
Received March 4, 2018, accepted April 16, 2018, date of publication April 18, 2018, date of current version May 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2828325

The Predictive Functional Control and the
Management of Constraints in GUANAY II
Autonomous Underwater Vehicle Actuators
WILMAN ALONSO PINEDA MUÑOZ 1,2, (Member, IEEE),
ALAIN GAUTHIER SELLIER2, (Member, IEEE),
AND SPARTACUS GOMÀRIZ CASTRO3
1Department of Electromechanical Engineering, GENTE Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150462, Colombia
2Department of Electrical and Electronic Engineering, GIAP Group, Universidad de Los Andes, Bogotá 111711, Colombia
3Barcelona East School of Engineering, Electronic Engineering Department, Universitat Politécnica de Catalunya, BacelonaTech, 08019 Barcelona, Spain

Corresponding author: Wilman Alonso Pineda Muñoz (wilman.pineda@uptc.edu.co)

This work was supported in part Colciencias, Colombia

ABSTRACT Autonomous underwater vehicle control has been a topic of research in the last decades. The
challenges addressed vary depending on each research group’s interests. In this paper, we focus on the
predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and
optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and
furnaces. This paper presents the first application of the PFC in autonomous underwater vehicles, as well as
the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation
tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous
underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain
scheduling control. The experimental tests presented here offer effective results concerning control objectives
in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are
proven. In the intermediate levels, the results show that position and speed behaviors are improved using the
PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control
was themost effective regarding constraintsmanagement and control rate change in theGuanay II underwater
vehicle actuator. The industry has not embraced the development of control theories for industrial systems
because of the high investment in experts required to implement each technique successfully. However, this
paper on the functional predictive control strategy evidences its easy implementation in several applications,
making it a viable option for the industry given the short time needed to learn, implement, and operate,
decreasing impact on the business and increasing immediacy.

INDEX TERMS Autonomous underwater vehicles, predictive functional control, management of con-
straints, high-level control, intermediate level control, TSK-Fuzzy, gain-schedulling, motion control, point
stabilization, path following, industrial control systems.

I. INTRODUCTION
The motion control system of an autonomous underwater
vehicle (AUV) consists of three blocks: the guidance, navi-
gation, and control system as shown in Fig. 1. Since the end
of the last decade to the present, various issues associated
with each block have been addressed. The control system
regulates the forces and moments required to satisfy a given
control objective, which usually involves the guiding system.
Some examples of control objectives are using minimum

energy, tracking a set point, tracking or a variable trajec-
tory over time, following predefined routes, and controlling
maneuvers. Building a control algorithm involves designing
anticipated and re-fed control laws. Outputs from the nav-
igation system such as position, speed and acceleration are
used by the feedback control, while feed forward control
uses the available signals from the guidance system and
other external sensors. A great variety of control techniques
are used in autonomous underwater vehicles. The Italian
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FIGURE 1. Blocks for control of movements of autonomous underwater
vehicle.

vehicle, ‘‘Fogala’’, uses a combination of proportional inte-
gral derivate (PID) controllers with backstepping which
demonstrates its effectiveness controlling immersion. In this
project, careful adjustment of the parameters of the controller
was made [1].

The College of Automation of Harbin Engineering Uni-
versity is one of the most prolific publishers on the design
of controllers for submarine vehicles found in databases.
One of its last works, presented in the magazine Ocean
Engineering [2], integrates the PID control and nonlinear
sliding mode control techniques to address trajectory tracking
issues in an underwater vehicle using amodel with parametric
perturbations and constant unknown currents.

In the United Kingdom, Biggs and Holderbaum [3] for-
mulate the motion issue as a problem of kinematical optimal
control over a group of Euclidean movements, where the
function of cost to be minimized is the quadratic integral of
the velocity components. Ultimately, they demonstrate that a
set of optimal movements traces helical paths.

Mohan and Kim from India and Korea, respectively,
present an indirect adaptive control method using a Kalman
filter in an AUV with a manipulator system. The design
realized covers the disadvantages of the perturbations in the
adaptive control observers schemes [4].

In [5], a group of researchers from the University of Cal-
ifornia and University of New York presented a method of
minimizing course control time in an AUV with fixed. The
authors report difficulties because of abounding local optimal
trajectories; however, they find global optimal trajectories by
solving the dynamic partial differential equation of Hamilton
Jacobi Bellman. There is abundant information on the use of
this optimization technique, which seeks to generate optimum
paths in time [6]–[8].

Lapierre [9], from France, in pursuit of a solution to
the problem of motion control that guarantees robustness
in the presence of uncertain external parameters that make
the dynamic model of the vehicle inaccurate proposed an
immersion control based on Lyapunov theory and backstep-
ping technique. However, Lapierre found internal instability
issues produced by the noise induced in the evolution of
some parameters, which impeded the implementation of the
solution in an actual system.

There are studies addressing nonlinear controllers to sta-
bilize AUV’s susceptibility to uncertainties and current dis-
turbance, as well as un-modeled dynamics and parame-
ters variations [10], [11]. Rezazadegan et al. [12] propose
an adaptive controller based on Lyapunov’s direct method

and back-stepping technique, which guarantees robustness
against parameter uncertainties. Another significant work
with adaptive nonsingular integral terminal slidingmode con-
trol was published by Qiao and Zhang [13].

At theUniversity ofMontpellier,Maaluof et al. [14] devel-
oped an adaptive control algorithm L1, for an autonomous
underwater vehicle, which considers the nonlinearities of the
dynamic system and variations of its parameters.

