for use by surgeonswhich includes 3D reconstruction and
lamina extraction. Section III introduces a method to generate
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the grinding path, which includes registrations among the dif-
ferent spaces. Section IV analyzes the on-operation dynamics
of a ball-end grinding tool and proposes an image-driven
velocity planning method based on virtual force. Section V
conducts experiments to explore the feasibility of the pro-
posed method. Finally, conclusions are drawn in Section VI.

II. MEDICAL IMAGE INTERACTION
Image-guided surgical navigation is the key technology to
realize precise surgical procedures. Surgeons analyze and
plan the patient’s lesion area in images, and the output from
this exercise is used to guide the robot to complete drilling and
grinding. The preoperative CT image has a high resolution
and a large imaging range, and the model’s surface is smooth
after 3D reconstruction which helps surgeons to create accu-
rate plans. However, a 2-3 mm bias is always present because
of elastic deformation of the spine. Moreover, the placement
of the patient affects the overall shape of the spine. Therefore,
an annular scan of the C-Arm can better reflect the actual
morphological features of the patient during the operation.
The lower definition of X-ray images leads to more noise
in 3D reconstruction, which may impede surgeons’ planning
of operations.

Compared with 2D medical images, 3D images are easy
to understand and intuitive for planning. The surgeon can
use a mouse to interact with the 3D image and observe the
spinal model from different directions. For the decompressive
laminectomy, the region of interest (ROI) is the lamina where
lesions occur, such as bone hyperplasia, and cause the spinal
nerves to be subjected to pressure. Therefore, a convenient
interaction method is needed for surgeons to quickly extract
the ROI in 3D images. Calculating the coordinates of feature
points on laminae is the most important task for robot control.

A. RECONSTRUCTION AND EXTRACTION
The original X-ray image series annularly scanned by
C-Arm is often associated with image artifacts focusing on
high density objects. Due to differences in radiation atten-
uation in bone tissue and the discontinuous directions of
irradiation, X-ray images have non-uniform intensities that
result in overlap in the searching area for some segmenta-
tion algorithms, such as region growing. Moreover, the bone
boundary is not sufficiently clear after adjusting the win-
dow level and width, such that it is difficult to solve the
gradient flow equation using the level-set algorithm. Indeed,
many segmentation algorithms cannot process X-ray images
effectively.

In Fig. 2, the spinal bone is placed in an arbitrary direction
and the lamina surface has a certain curvature in 3D space.
It is inconvenient to select the area to be removed by clicking
the mouse on 2D images layer by layer. Therefore, a 3D bone
model is built for interaction based on marching cubes, and a
bounding box is created around the reconstructed model for
manual selection of the ROI. The salient parameters for X-ray
image reconstruction are listed in TABLE 1, and results are
shown in Fig. 3.

FIGURE 2. X-ray image series of a sheep’s spine. The window level and
window width are set to 950 and 420, respectively. The displayed images
are resampled into an [0, 255] interval.

TABLE 1. Parameters for X-ray image reconstruction.

FIGURE 3. Interactive lamina extraction based on a bounding box
showing the original 3D image (left) and the extracted lamina where
out-of-box pixels are set to the minimal value in the bounding box (right).

In Fig. 3, the original 3D image (left) is noisy, which hin-
ders surgeons from planning optimal paths on the 3D lamina
model. The ideal situation is to show only those parts of the
lamina that need to be decompressed with model coordinates
that are consistent with the original. For medical imaging,
the window level range is [−1000, 1000], which means
the minimal value −1000 must be converted to zero after
reconstruction, and these pixels will appear black. Therefore,
creating a new copy where the out-of-box pixels are set to
a specified value that is smaller than the in-box pixels can
quickly rebuild the required area (right). These functions are
implemented and tested on the 3D image system developed
by our team.

The initial bounding box has only a translational relation
with the image coordinates. The six boundaries B also rep-
resent the coordinates of the six surfaces of the cube, so it is
easy to determine whether a space point is inside the cube.
Moreover, the surgeon can adjust the position and size of the
box freely according to his or her own needs.

