
Received February 21, 2018, accepted April 5, 2018, date of publication April 18, 2018, date of current version May 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2828319

ACryp-Proc: Flexible Asymmetric Crypto
Processor for Point Multiplication
MALIK IMRAN1, MUHAMMAD RASHID 2, ATIF RAZA JAFRI1,
AND MUHAMMAD NAJAM-UL-ISLAM1
1Department of Electrical Engineering, Bahria University, Islamabad 44000, Pakistan
2Computer Engineering Department, Umm Al-Qura University, Makkah 21955, Saudi Arabia

Corresponding author: Muhammad Rashid (mfelahi@uqu.edu.sa)

ABSTRACT Flexibility is one of the driving agents for 5G architecture development to incorporate enhanced
mobile broad band, machine type communication (MTC), and ultra-reliable MTC. While considering
flexibility in the domain of security/reliability, we present a unified and flexible hardware architecture,
implementing point multiplication algorithm for both elliptic curve cryptography (ECC) and Binary Huff
Curves (BHC). The proposed architecture can be used in the scenarios where the users can tradeoff between
the algorithmic execution time and different reliability/security levels. To establish an area overhead for the
unified design, dedicated architectures for ECC and BHC over the GF(2m) field are implemented in the first
step and compared with state-of-the-art. Then, a unified architecture for ECC and BHC is implemented.
The performance results of proposed unified architecture illustrate the trade-off between execution time and
security level.

INDEX TERMS Asymmetric crypto processor, binary huff curves, elliptic curve cryptography, point
multiplication, unified architecture.

I. INTRODUCTION
Cryptography ensures that the data can be transmitted
securely over an unsecured public channel. At present, there
are two types of cryptography i-e., symmetric and asym-
metric. Symmetric cryptography requires a single key to
protect the data from eavesdroppers. However, the use of
symmetric cryptography in highly secured applications, such
as for military communication, is not helpful [1]. To achieve
this high standard security, a group of three scientists
i-e., Rivest, Shamir, and Adleman introduced asymmetric/
public key cryptography, which is now commonly known as
Rivest-Shamir-Adleman (RSA) algorithm [2].

The RSA algorithm (asymmetric cryptography) uses two
separate keys for information protection. Out of these two
keys, the first one is known as secret key while the other
is called as public key. At sender side, the secret key is
used for encryption process while the public key is used to
decrypt the data/information at receiver end. Furthermore,
RSA algorithm is based on prime factorizing. If the used
primes are small, then searching their factors are quite easy
for the computer, however, if the used primes are large, then
searching their factors is difficult for computer in a reasonable
time.

In order to overcome this issue, elliptic curve cryptog-
raphy (ECC) was proposed in the mid 1980’s [1]. In real-
time embedded systems and area-limited portable electronic
products, the use of ECC is continuously increasing [3],
as it provides equivalent level of security with much shorter
key lengths as compared to other commonly used asymmet-
ric cryptosystem such as RSA algorithm [2]. Moreover, for
the same level of security, ECC requires only 160 bit key
length whereas RSA requires 1024 bits [1]. Due to shorter
key lengths, ECC provide low computing power and higher
throughput [3]. With the aforementioned facts, ECC has
shown real attraction to portable devices and security of their
systems.

Although, ECC provides better throughput than other
existing asymmetric crypto systems, conventional ECC-
based crypto systems are vulnerable to side channel
attacks (SCAs) [3]. In order to provide resistance against
SCAs, different asymmetric curves, such as Binary Edward
Curves (BEC) [4] and Binary Huff Curves (BHC) [5], have
been proposed. It has been observed in [4] and [5] that
the required number of computations in BEC and BHC are
much higher as compared to the conventional ECC. How-
ever, the comparison between BEC and BHC shows that the

22778
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5852-1296


M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

later (BHC) requires less number of computations than for-
mer (BEC) [6]. A brief summary of comparison betweenBEC
and BHC has been provided in Section Ill.lll of this article.
Consequently, ECC and BHC are more attractive choices for
higher throughput and security level respectively. Therefore,
one can trade-off between throughput and security level by
using ECC and BHC simultaneously.

A. RELATED WORK
The point multiplication (PM) operation is normally imple-
mented in hardware as it is the most computational intensive
part of any asymmetric curve based crypto system (such
as ECC and BHC). The hardware implementations of PM
can be found in [7]–[13] and [14]–[16] for ECC and BHC
respectively. These hardware implementations for ECC and
BHC generally provide higher performance with larger area
utilization.

1) HARDWARE IMPLEMENTATIONS OF PM FOR ECC
Generally speaking, the hardware implementations of PM
for ECC are considered to achieve higher performance/
throughput [7]–[13]. Consequently, various techniques have
been implemented. Examples of performance enhancement
techniques include the use of multiple multipliers [7], par-
allelism either at design level [8] or algorithmic level [9]
and pipelining [12]. In addition to the aforementioned
techniques (use of multiple multipliers, parallelism and
pipelining), some other implementations are also considered
in [10], [11] and [13].