As for nonlinear control techniques, there are auto-
matic pilots using the control in sliding modes. In 1993,
Healey and Lienard [15] of Naval Postgraduate School of
Monterrey published a study in which they tested heading,
immersion and speed control. Sliding modes as variable
structure control displayed robustness in complex maneuvers
but is imprecision when the maneuvers involved tight turns.
Another integral control in sliding modes was presented by
the Pohan University of Science and Technology [16] to
stabilize an AUV. The model proved robust and subject to
unknown environmental disturbances.

The predictive model-based control (MPC) has also
been used to control underwater vehicles. A group of
researchers in underwater robotics from the School of Elec-
trical and Electronic Engineering at the University of Sains,
in Malaysia [17], analyzed the movement of a hybrid under-
sea glider with a predictive control with neural networks.
They compared its performance with a predictive control
based on model and a quadratic linear regulator. They also
showed the glider’s aerodynamic response to speed, the angle
of attack and slip angle.

In [18] the robust predictive control (RMPC) is considered,
and the nonlinear dynamics of the AUV with six degrees
of freedom is linearized. This study uses linear models to
represent the horizontal and vertical dynamics of the system.

Shen [19] presents a nonlinear model predictive control
(NMPC)method for the trajectory problem of an autonomous
underwater vehicle, several reference trajectories were tested,
which demonstrate effectiveness and efficiency of the pro-
posed algorithm.

In the United Kingdom, Sutton and his group [20] designed
an automatic pilot using a genetic algorithm (GA) In line
with a predictive controller based model. Despite the pres-
ence of perturbations and uncertainty in the model, the tests
on the AUV carried out in real-time, showed a favorable
performance of the control. The genetic algorithm was used
as an optimization tool in the MPC, where the objective
function was minimized online and subjected to soft and hard
constraints on the actuators. The drawback encountered by
Sutton and his team was the computational cost of using
the GA, finding that implementation is not feasible for low
sampling periods.

The studies found used genetic algorithms, neural net-
works and fuzzy logic for the control of AUVs. Genetic algo-
rithms are used to adjust the parameters of the controllers. For
example, in [21] GAs adjust linear quadratic regulator (LQR)
parameters, and in [22], GAs adjust PID parameters, whereas
in [23], GAs are used to find an optimal path. Neural networks
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have been used to control the movement of AUVs [24] and as
the basis of the model of the movement of the vehicles [25].
Advanced algorithms have been used to resolve issues con-
cerning the control system; however, even these algorithms
present drawbacks in the management of constraints in the
actuators [26]–[28]. Predictive control algorithms stand out
from others because they handle restrictions. The predictive
functional control (PFC) is also prominent for its flexibility in
the implementation phase [29]. The PFC has been successful
in a significant number of industrial applications; however,
it has not received enough attention in academic literature
possibly because the predictive control community has been
focused on other problems like stability [30]–[33], and work-
ing on algorithms implementation [34], [35].

Research on autonomous underwater vehicles predictive
functional control is motivated, primarily, by the lack of
adequate literature on the topic and the challenge other AUV
control strategies have in managing actuators constraints. The
design of AUV control schemes is challenging. The main
difficulties include dynamic nonlinearities, complexities, and
uncertainties, as well as unknown external disturbance. Dif-
ferent schemes have been evaluated to solve this AUV control
issues. In [36], reference trajectories were generated by
means of optimal control and tracked via nonlinear model
predictive control; this approach satisfies the constraints
imposed. To satisfy operation constraints, including time
critical goals, kinematic modeling, and resource limitation,
in [37], a model of environment constraints was proposed
for autonomous robots in a cost and cognitive-based adaptive
algorithm function. Although some noteworthy achievements
were obtained in this studies, these controllers still require
improvements in constraint management for practical appli-
cations.

In this document, through the application of a suboptimal
practical solution, the predictive functional control demon-
strates excellent performance handling constraints in theGua-
nay II autonomous underwater vehicle. The navigation tests
of the Guanay II unmanned submarine were carried out on
the Mediterranean Sea, these are agree with simulation result
about movement of AUV.

The following section describes the hydrodynamic model,
intermediate and high level controls, and PFC design for Gua-
nay II. Subsequent sections explain the experimental results,
and the last section presents the conclusions.

II. GUANAY II MOTION CONTROL
Motion control systems for marine craft is an active field
of research. Modern control systems use techniques such as
PID control, optimal control, neural networks and nonlinear
control theory, to mention a few. Nonlinear control can often
yield a more intuitive design than linear theory but the results
can be a more complicated design process with limited phys-
ical inside.

The movement of autonomous underwater vehicles (AUV)
is modeled in three hierarchical levels: high, intermedi-
ate, and low. In high-level control, the vehicle’s control

FIGURE 2. Block diagram: path following scenario.

scenarios and kinematic movement strategies are defined.
In the intermediate level, the kinetic controls are defined,
and in the low-level control, actuator control strategies are
determined to optimize actuator constraints andmanagement.

The high-level control or external loop of the
Guanay II uses point stabilization and path following sce-
narios. The purpose of this control is to follow the refer-
ence or way-points defined by the mission to be fulfilled by
the vehicle. The intermediate level control of Guanay II uses
the TSK-Fuzzy, predictive functional, and gain-schedulling
controls. The low-level control of the Guanay II uses a strat-
egy to solve the optimization problem, which select the best
option for the applied propulsion and torque of the thrusters.
We design other optimal solution only when Guanay II uses
PFC control.