The dynamic bounding box can be obtained from B
through Tb transformation. The elements in the Tb matrix are
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Algorithm 1 Interactive Extraction
1: B← initial boundaries [xs xe ys ye zs ze]
2: foreach pixel
3: P← current position [x y z]
4: IP← inverse Tb∗ P
5: if B[0] > IP[0] or B[1] < IP[0] or

B[2] > IP[1] or B[3] < IP[1] or
B[4] > IP[2] or B[5] < IP[2]

6: then pixel = specified value (e.g. −1000)
7: end
8: three-dimensionalmedian filtering
9: reconstruct data inmarching cubes method

computed during the interaction between the surgeon and the
3D image in real time. Tb is not a rigid transformation matrix
because of its translation, rotation, and unequal scaling. For
any pixel P in the 3D image, it is convenient to determine
whether P is in the dynamic bounding box after the T−1b
transformation. Based on this method, volume data can be
processed by Algorithm 1.

B. DISCRETE EXPRESSION OF LAMINA
The morphological equation of the lamina is continuous and
differentiable. The shape of the lamina surface is patient-
specific. Therefore, it is difficult to build a generic math-
ematic model to describe the grinding path in decompres-
sive laminectomies. The scheme is to realize path planning
through surgeon-bounding box interaction. After the lamina
model is extracted, the surgeon can adjust the box to enclose
the grinded area within the bounding box. The upper and
lower surfaces of the bounding box are down sampled to
reduce the amount of computation, and the remaining data
are sufficient to reflect the morphological features of lamina.
Each sampling point is treated as a unidirectional light source
that projects along the normal direction to the lamina surface.

As shown in Fig. 4, balls attached to the bone surface
are the points of intersection between light and lamina. The
upper points set (left) Qm describes the morphological fea-
tures of the upper surface, and the lower points set (right)
Qn describes the lower surface. Moreover, points set Qn is
configured as the constraint boundary of robot movements
to prevent instruments compromising the inner cortical bone
and thus to avoid causing spinal nerve injuries. The distri-
bution of light sources is homogeneous and calculated as
follows:

s =
bl
bw

(1)

where bl and bw are the length and width of the upper and
lower surface of the bounding box, respectively.

s [nw]2 + (s+ 1) [nw]+ (1− N) ≤ 0 (2)

where nw is the number of grids along the width direction, and
N is the maximum number of intersection points specified by
the surgeon. Herein, N is set to 48.

FIGURE 4. Discrete expression of lamina upper surface (left) and lamina
lower surface (right).

The number of lights along the width direction is [nw]+ 1,
where nw is the maximum value that satisfies formula (2).
After rectangular meshing, the intersection points can be
searched along the light direction according to given steps.
However, to reduce computational complexity, the 3D recon-
struction reserves only the data reflecting external surface
features; thus, the thickness of the actual volume data is only
one pixel and may cross the surface during the search for
intersection points because the interior is hollow. For this
problem, we use the BSP-Tree method to search intersection
points.

III. GRINDING PATH PLANNING
The actual grinding path of the robot is not only Qm and Qn
generated from the 3D image. The data in the image space {I}
should be converted into the robot space {R}. This process
is denoted {I} to {R} registration. It is inconvenient for sur-
geons to establish the mapping between {I} and {R} directly;
we can use a binocular stereo vision system, such as the
NDI Polaris Vicra System (Canada), to establish an additional
coordinate {N} and collect the target coordinates by reading
the positions of the probe tip to complete the registration
indirectly. For decompressive laminectomies, the bone can be
treated as a rigid body, and the transformation matrix is also
a rigid matrix. Therefore, registration is quick when using the
ICP method. After the coordinates in space {I} are converted
into space {R}, the data can be used in robot control.

As the depth of grinding is about 2-6 mm, it is not rea-
sonable to grind down to the specified position in a single
intervention. Therefore, an interpolation algorithm is needed
to generate more layers for grinding operations. The points in
space {R} after registration are distributed in a potential two-
dimensional manifold with a small curvature. The Euclidean
distances of point pairs existing in upper and lowermanifolds,
respectively, are different. After interpolation, each layer has
a different manifold structure. The grinding path is generated
layer by layer, while allowance can be specified if needed.
When the robot proceeds along the path, instantaneous accel-
eration during the grinding operation can be controlled by
setting the blend radius, which means arcs instead of sharp
angles are used to reduce the impact of movement on the
system. This mode can render the robot safer and more stable
in grinding operations.
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FIGURE 5. Grinding tool offsets calculation based on the least squares
method. FA is a calibration table with a sharp point, whereas FB is a
spherical concave surface. Vector un is the nth pose where n is
at least 4 (set to 6 herein).