The tests results obtained in theMediterranean Sea demon-
strate the excellent performance, in the intermediate level,
of the PFC algorithm in controlling the longitudinal velocity
of autonomous underwater vehicles and emphasize its easy
implementation, as well as the efficient management of the
restrictions on the actuators in the low level. We used ‘‘path
following’’ and ‘‘point stabilization’’ scenarios in the high-
level. In the intermediate level, we conducted simulations
with gain-schedulling, TSK-fuzzy and PFC control. In real
trials, we used TSK-Fuzzy and PFC control.

A. HIGH-LEVEL CONTROL: PATH FOLLOWING SCENARIO
In this case, the waitpoints must be close to each other. For
yaw control, the Guanay II uses the Maurya Algorithm [38],
which consist of a proportional-integral (PI) controller and a
constraint with respect to the radius curvature. The velocity
control algorithm is TSK-fuzzy controller, see Fig. 2. For our
trials, we used a ‘‘figure-eight’’ pattern, see Fig. 3, near to the
coast of Vilanova i la Geltru, in Barcelona.

B. HIGH-LEVEL CONTROL: POINT STABILIZATION
SCENARIO
The position of the vehicle is input reference pk . Velocity
uref , and yaw ψref are outputs of high-level control; they are
also inputs of the intermediate level control or inner loop
(Fig. 4). The objective of the hight-level control is to direct
the vehicle towards the way-point and near this point with a
defined curvature ratio. When the vehicle reaches this area,
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FIGURE 3. Path following in Guanay II.

FIGURE 4. Block diagram: point stabilization scenario.

FIGURE 5. Point stabilization scenario.

it moves to another way-point until the mission is completed.
The TSK-fuzzy control takes into account three parameters to
establish the longitudinal reference velocity and the reference
yaw for the intermediate level control. The parameters are
the yaw error eψ , the distance between way-points d , and
the angle that the vehicle must rotate upon reaching its target
to find the next way-point ψref . The parameters are shown
in Fig. 5, where Pk is the current way-point and Pk+1 is the
next way-point.

C. INTERMEDIATE LEVEL CONTROL
The control of the dynamics of autonomous underwater
vehicles is the intermediate control; in our case, it requires
velocity and yaw reference signal inputs and applied outputs
to manipulate variables MV on actuators. Guanay II was
evaluated with different controls algorithms. First, in [39]
funded by the Spain Ministry of Education and Science,

FIGURE 6. Bock diagram TSK-Fuzzy intermediate level control.

the FEDER Union. PID and TSK-fuzzy controllers were
designed, compared and tested. PID controllers work well in
specific zones of work; if the zone changes, the PID must
change. The advantage of the TSK-fuzzy is the combination
of PID options to address different work zones by using the
best features for each zone. This is known as zonally differen-
tiated control and uses piecewise lineal model. The results of
this work were published in article [39], which underscore
the advantages of TSK-fuzzy over PID controllers. In our
work, we designed and tested PFC controllers and TSK-fuzzy
controllers, and we compared simulation results and real test.
Lastly, we simulated Gain Scheduling algorithm in order
to obtain best analysis and conclusions. Thus far, PFC is
so far the best control strategy in intermediate control for
the Guanay II. Next, we present some information on the
TSK-fuzzy and Gain Schedullin controls. Later, in section E,
we present the PFC design.

1) INTERMEDIATE LEVEL CONTROL: TSK-FUZZY CONTROL
Takagi-Sugeno-Kang (TSK) is a method of fuzzy inference
introduced in 1985. It is similar to the Mamdani method
in many aspects. The first two parts of the fuzzy inference
process, fuzzifying the inputs and applying the fuzzy oper-
ator, are the same. The main difference between Mamdani
and Sugeno is that the Sugeno output membership functions
are either linear or constant [40]. In the Guanay II vehicle,
the parameters of C(s) is dynamically modified by a fuzzy
blocks; this control is represented as C (ψ)

Fuzzy. C(s) is PID
controller. See Fig. 6. The same strategy is used for velocity
control. More information on how many sets were used and
how the sets were chosen is found in article [39].

2) INTERMEDIATE LEVEL CONTROL: GAIN
SCHEDULING CONTROL
A gain scheduling controller is a controller whose gains
are automatically adjusted as a function of time, operating
condition, or plant parameters. In the Guanay II, the parame-
ters of linear controllers are changed by longitudinal veloc-
ity. In Fig. 7. C(S) is PID controller and C (ψ)

GainsS is yaw
controller. Equation (1) shows polynomial regression that
changes parameters k (ψ)p (u) and k (ψ)d (u).

k (ψ)p (u) = −106.78u3 + 368.41u2 + 42.748u+ 311.96

k (ψ)d (u) = 60.85u3 − 209.96u2 − 24.36u+ 417.13

(1)
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FIGURE 7. Block diagram: gain scheduling intermediate level control.

TABLE 1. Notation used in marine vehicles.

D. GUANAY II HYDRODYNAMIC MODEL
Starting with Fossen’s vectorial model for marine vehi-
cles [41], the model of Guanay II was obtained [42], [43].
Fossen’s nonlinear equations, in the rigid body frame, can be
written as:

η̇ = J2(η)ν (2)

(MRB +MA)ν̇ + (CRB + CA)ν + (Dn)ν = τ (3)

where ν is the linear and angular velocities vector, τ is the
generalized vector of external forces and momentums (see
Table. 1). MRB is the rigid body inertial matrix, MA is the
added mass matrix, CRB is the rigid Coriolis and centripetal
matrix, CA is the hydrodynamics Coriolis and centripetal
matrix, Dn is the hydrodynamic damping matrix. The total
hydrodynamic damping can be written as the sum of com-
ponents DP + DS + DW + DM . DP is the radiation-induced
potential damping due to forced body oscillations. DS is
the linear skin friction due to laminar boundary layers and
quadratic skin friction due to turbulent boundary layers. DW
is wave damping, and DM is damping due to vortex shedding
(Morrison equation). Fossen represent the matrix Dp as the
sum of the linear damping D1 and nonlinear damping Dn.
Some matrices depend on coefficients expressed math-

ematically, such as the partial derivatives of the forces
(X ,Y ,Z ) or moments (K ,M ,N ) with regards to a veloc-
ity or a position in the origin, so:

Xu̇ =
∂X
∂ u̇

∣∣∣∣
u̇=0

,Xu =
∂X
∂u

∣∣∣∣
u=0

,X|u|u =
∂2 X
∂u∂|u|

∣∣∣∣
u=0

According to the Nomenclature for Treating the Motion of
a Submerged Body Through a Fluid [44] by The Society and
Naval Architects andMarine Engineers,X ,Y ,Z represent the
hydrodynamic force components relative to the body axes,
referred to as longitudinal, lateral, and normal forces, respec-
tively.K ,M ,N represent hydrodynamic momentums relative
to the body axes, referred to as rolling, pitching, and yawing

FIGURE 8. Body frame and north east and down NED frame.

TABLE 2. Hydrodynamic Coefficients for Guanay II.

movements, respectively. Regarding velocities, u, v,w are the
components along the body axes of the linear velocity, and
p, q, r are the components of the angular velocities vector
relative to body axes x, y, z, referred to as angular velocities
of roll, pitch, and yaw, respectively. The angle of elevation of
the x-axis is θ known as the angle of pitch or trim, ψ is the
angle of yaw and φ is the angle of roll (Fig. 8).

The Guanay II has been modeled with a velocity vector
set as ν = [u, v, r]T . Consider the motion of the Guanay II
represented by the following matrices and the hydrodynamic
coefficients as in Table. 2, where these quantities are obtained
by identification techniques [39].

MRB =

m 0 0
0 m 0
0 0 Iz

 (4a)

MA =

Xu̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 (4b)

CRB =

 0 0 −mv
0 0 mu
mv −mu 0

 (4c)
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CA =

 0 0 Yv̇v
0 0 −Xu̇u

−(Yv̇v − Yṙr ) Xu̇u 0

 (4d)

D1 =

Xu 0 0
0 Yv Yr
0 Nv Nr

 (4e)

Dn = −

X|u|u|u| 0 0
0 Y|v|v|v| Y|r|r |r|
0 N|v|v|v| N|r|r |r|

 (4f)

wherem is the mass of the vehicle, Iz is the vertical compo-
nent of the inertial tensor. The forces and moments of Guanay
II are represented by τ , as follows.

τ =

[
X
N

]
(5)

X = Xmain + Xlft + Xrgt
N = afin ∗ (Xlft − Xrgt ) (6)

where X is the propulsion force, which moves the vehicle in
the direction of the longitudinal velocity, N is the momentum
in the z-axis relative to yawing, Xmain represents the force
applied by the main thruster, Xlft and Xrgt represent the forces
applied by lateral thruster, and afin represents the distance
from the lateral thruster to the longitudinal symmetrical axis
of the vehicle. The following relations can be developed:

Xmain = cmain ∗ λmain|λmain|

Xlft = clft ∗ λlft |λlft |

Xrgt = crgt ∗ λrgt |λrgt | (7)

Defining λmain, λlft , λrgt as the angular velocities normal-
ized between the values −100 and 100 (as a percentage
value) for the main thruster, left thruster, and right thruster,
respectively.

To determine the linear equations of movements for Gua-
nay II, it is assumed that the lateral velocity v and angular
velocity r are negligible and the operation point is determined
by the longitudinal velocity [39]. In this way, the transfer
functions to the longitudinal velocity and yaw are expressed
as:

Gu(s)u0 =
u(s)
X (s)
=

1
(m− Xu̇)s− 2||u0X|u|u − Xu

(8)

Gψ (s)u0 =
ψ(s)
N (s)

=
(m− Yv̇)s− Yv
As3 + Bs2 + Cs

(9)

where:

A = (m− Yv̇)(Iz − Nṙ )− YṙNv̇
B = (m− Xu̇)(Nv̇ − Yṙ )u0 − (m− Yv̇)Nr
− (Iz − Nṙ )Yv − YṙNv − Nv̇Yr

C = Yv(Yṙu0 + Nr )+((Yv̇ − Xu̇)u0 + Nv)((m− Xu̇)u0 − Yr )

The subscript u0 represents the operational point where the
model is linearized.

Guanay II AUV is a highly nonlinear system. If we design
a linear control around a specific velocity u0, performance
will be optimal approaching this velocity but not at other

velocities. The Guanay II has two operational or works points
at 0.3 m/s and 2 m/s, respectively and the nonlinear model
is approximated by piecewise lineal model. Consequently,
the transfer functions, in accordance with these points, can
be obtained.

Gψ (s)0.3 =
0.003323s+ 0.000258

s3 + 0.8107s2 + 0.05834s
(10)

Gψ (s)2.0 =
0.003323s+ 0.000258
s3 + 4.0350s2 + 0.7354s

(11)

Gu(s)0.3 =
0.001611
s+ 0.148

(12)

Gu(s)2.0 =
0.001611
s+ 0.9836

(13)

Gu(s) is the transfer function that relates the Laplace trans-
form of longitudinal velocity u to hydrodynamic force X .
Gψ (s) is the transfer function that relates the Laplace trans-
form of yaw ψ to the hydrodynamic momentum on yaw N .