A. ROBOT REGISTRATION
The robot registration includes two parts: adding offsets to the
end of the robot tool, and establishing the mapping between
the two spaces {I} and {R}. In our research, medical grinding
equipment, the XIYI electrokinetic skeletal system (China),
is used. Its maximum speed is constant at 80000 rpm, and
it has a spherical emery bit. The position information read
from the robot system is the center of its own end {E} in the
robot basic coordinate {B}; however, the control path works
on the edges of the grinding bit {G}. The translation offset EGP
should be added to the kinematics of the robotic system, while
rotation one E

GR is treated as per the unit matrix. To generate
the robot’s spatial path {R}, the transform matrix R

I T needs
to be optimized to establish the mapping of data in space {I}.

As shown in Fig. 5, a calibrationmodel is constructed using
a 3D printer and then fixed on the experimental platform.
There are two kinds of calibration tables, FA and FB, for
calculating the offsets. FA has a sharp point for calibration
of the specified position on the tool’s surface, while FB has a
spherical concave surface for calibration of the center of the
spherical tool. In the calibration process, we drag the robot
in free drive mode and adjust the position of the grinding bit
edge onto the tip of FA in different poses recorded as vectors
set {U | u1 u2 . . . un}. The ith vector ui includes two parts
B
EPi and

B
ERi, both of which are expressions of {E} relative

to {B}.

J
(
ui,uj

)
=

ui · uj

‖ui‖2 +
∥∥uj∥∥2 − ui · uj

(3)

where J is the generalized Jaccard coefficient used tomeasure
the similarity between two vectors. Any two pose vectors in
U should have a small J to guard against data invalidity.

1Pki = GBPk − B
EPi (4)

B
GP

k+1
=

B
GP

k
+

1
n2

n∑
i=1

∥∥∥1Pki
∥∥∥ · n∑

i=1

1Pki∥∥1Pki
∥∥ (5)

where k is the iteration number. The initial fixed point BGP
0

can be calculated as the mean of the position vectors in U.
After the termination condition is satisfied or a pre-

specified number of iterations is reached we can get an
estimate of the spatial position of the fixed point {B}.

FIGURE 6. Registration block constructed using PSU material. The
material can be transmitted by X-ray. The block is enclosed by six steel
balls 1 mm in diameter, distributed asymmetrically in three layers.

The iteration number specified herein is large enough to avoid
stoppage before satisfying the termination condition; if this
were not the case, results generated could be inaccurate and
unusable. The position offset E

GP is calculated according to
formula (6).

E
GP =

1
n

n∑
i=1

B
ER
−1
i ·

(
B
GP̂−

B
EPi

)
(6)

For calculating the transform matrix R
I T, it is reasonable

to combine the navigation system with both the robot and
3D image to complete registration indirectly. Here, we use
the NDI system. As already noted, NDI is a binocular stereo
vision system that can read the pose information of a marker
in {N}. Moreover, it can read more than 10 markers simulta-
neously. To ensure accurate tracking data, a basic marker MB
is set and fixed near the registered object, while other markers
are tracked relative to MB. For this process, we can move the
NDI device freely without affecting the coordinates that are
read from the system. If more accurate tracking is required,
active infrared markers can be used.

As shown in Fig. 6, a registration block is constructed
to form the feature points in image space where coordi-
nates can be obtained using a mouse. To quickly identify
the corresponding coordinates of these points in space {N},
a marker MR is fixed on this block, and all of the steel balls’
coordinates relative to MR are calibrated before tracking. The
registration block is fixed onto the registered object when
using the C-Arm scan, and the steel balls’ coordinates in
space {N} are collected at the same time by tracking MR.

N
I T̂ = argmin ξ

(
N
I T,SI,SN

)
(7)

where N
I T is the rigid transform matrix from space {I} to

space {N}. SI and SN are two points sets in {I} and {N},
respectively. Each element in SI has a corresponding item in
SN. ξ is the objective function constituted by the Euclidean
norm.

The registration between {I} and {N} involves finding
a transform matrix N

I T to satisfy the condition that points
in SI have a minimal distance measurement with SN after
transformation. The ICP method is used to optimize this
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TABLE 2. Parameters for ICP method matrix optimization.

FIGURE 7. Schematic diagram of the lamina with tags. Vector Nd is
pointing from the lower to upper surface. The white and pink areas
are cortical and cancellous bone, respectively.

matrix, and the parameters for matrix optimization are listed
in TABLE 2.

The registration process between {N} and {R} is similar
to the foregoing process. A probe with marker MP is used
to collect the position of the edge of the grinding bit in
space {N}, and the corresponding position in space {R} is
read from the robot system after offsets are added at the same
time.

R
NT̂ = argmin ξ

(
R
NT,SN,SR

)
(8)

where R
NT is the rigid transform matrix from space {N} to

space {R}. SR is the points set in space {R}. Parameters for
ICP optimization are as per TABLE 2.

R
I T =

N
I T̂ ·

R
NT̂ (9)

The transform matrix R
I T can be calculated using for-

mula (9). After this process, the NDI system can be removed.
The surgeon can sample the surfaces of the lamina in the
3D image and send these data to the robot system after
R
I T transformation.

B. Intermediate Interpolation
The thickness for grinding is usually about 2-6 mm, and the
thick bone structure cannot be removed by a single grinding
intervention. An intermediate interpolation process is needed
to generate more points between the upper and lower surfaces
after transformation. The maximum thickness of one layer is
specified as d mm, and the number of layers is calculated
according to the maximum Euclidean distance of the point
pairs.

As shown in Fig. 7, the bone surface has a certain curvature
in {R}. The lower points set is and virtual constraint surface
are used as points for path generation, which prevents the
grinding bit from causing damage to the spinal nerves. Vector
Nd is parallel to the lines formed by each point pair, and it
points from the lower to upper surface. The layers of inter-
mediate interpolation change in shape along Nd according to

the shape of the upper and lower surfaces. As the distances
between point pairs differ, the feed rate varies from place
to place. The maximum distance D of pairs is calculated by
comparing the lengths of the np vectors, where np is the pair
number without point pairs of two identical coordinates. For
decompressive laminectomies, the inner cortical bone of the
lamina usually has a grinding margin M, which is smaller
than D.

nc =
[
D−M

d

]
+ 1 (10)

where nc is the number of grinding layers. M is always
smaller than D. If nc equals 1, the lamina can be removed
through a single intervention.

Algorithm 2 Intermediate Interpolation
1: Nn← normalize Nd
2: for i← 1 to np
3: US[i]← upper surface data [x y z]
4: LS[i]← lower surface data [x y z]
5: NLS[i]← LS[i] +M ∗ Nn
6: end
7: 1← || US – NLS || / (nc – 1)
8: foreach layers
9: MS += US – 1∗ layers
10: if layers% 2 = 1
11: then flip data in current layer inMS
12: end

Intermediate interpolation is processed by Algorithm 2.
Vector NLS is the new lower surface after adding grinding
margin M, and SM is the final vector including the grinding
path for the robot. By flipping the data in the odd layers,
interpolated data can be linked head to tail for every two
layers. This process can reduce the overall length of the
robot’s path. Every three points in the path are assigned a
blend radius to ensure that the robot can move smoothly.

C. OFFSET CORRECTION
For many reasons, registration errors are inevitable, and the
accuracy of the robot can also cause position deviation.
Generally, the {I} to {R} registration error can be con-
trolled within 0.5 mm by using a registration block with
active markers. The offset correction is worth taking into
consideration.