E. INTERMEDIATE LEVEL CONTROL: PREDICTIVE
FUNCTIONAL CONTROL PFC DESIGN
Some decades of industrial practice with nonlinear systems
and Predictive Functional Control algorithms have reported,
in the archival literature, on distillation [45], reactors [46],
and furnaces [47], among others. We are the first to demon-
strate a PFC algorithm on autonomous underwater vehicles.

The algorithms implemented in Guanay II are PID, Gain
Scheduling TSK-Fuzzy and PFC controls. The control objec-
tive by high-level control is the tracking reference of velocity
and yawing. To date, the Takagi-Sugeno-Kang (TSK) fuzzy
controller has been the best strategy for the Guanay II [39].
However, an optimization problem must be solved for the
management of actuator constraints. The Predictive Func-
tional Controller design presented in this document resolves
constraints issues directly.

According to Richalet [29], Predictive Functional Control
takes into account the following fundamental concepts:
• Internal model.
• Reference trajectory.
• Manipulated variable computing.
The hydrodynamic model of Guanay II is described by

(4a),(4b),(4f),(4e), (4c), (4d). The reference trajectory sets
the temporal path to be followed to reach the reference
point; therefore, the reference trajectory sets the closed-loop
dynamic of the control system and updates it at each new sam-
ple point, see Fig.9. The choice of function to be implemented
is open; it can be a look-up table, calculated analytically, or it
may depend on the time or state of the process (e.g tracking
error). Then, an objective searches for an upcoming action
so that the next response agrees with some fixed points on
the reference trajectory, which are referred to as coincidence
points. We choose one point as the coincidence point in
(k + H ) and a reference trajectory exponential for the Gua-
nay II for several reasons. First, only one point is used during
initialization, in this case, the last measured output value.
Second, the function is easy to calculate in real time. Lastly,
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FIGURE 9. Reference trajectory with PFC control.

its decrement occurs predictably.

y(k) = exp
−kTs
T (14)

where the decrement is:

λ = exp
−Ts
T (15)

and the sample time is Ts.
The regulation error, i.e., the difference between the set

point and the process output in k is e(K ) and in (k + H ),
the predicted error is given by e(k + H ) = λH ∗ e(k). The
output desired increment of yp in (k + H ) is:

1p = ε(k + h) = ε(k) (16)

where:

1p = −ε(k)λH + ε(k) = ε(k)(1− λH ) (17)

Finally:

1p = (Setpoint − Processoutput(k))(1− λH ) (18)

The output increment desired1p is obtained by measuring
the output process and the reference signal; therefore, it is
known as the reference trajectory. the manipulated variable
must be assessed based on the plant mathematical model. The
control signal will produce an increment in the output model
1m equal to 1p. So, the control is incremental, and can be
given as:

1p = 1m (19)

If the plant model is known, it is possible to select the
best manipulate variable using simulation test. The control
signal should near to the desired increment while following
the reference trajectory as closely as possible. Manipulated
variables should be structured around the basis functions
according to the nature of the variables and control, and
the calculation complexity. The vector of future manipulated
variables is not established directly. Instead, it is determined
by the projection µj of manipulated variablesMV on a finite
set of basics functions:

Fj(i) = MV (k + i) =
∑

µjFj(i) (20)

where j = 0, 1, ,N − 1 and 0 <= i <= H . Thus,
the manipulated variables are presented as a weighted sum
of a finite number of N basis function. Namely, the cases
in which each function consists of a polynomial base is
referred to as Predictive Functional Control. The Guanay
II uses the elemental case in velocity control, where H = 1,
F0 = i0 = 1. Therefore, u(k + 1) = u(k).

The following section explains, without loss of generality,
the PFC design for first order models [48]. Proper models
in high order can be classified into first order models. This
favors the design of composite controllers based on a collec-
tion of controllers of first order PFC [49], [50].

1) THE FIRST ORDER PROCESS
For a first order system such as the longitudinal velocity
control in the Guanay II, 95 percent of the response parallels
with its time constant with relation to 3 ∗ τ . As a result,
the closed loop time response (CLRT) is three times the time
constant of the system τ . The first order process takes the
form of:

G(s) =
Km

1+ τ s
(21)

If we define am = e
Ts
τ , as the difference equation that

describes a process of first order without delay with a sample
time Ts, and one time constant τ is given by:

ym(k) = ym(k − 1)am + (1− am)KmMV (k − 1) (22)

The future output ym(k + H ) to model is the sum of the free
output response and the forced output response.

freeoutput(k + H ) = ym(k)aHm
forcedoutput(k + H ) = MV (k)Km(1− aHm ) (23)

The model increment in (k + H ) is given by

1m = ym(k + H )− ym(k) (24)

and, therefore, the following is obtained:

1m = freeoutput(k + H )

+ forcedoutput(k + H )− ym(k)

1m = ym(k)aHm +MV (k)Km(1− a
H
m )− ym(k) (25)

The objective 1m = 1p is met, so

(Setpoint − yp(k))(1− λH )

= ym(k)aHm +MV (k)Km(1− a
H
m )− ym(k) (26)

By isolating the manipulated variable, the control law is
obtained:

MV (k) =
(Setpoint − yp(k))(1− λH )

Km(1− aHm )

−
ym(k)aHm + ym(k)
Km(1− aHm )

(27)
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FIGURE 10. The inclusion of constraints in predictive functional control.

FIGURE 11. Internal model in parallel form.

On the other hand, the less common level constraints are taken
into account in PFC. So MVmax , MVmin, Dmax and Dmin are
taken into account.