The actual start position of the instrument is within a small
range of the ideal position Pstart. As shown in Fig. 8, θoffset
is the offset angle, and Poffset is the distance between the
actual start position and Pstart. As θoffset and Pstart are both
sufficiently small, compensation can be approximated as the
distance between the instrument tip and the bone surface
along the line in which the point pair is located. This process
can be realized automatically by contact detection based
on the force signal. Offset correction can improve grinding
accuracy, but the impact is only marginal.
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FIGURE 8. Schematic diagram of sufficiently small position offsets.
Compensation is approximated as the distance between the instrument
and bone along the line in which the point pair is located.

IV. GRINDING VELOCITY PLANNING
How long lamina grinding takes depends on not only the
length of the planned path, but also the control of velocity.
Recently, a number of studies have analyzed on-operation
force signals and used these signals for feedback control,
such as via the fuzzy logic controller (FLC). This scheme
is highly accurate and exhibits good real-time performance,
but it increases the complexity of the system because of the
integration of force sensing. Additionally, some researchers
have hitherto controlled the robot according to changes in
the current during the grinding process. Although the current
is positively correlated with force, expression of the signal
is not stable enough because of electromagnetic interfer-
ence or characteristics of the motor itself. Medical images
contain important information with prior knowledge and,
accordingly, image-driven velocity control is proposed.

Anatomically, the lamina has two bone structures: cortical
and cancellous. The cortical bone is dense and can resist
external shocks well, while the cancellous bone has a loose
porous structure that can rapidly attenuate external vibra-
tion. Therefore, the cortical bone has a larger gray value
than the cancellous bone in X-ray images. After appropriate
adjustment of the window level and width, we can obtain
a gray expression related to the force signal. X-ray images
often contain noise related to the sensitivity of the device
imaging module. If the mapping between image and force
was only based on the gray value of a pixel, many unde-
sirable virtual force signals would be apparent, causing the
robot to make erroneous decisions vis-à-vis velocity control.
As virtual forces corresponding to interpolation positions are
calculated before robot movement, it is not necessary to use
the FLC for online velocity control. When the virtual cutting
force is large, the robot needs to slow down to reduce the
cutting depth in unit time. Moreover, we have established
the mapping between the virtual force and velocity based on
dynamics.

A. VIRTUAL FORCE MAPPING
The virtual force is based on gray values distributed on the
sagittal, coronal, and transverse planes. Rather than being
fixed, the distribution of gray values in the images varies
depending on the window level and width settings. The thick-
ness of the bone edge in images is negatively related to level,
and the coverage range of the bone is positively related to

FIGURE 9. The influence of window level and width on the distribution of
gray values in an image: 1150/190 (left, used in our system),
890/190 (middle); 1150/760 (right).

FIGURE 10. Virtual force mapping based on a weighted circular region.
R is the radius of the user-specified region. g is the pixel gray value of
pixel, which varies with r and ϕ. w is the weight of the virtual force.

width. The gray values can be treated as prior knowledge of
the grinding force. The robot should slow down to maintain
system stability; otherwise, it will cause the drive current of
the motor to approach or exceed the rated value, indicating
that the output power is insufficient to complete cutting of
the bone. In this case, if the robot keeps moving, it may cause
abnormalities in the system and even damage to the patient.

As shown in Fig. 9, the cancellous bone has a smaller gray
value than the cortical bone. Therefore, the force generated
when the robot grinds in cancellous bone is smaller than in
cortical bone. Due to equipment noise and environmental
heterogeneities, the intensities of the X-ray image are uneven.
This causes erroneous mapping of the virtual force. To solve
this problem, we select the circular region adjacent to the
target pixel as the mapping source. Based on this algorithm,
the robustness of the mapping can be effectively improved.

As shown in Fig. 10, the circular region is controlled by R,
which we have set at 2.5 mm. The center point of the circle
is the selected pixel point. The weight of the virtual force
decreases for pixels farther away from center, and the weight
w belongs to [0, 1]. By a weighted process, we can reduce
the effect of cortical bone on the edges of the region. In the
robot controller, each interpolated point is mapped back into
space {I}, and a computing request is sent to the image
program via the sharedmemory to calculate the related virtual
force. The program returns the result when the operation is
completed.