MVmin < MV (k) < MVmax (28)

and

Dmin < MV (k)−MV (k − 1) < Dmax (29)

In Fig. 10 the MVC calculated by the regulator R
is passed initially through a speed limiter followed by
an amplitude limiter. The resulting value MVL(n) is
then supplied as the input to the internal model of
the regulator that, in turn, produces the model output
SML.

2) HIGHER ORDER PROCESS
In the case of higher order process such as the yaw control
on the Guanay II, the transfer function can be expressed as
a decomposition in parallel or cascade [49], [50] in order
to simplify the PFC design. The yaw control for the Gua-
nay II uses parallel decomposition (Fig. 11), as represented
by:

Gm(s) =
m∑
i=1

Ki
1+ τis

From Fig. 11 the model output is given by:

yM (k) = y1(k)+ y2(k)+ . . .+ ym(k) =
m∑
i=1

yi(k) (30)

The difference equation equivalent of model in (30) is given
by:

yi(k) = αiyi(k−1)+ Ki(1−α)u(k − 1) 1 ≤ i ≤ m (31)

where αi = e−(
Ts
τi
), with Ts as sampling period. Replacing 31

into 30 we obtained model output:

yM (k) = α1y1(k − 1)+ α2y2(k − 1)

+ . . . αmym(k − 1)+ [K1(1− α1)+ K2(1− α2)

+ . . .+ Km(1− αm)] ∗ u(k − 1) (32)

Therefore,

yM (k) =
m∑
i=1

αiyi(k − i)+
m∑
i=1

Ki(1− αi)u(k − 1) (33)

The output model yM (k+H ) may be divided in free yMfree (k+
H ) and forced yMforced (k + H ) response, so:

yMfree (k + H ) =
m∑
i=1

αHi yi(k) (34)

yMfoced (k + H ) =
m∑
i=1

Ki(1− αHi )u(k) (35)

The reference trajectory yR(k) used in PFC is gener-
ally in an exponential form, and it is given by func-
tion of the Setpoint(k) and the process output yp(k)
as

yR(k+H )= Setpoint(k)−. . . λH (Setpoint(k)−Yp(k)) (36)

where λ = e−(
Ts
TR

) with TR is Closed Loop Response Time
(CLRT) and Ts the sampling time.
The process output estimated at time k + H is given by:

ŷp(k + H ) = yM (k + H )+ (yp(k)− yM (k))

ŷp(k + H ) =
m∑
i=1

yi(k + H )+ (yp(k)−
m∑
i=1

yi(k)) (37)

At coincidence point H the estimated process output ŷp is
equal to the reference trajectory. Then

yR(k + H ) = ŷp(k + H )Setpoint(k)

−...λH (Setpoint(k)− yp(k))

= yM (k + H )− yM (k) (38)

Agreeing with (11), (34) and (35), if you use a
step input basis function, see (20), we can write next
equations.

(1− λH )(Setpoint(k)− y(k)

= yMfree (k + H )+ yMfoced (k + H )−
m∑
i=1

yi(k)

(1− λH )(Setpoint(k)− y(k)

=

m∑
i=1

αHi yi(k)+
m∑
i=1

Ki(1− αHi )u(k)−
m∑
i=1

yi(k)

(1− λH )(Setpoint(k)− y(k)

=

m∑
i=1

Ki(1− αHi )u(k)−
m∑
i=1

yi(k)− αHi yi(k)
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(1− λH )(Setpoint(k)− y(k)

=

m∑
i=1

Ki(1− αHi )u(k)−
m∑
i=1

(1− αHi )yi(k) (39)

u(k) = MV (k) =
(Setpoint − yp(k))(1− λH )

m∑
i=1

Ki(1− αHi )

+ . . .

m∑
i=1

yi(k)(1− αHi )

m∑
i=1

Ki(1− αHi )
(40)

where MV (k) is manipulated variable. The constraints are
managed as in first order systems. The constraints are man-
aged as in first-order systems.

3) GUANAY II PFC
Although the Guanay II model, given to equations (10),
(11),(12), and (13) is piecewise lineal model, when we
designed the PFC controller, we took into account only one
work point on the velocity and another on the yaw. Therefore,
we selected the model provided by (10) and (12). PCF differs
from traditional predictive controllers. Because of its incre-
mental characteristic, a highly precise model is not required.

The PFC’s incremental characteristic means that the model
changes each sampled time. The model and the process are
assumed to have the same qualitative structure. Prior values
of the model and process are known through sensors and the
manipulated variable MV that delivers the increment1m, see
equations (19),(24), and (25). This technique can guarantee
the stability and robustness of control system.

The discrete time model for yaw Gψ(z) and longitudinal
velocity Gu(z) is obtained with a sample time Ts equal to
0.1 s. In a discrete time control system, the control input
is assumed constant during the sample interval. The sample
time for the Guanay II satisfies system dynamic and band-
width requirements in agreement with a Niquist-Shanoon
sampling Theorem. The discrete (41) on the Guanay II is
the Z-transform of (10); the discrete (42) is the Z-transform
of (12); and, (43), (44) and (45) are partial fractions taken
from (42).

Gu(z) =
0.0001599
z− 0.9853

(41)

The parallel decomposition is:

Gψ(z) =
3∑
i=1

Gψi (z) (42)

Gψ1 =
−0.0004399
z− 0.9295

(43)

Gψ2 =
−1.389 ∗ 10−5

z− 0.9295
(44)

Gψ3 =
0.0004422
z− 1

(45)

The discrete control law for longitudinal velocity in terms
of propulsion is obtained by the method explained above for
first order systems. See (27).