The gray value in the image with window parameter set-
tings is generally rescaled to [0, 1]. For sensitivity control vis-
à-vis the cortical bone, a threshold t is added to the interval.
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FIGURE 11. Physical model for non-linear velocity control. The radius of
the grinding bit is rb, and movement proceeds along the x axis at
velocity vx . The y-axis depth is δy , and the average fracture
stress of bone is σb.

When the gray value is larger than t , g always equals 1.

Smax=

R∫
0

2πrw (r) dr ≈
∑
s∈�

w (s) (11)

where Smax is the maximum virtual force with a specified R.
s is a pixel in circular region �. r(s) is the radius related to s.

S (p)=

R∫
0

2π∫
0

rw (r) g (p, r, ϕ)dϕdr ≈
∑
s∈�

w (s) g (s, p)

(12)

where S is the current virtual force in current pixel p.

Fv (p) =
Ŝ (p)

Ŝmax
(13)

where Fv is the normalized virtual force.
In actual computation, g is discrete and cannot be

expressed by a function. Normally, we set two accumulators
to deal with these pixels, and the normalized result is calcu-
lated by (13). The virtual force can be controlled by window
level and image width. For lamina grinding, the gray value of
cancellous bone with larger voids is often adjusted to 0, while
it is set to 1 for the outer surface of bone.

B. DYNAMICS
The external environment of grinding operations is a type of
impedance and source of uncertainties. As dynamic interac-
tion between two physical systems must be complementary,
the robot system must be an admittance; thus, the input is
effort, while the output is flow. Herein, the virtual force is
treated as effort, and the velocity is the object to be controlled.
We propose a non-linear strategy to control the velocity based
on the dynamic characteristics of grinding. The physical
model for control is built under ideal conditions.

As shown in Fig. 11, the ball-end grinding tool is used with
radius rb and rotation speed nb. The thickness of grinding
layer δy varies with position and is calculated in the path gen-
eration process. The shape of the cutting edge and the friction

of chips are both discounted to simplify the mathematical
model for expository purposes. The cutting depth in unit time
related to the velocity of the robot needs to be controlled in a
reasonable range according to motor performance.

ds =
rb√

r2b − y
2
dy (14)

The infinitesimal element ds is expressed by (14). The
main and effective cutting area can be calculated by integrat-
ing the surface that contacts the cutting edges of the grinding
bit along the velocity direction.

dM = πaxσb
(
r2b − y

2
)
ds (15)

where dM is the infinitesimal torque generated by the cutting
depth ax and ds during grinding.

ϕ
(
δy
)
= 1−

δy

rb
(16)

1M = 1
∫
δy

dM =
π1axσbr2b

2

(
arc cosϕ −

√
ϕ2 − ϕ4

)
(17)

where 1M is the rate of change in torque, 1a is the rate of
change in cutting depth and δy is the thickness, which is no
less than 0.

For dynamic control, the device output power should be
stabilized under rated power P0. Thus, there exists a control
factor kc ∈ (0,1] to specify the target torque Mc.

Mc = kc
ηP0
nbrb
· Fv (p)+km1ax +1M (18)

where η is the energy conversion efficiency of the device,
measured experimentally before the product leaves the fac-
tory. The friction coefficient km is a constant related to the
length and material of the grinding tool. The second item on
the right side is a simplified expression of the rod deflection
equation, which is used to calculate the torque caused by
internal friction.

1vx =
1axnb
60

=
Cb (1− Fv)

Cm + arccosϕ −
√
ϕ2 − ϕ4

(19)

where Cb is a constant derived by formula (18) related to
motor performance, grinding bit size, and cutting materials.
The maximum 1vx can be expressed by setting ϕ and Fv
to 1 and 0, respectively; Cb can then be replaced by Cm and
the velocity range.

vc = 1vx + vmin =
Cm (vmax − vmin) (1− Fv)

Cm + arccosϕ −
√
ϕ2 − ϕ4

+ vmin

(20)

where vc is the velocity to be controlled based on virtual
force. vmax and vmin are the maximum and minimum user-
specified velocities, respectively.