MV (k) = X (k) (46)

X (k) =
(usetpoint − up(k))(1− λH1 )

Km(1− aHm )

−
u(k)aHm + u(k)
Km(1− aHm )

(47)

where X (k) is the propulsion in the engines, up(k) and u(k)
are longitudinal velocities given by the sensors and themodel,
respectively. The usetpoint is set by the guidance system on
high-level control.

The discrete control law for the yaw position in terms of
momentum in the z-axis relative to yawing is obtained using
the method referred to above for high order systems. See (40).

MV (k) = N (k) (48)

N (k) =
(ψsetpoint − ψp(k))(1− λH2 )

m∑
i=1

Ki(1− αHi )

+

m∑
i=1
ψi(k)(1− αHi )

m∑
i=1

Ki(1− αHi )
(49)

where N (k) is the moment in the z-axis relative to yawing,
ψ(k) is the yaw movement given by the compass, and ψi is
given by the model. The ψsetpoint is given by the guidance
system on high-level control.

The adjustment parameters from PFC are the coincidence
point ‘‘H ’’ and the decrement ‘‘λ’’. The Guanay II uses
H = 1 and λ1 = 0.75 for the longitudinal velocity. The
parameters for yaw control are H = 20 and λ2 = 0.9. In [49]
and [50] there are techniques for adjusting parameters in high
order systems.

III. SIMULATIONS RESULTS
In the case of nonlinear systems there is no general the-
ory governing the real application to nonlinear processes.
Thus, the discussion will be limited to the treatment of some
specific cases. If the process state is known, by measure-
ment or estimation, it is feasible to create a scenario with the
aid of the model. Using an adequate method with a nonlinear
solver, the manipulated variable MV scenario describing the
evolution of the model output toward the specific point on the
reference trajectory can be calculated. In our case, the process
is locally differentiable without singularities, a local projec-
tion is used that changes at each instant. However, the solution
may be improved by using a classical method for solving
nonlinear algebraic equations such as the Raphson-Newton
method, which improves the accuracy of the control equation.

PFC industrial implementations with nonlinear models are
possible. In [51], a PFC control was implemented in theYoko-
gawa CS3000 integrated production control system. In [52],
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FIGURE 12. On the right, MV and longitudinal velocity of vehicle. On the
left, MV and yawing position of the vehicle.

FIGURE 13. On the right, MV and longitudinal velocity of vehicle. On the
left, MV and yawing position of the vehicle.

FIGURE 14. On the right,MV and longitudinal velocity of vehicle. On the
left, MV and yawing position of the vehicle.

PFC was applied to temperature control system of an electric
heating furnace. These experiments demonstrate the validity
and effectiveness of the control algorithm. Reference [53]
describes three industrial applications of PFC for two distil-
lation columns and a reactor in a petrochemical plant.

PFC design control on Guanay II is calculated with a
piecewise lineal model on a work point 0.3 m/s, but was
proven with 0.6 m/s and 1 m/s, see figures 25 and 26. This is
a practical demonstration on the excellent performance of the
incremental model, working in different work points. Lastly,
in Barcelona, Guanay II vehicle was tested in open-sea where
it was subject to uncertainty and disruption, demonstrating
the PFC’s robustness.

The manipulated variable MV obtained from piecewise
lineal model was applied to nonlinear model, given by
equations (4) for simulation, and finally is programmed on

FIGURE 15. On the right, MV and longitudinal velocity of vehicle. On the
left, MV and yawing position of the vehicle.

FIGURE 16. On the right, MV and the longitudinal velocity of vehicle.
On the left, MV and yawing position of the vehicle.

FIGURE 17. On the right, MV and longitudinal velocity of vehicle. On the
left, MV and yawing position of the vehicle.

electronic board, and applied to real vehicle in order to obtain
our real test results.

Three control strategies and two control scenarios for the
Guanay II movement were simulated to analyze the behavior
of intermediate level controls. Fig. 12, Fig. 13 and Fig. 14
show the behavior of TSK-Fuzzy, PFC and Gain Scheduling
controls with point stabilization scenario. Fig. 15, Fig. 16
and Fig. 17 shows the TSK-Fuzzy, PFC and Gain Scheduling
controls with path following scenario.
The manipulated variable MV activates the engines of the

Guanay II generating the propulsion that controls the longi-
tudinal speed of the vehicle and its hydrodynamic moment
relative to the yawing movement on the z-axis.
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TABLE 3. Characteristics of the tests carried out.

TABLE 4. Geographic coordinates for point stabilization.

FIGURE 18. Way-points on point stabilization scenario. Barcelona coast
in the Mediterranean Sea.

According to the control scenario defined by the vehicle
mission, the objective of high-level control may be to follow
a path or visit a set of specific way-points. The high-level
control give yawing and velocity references to intermediate
level control. The intermediate level control following refer-
ence and generate manipulated variables MV for applied on
thrusters.

The curves in all simulation results show that, in all cases,
the objectives of intermediate level controls are adequately
fulfilled. However, the behavior of manipulated variableMV ,
in the case of the intermediate level control, strategy of the
predictive functional control (PFC) should be emphasized.
As can be seen in Fig. 13 and Fig. 16 the signal does not
present changes or oscillations compared to the other con-
trols. The soft behavior ofMV in PFC’s protects the actuators
and extends their useful life compared to another control
strategies.

IV. EXPERIMENTAL RESULTS IN MEDITERRANEAN SEA
Nine test were conducted with the Guanay II in the coast
of Barcelona in Mediterranean Sea to verify the results of
the simulations using the predictive functional control (PFC),
see Table. 3. The first four tests were performed using the
point stabilization scenario; the last five use path following of
the high-level control scenario. TSK-fuzzy and PFC controls
were used for intermediate level of control tests to test the
advantage of using PFC, considering that in previous works,

FIGURE 19. Test 1- Point stabilization scenario with PFC.