Velocity mapping is shown in Fig. 12. For position- depen-
dent lamina thickness, the depth in each layer is not fixed,
indicating that ϕ varies when grinding; ϕ is calculated before
grinding for velocity control purposes.
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FIGURE 12. Non-linear velocity control based on the dynamic
characteristics of grinding. Cm is used to adjust the control law
(which equates to the shape of the surface). vmax and vmin are
set to 25 and 10 mm/s, respectively.

FIGURE 13. Experimental platform for decompressive laminectomy
constituted by an SRAS system, an NDI tracking system, and
a UR5 system.

V. EXPERIMENT
A. SETUP AND PROCESS
To implement a robot-based decompressive laminectomy,
a Universal Robot UR5 (Denmark) with payloads of up
to 5 kg is used in our experiment to test the planned path and
velocity control. An integrated program named as Surgical
Robotic Auxiliary System is developed, which includes 3D
image interaction using VTK/ITK libraries, probe tracking
through serial communication, and a UR5 control system
via a 30003 real-time control port. The relevant algorithms
delineated above are also integrated. The average experi-
mental object margin is used to assess feasibility, and force
signals are used to evaluate the running state with different
Cm values.

In Fig. 13, a pig scapula fixed by a bench clamp is used
as the experimental object after removing all soft tissues.
The registration between 3D image and robot using a probe
with a passive marker is accomplished as per the foregoing
description. The robot and motor controllers are only used
to turn on the robot system and manually adjust the rotation
speed of the ball-end grinding tool, respectively. The grinding
tool is fixed on the end of the robot with a custom holder
produced by a 3D printer. Holder screws provide sufficient

FIGURE 14. Block diagram of operation process. Image data are X-ray
image series annular scanned by C-Arm. The free drive mode is only
effective before running. The rotation speed is set as required for the
surgical instrument.

FIGURE 15. Block diagram of the registration sub-process. Image
registration error is usually sufficiently small when using the registration
block. Data collected in robot registration should be asymmetrical.

clamping force to overcome the axial force exerted on the tool
during grinding.

The operation process is delineated in Fig. 14. Fig. 15
provides details of the registration sub-process in Fig. 14.
The surgeon interacts with the image after 3D reconstruction
by using the bounding box to realize lamina extraction and
discrete expression. The registration is divided into two parts:
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TABLE 3. Experimental bone grinding parameters.

image and robot registration. The image registration error is
usually sufficiently small using the registration block, but this
conclusion does not transfer to robot registration. A marker
can be permanently fixed on the base of the robot and reg-
istered into the robot coordinate {R} only once with the
above method. In subsequent use, the robot can be registered
directly by the tracking system. During the running stage,
fusion recognition [35, 37] keeps working for safety monitor-
ing in an independent thread with high priority. Where data
are abnormal, the programwill initiate the stop command and
cut off the power supply.

B. FEASIBILITY VERIFICATION
The parameters for bone grinding are listed in TABLE 3.
The I-N and N-R mean points data are transformed from
space {I} to {N} and from space {N} to {R}, respectively.
According to prior commercial and research experiences,
an error around 1 mm is acceptable. The rotation speed of
the tool changes throughout the grinding process because of
the lag in current for feedback control and other factors. The
fluctuation is kept at 3000 rpm. The end-of-robot velocity is
controlled in a range of 10-25 mm/s.

When the grinding operation begins, the end of the tool is in
contact with the upper cortical bone, causing a rapid increase
in the force signal mainly along the z-axis. The grinding mar-
gin M is set to 1 mm in our experiment, which accords well
with expectations of the thickness of the lower cortical bone.
The real force signals along the x-axis and y-axis fluctuate
in a limited range, and Cm has no significant influence on
them. As shown in Fig. 16, three methods are used to test
the velocity control, and each curve is independent. These
forces mainly fluctuate around 15-30 N. As the burr needs
to move a small distance during layer switching, it has an
instantaneous impact on the grinding bone, which causes
the peaks after contact with the upper bone. In addition,
the uneven distribution of tissues has an effect on the force
signals. The FLC is tested as [43, 44] with a larger velocity
mapping. The time consumptions of the methods are listed in
TABLE 4. The packet time is less than 1 s. As the packet
process precedes robot movements, it is negligible from a
clinical perspective. The communication response is tested as
follows. A new thread is created to keep detecting the running
status of the robot and Boolean flag in register. The program
starts when the ‘‘1 mm movement’’ command is sent out,
and the register is set to be true. The timer stops when the
movement is completed, and the time spent in this process is

TABLE 4. System response (1 mm movement) and stability comparison.

TABLE 5. Bone grinding results for different Cm.

FIGURE 16. Force values during scapula grinding with Cm equal to 0.7.
The average force is calculated using original force signals in three
orthogonal directions.

calculated as the running response. It has a similar method for
calculating the interrupt response. Only FLC needs to keep
real-time communication during the grinding operation. The
stability of this process is evaluated by the standard deviation
of force signals. In empirical testing, ourmethod is superior in
most cases. The response delay has a substantive impact on
the FLC method because there is an error of approximately
1 mm in each response cycle, which is non-trivial in this
context.

The values listed in TABLE 5 are averages obtained by
multiple measurements. As shown in Fig. 17, the margin M
is calculated as the average of four thicknesses measured
at different positions. Theoretically, the greater the Cm, the
shorter the time used in grinding the same bones, and the
mean and variance of the force are positively related to Cm.
However, it is important to note that the margin M is not the
same as the force.When Cm is about 0.5, the margin is closest
to the set value; when Cm is small, the controlled velocity
has a substantive difference in the transition region, which
causes system instability in this case. When Cm is large,
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FIGURE 17. Margin M after grinding, calculated as the average of four
different grinding surface positions. The precision of the measuring tool
is 0.001, and the range is 0-25 mm.

the minimum velocity in the denser region does not adapt
well to bone changes, which cause systemic instability. The
maximum force shows that this path and velocity planning
method can appropriately perform the grinding operation
with Cm equal to 0.5, and an acceptable margin of the bone
with an error less than 1mm. The error mainly emanates from
the registration procedure; active markers and additional tags
should be used to improve the accuracy of registration.

VI. CONCLUSION
This paper proposes an interactive 3-D-image-based method
for surgeons to plan the path and velocity of robot systems.
Low definition images scanned by C-Arm are used for 3D
reconstruction. Surgeons can adjust a bounding box in a
3D image (using a mouse) to select regions of interest, and
the lamina is expressed by discrete points that can describe
various surfaces. Discrete point distributions are calculated
automatically according to the shape of the bounding box.
The BSP-Tree is used to search the intersection points to
minimize computational demands.

The registration method is designed to convert coordinates
from image space into robot space, and a path generation
strategy incorporating margin design and offset correction
is introduced. For convenient mapping between two spaces,
a tracking system is used as the transition frame with a fixed
active marker as the basic coordinate. A landmark-based
method utilizing an ICP algorithm is used in registrations.
As the bone layer is too thick to accomplish the necessary
grinding in a single intervention, an interpolation algorithm is
used to generate a grinding path between the upper and lower
surfaces, taking the specified margin and error correction into
account.

As medical images play a critical role in understanding
bone information before operations, an image-driven method
is proposed to control the velocity of the robot. The cortical
bone is dense enough to resist external shocks, while the can-
cellous bone is loose and can break easily. The composition of
the bone can be well reflected by the gray values of the image.

A normalized and robust force expression is introduced to
predict grinding states, and this can be adjusted by chang-
ing the window level and width. A mapping model is built
according to the dynamics of the tool during grinding. The
control parameter Cm is designed for adjusting the velocity
law.

Experiments are conducted based on the proposed meth-
ods. A complete system is developed to explore the feasibility
of this method. Results suggest that our method performs
better than constant and FLC methods. It maintains relatively
stable force signals during grinding, and the margin is closest
to the target when Cm equals 0.5.
The registration error is still too large to achieve precise

position of the robot, and the efficacy of the landmark-based
method should be improved to reduce the time demands
placed on the surgeon. To achieve a precise position, the qual-
ity of the 3D reconstruction and the calibration of navigation
and robot systems should be improved. The experiment does
not consider the effect of elastic deformation of the spine.
In future work, we will seek to optimize the registration and
compensate for spine movement based on elastic mechanics
modeling. The application aims to help surgeons develop
efficient and personalized options in robot-assisted surgeries.
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