FIGURE 20. Test 2-Point stabilization with PFC.

FIGURE 21. Test 4-Point stabilization with TSK-Fuzzy.

the TSK-fuzzy was the best control strategy compared to
other linear and nonlinear strategies such as gain scheduling
control. These controls are the same as those used in simula-
tion results.

In actual trials, the Guanay II fulfilled the objectives
proposed for each mission. The vehicle reached the four
way-points established in the point stabilization scenario, see
Figure 20. TheGuanay II also followed the 8-path determined
for the path following scenario as shown Figure 25.
The predictive functional control (PFC) is set with two

parameters, the coincidence point H and the decrement λ.
PFC is the predictive controller used to control the move-
ments of the Guanay II; it includes speed and yaw controls.
For forward speed λ = 0.65 and H = 1, yaw control
λ = 0.65 and H = 20. The previous given that the transfer
function of the forward speed is of the first order, while the
yaw transfer function is of the third order. We were certain of
the behavior of the PFC in first order systems but were unsure

VOLUME 6, 2018 22363



W. Pineda et al.: PFC and the Management of Constraints in GUANAY II Autonomous Underwater Vehicle Actuators

FIGURE 22. Point Stabilization scenario: Yaw position with PFC and
TSK-fuzzy controllers.

FIGURE 23. Path following Scenario. Barcelona coast in the
Mediterranean Sea.

TABLE 5. Way-points over path following scenario.

in the case of systems of orders greater than one. Information
on the PFC control technique can be found in [27], [29], [49],
and [50].

In the first seven tests, the vehicle was set to a maximum
speed was of 0.6 m/s. In the last two tests, the maximum
speed was increased to 1 m/s. It should be noted that the
reference speed is determined by the high-level control; when
the speed is set to a maximum value, the vehicle travels at
speeds inferior to this value. The data acquisition system of
the Guanay II provided the information to obtain the graphs
presented.

A. RESULTS WITH POINT STABILIZATION SCENARIO
The Guanay II underwater vehicle initiated its autonomous
operation in a length of 41◦12′28.63′′ to the east and a latitude
1◦43′25, 65′′ to the north. Maritime coordinates of points are
shown in table 4 and the route followed is in Fig. 18.

Fig. 19 shows how the vehicle is systematically directed
to each way-point. Test one is repeated so that each test had
the same trajectory starting point, thus allowing the com-

FIGURE 24. Path following scenario: Yaw movement with PFC and
TSK-fuzzy controllers.

FIGURE 25. Test 5 an 7. Path Following with PFC and TSK-Fuzzy.
Longitudinal velocity 0, 6 m/s.

parisons between all the controls. The results of these test
are in Fig. 20. The TSK-Fuzzy control was used in Fig. 21.
Experimental results the point stabilization scenario show a
soft behavior whenwe used PFC control in intermediate level.
See Fig. 22.

B. RESULTS WITH PATH FOLLOWING SCENARIO
Figure 23 presents the routes of the path following scenario.
Table. 5 presents some of the points on the routes to provide
an idea of maritime location where the tests were carried out.
Again, predictive functional control and TSK-Fuzzy were
tested. The results are presented in Figure 25. The longi-
tudinal velocity was increased from 0, 6 m/s to 1 m/s in
the last two trials. The results using PFC and TSK-Fuzzy
controllers are show in Figure 26. Experimental results the
path following scenario show a soft behavior when we used
PFC control in intermediate- level. See figure 24.
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FIGURE 26. Test 8 and 9. Path Following with PFC and TSK-Fuzzy.
Longitudinal velocity 1 m/s.

V. CONCLUSION
The results show that the TSK-fuzzy control and predictive
functional control (PFC) strategies meet the objectives out-
lined in each movement control scenario. However, the PFC
stands out for its performance in the ‘‘manipulated variable’’
MV signal. The behavior of the ‘‘manipulate variable’’ MV
protects the thrusters by preventing sudden changes in the
control; this extends the useful life of the thrusters. The
results obtained in the simulations have been verified by
real navigation test in the Mediterranean Sea. The predictive
functional control has been tested in multiple industrial appli-
cations. This investigative work demonstrates that control of
underwater vehicles can also be used. Numerous academic
works have contributed to the theoretical development of the
PFC, making it a prolific field of research for those interested
in the industrial control sciences. The characteristics of PFC
can be programmed easily into Guanay’s embedded systems.
The predictive functional control is robust because it take into
account disturbances and the variations of model parameters;
its incremental characteristic allow it to adjust constantly,
see (19).

If the coincidence horizon is short, the MV is strong, but
the predicted response is close to the reference trajectory.
If the coincidence horizon is long, the MV is less vigorous
but the velocity and yaw differ from the reference trajec-
tory. The constraint on the MV does not have to be applied
rigorously but may be voluntarily relaxed to protect the
process from excessive actions; furthermore, it is easy to
implement.

Taking constraints into account is a key concerning con-
trol when optimizing efficiency by maximizing the avail-
able power of the actuators. Handling constraints in the

‘‘manipulate variable’’ MV is a straightforward procedure
with PFC.

The PFC control signal does not have oscillation when
faced with sensor noise, while others strategies show oscil-
lations in this situation.

The predictive functional control perform adequately in
SISO simple input and output systems. A topic for future
investigations is its use in MIMO multiple input and output
systems, as the PFC’s designs and implementation philoso-
phy should be simple and flexible.
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