The work presented in [7] achieves higher performance
with low latency (number of clock cycles) by using 3 mul-
tipliers. Similarly, the work in [8] obtains higher perfor-
mance by implementing parallelism at design level using
multiple cores. At algorithmic level, the parallelism for point
addition (PA) and point doubling (PD) is considered in [9].
Moreover, higher performance is also achieved in [10] by
considering lower area (FPGA slices) for constrained appli-
cations. Generally speaking, the performance of PM opera-
tion directly depends on the finite field (FF) multiplier [1].
Therefore, the work presented in [11] used a segmented FF
multiplier whereas a pipelined FF multiplier with different
digit sizes is implemented in [12]. Similarly, a bit parallel
multiplier is used in [13] to obtain higher performance for
PM computations.

2) HARDWARE IMPLEMENTATIONS OF PM FOR BHC
A comparative architectural review on different FF multipli-
ers (bit serial, bit parallel and digit level) for multiple asym-
metric curves (ECC, BHC and BEC) is presented in [17]. The
results in [17] reveal that the use of bit parallel multiplier is
a common trend to implement PM for BHC [14]–[16]. For
example, by considering SCAs at algorithmic level, an FPGA
based hardware architecture for PM is proposed in [14].
Furthermore, countermeasures against SCAs and Simple
Power Analysis attacks (SPAs) at algorithmic level are pro-
vided in [15]. Recently, an FPGA based pipelined hardware

architecture of BHC for PM is proposed in [16]. While
individual architectures have been proposed for ECC and
BHC, a unified/flexible hardware architecture for both ECC
and BHC is required by considering the lower hardware
resources.

3) APPLICATION DEMANDING FLEXIBLE ARCHITECTURES
From applications point of view, the major domains for
asymmetric cryptography include internet, identity-based
encryption [18], wireless sensor network nodes [19] and
radio frequency identification networks (RFID) [20]. The
newer application is in 5G, where sensor nodes will be
used for machine type communication (MTC) and ultra-
reliable MTC. Use-cases related to MTC include low-cost
battery-powered sensors and actuators as well as remote con-
trolled and remote-read utility meters to achieve Internet of
Things (IoT) [21].

On the other hand, ultra-reliable MTC relates to the capa-
bility of providing a given service level with very high proba-
bility. The applications of ultra-reliable MTC include remote
industrial control [22] and haptic communication [23].
These diverse applications demand flexibility of the archi-
tecture so that the system can be configured as per require-
ments. Considering a 5G base station who is responsible
for providing connectivity for diverse 5G services. In such
system the proposed flexible architecture can meet the
varying security requirements associated with a particular
service.

4) STATE-OF-THE-ART ON FLEXIBLE ARCHITECTURES
Broadly speaking, architectures connecting multiple devices
with different configurations are known as flexible architec-
tures. Internet of things (IoTs) is a typical example of this
trend where multiple devices can communicate with each
other [24]. In other words, flexibility is obtained in terms
of multi algorithmic support at the same time. For exam-
ple, a flexible architecture supporting advance encryption
standard (AES) algorithm and elliptic curve digital signature
algorithm (ECDSA) for security-enabled near field com-
munication tags is presented in [25]. Similarly, a scalable
architecture, without the need to reconfigure the hardware,
is also considered as a flexible architecture [26]. For example,
a crypto processor with multiple key length support for ECC
is presented is known as scalable architecture.

Moreover, due to the re-configurability feature of FPGA,
implementation of asymmetric crypto system on an FPGA
platform is also considered as a flexible architecture [27].
Re-configurability refers to the custom hardware, which
can be adapted at the run time, by loading new instruc-
tions/program. Recently, support for dual field (prime and
binary) elliptic curve cryptographic processor is also con-
sidered as a flexible architecture in [27]. In this article,
we achieve flexibility by implementing multi curves (ECC
and BHC) as well as multi algorithms (Montgomery [28] for
ECC and Double and Add [29] for BHC), on a reconfigurable
FPGA platform.

VOLUME 6, 2018 22779



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

B. OUR WORK
This article presents a flexible asymmetric crypto processor
for PM operation, named as ‘‘ACryp-Proc’’. The proposed
processor implements PM for ECC and BHC at the same
time. The objective is to trade-off between execution time and
the level of security/reliability. For both of the selected curves
(ECC and BHC), the following selections have been adopted:
• A polynomial basis (PB) representation with the pro-
jective coordinate system (Lopez and Dahab) has been
selected due to its simplicity in terms of FF multiplica-
tions and inversions [30].

• Montgomery algorithm [28] has been targeted due to its
resistance against side channel attacks for ECC while
simple Double and Add algorithm [29] has been chosen
for BHC. A good comparative analysis over flexible
implementations of these PM algorithms (Montgomery
and Double and Add) can be found in [31].

With the above stated selections, we have modeled three
hardware designs in Verilog (HDL), where the first one is
an individual design for ECC (Design I), the second one is
a dedicated design for only BHC (Design II) and the last
one is a unified/flexible architecture for both ECC and BHC
(Design III). The proposed designs (Design I, Design II and
Design III) contain a memory unit, an arithmetic and logic
unit and two routing networks. Arithmetic and logic unit for
all the three designs contain a single FF adder, FF multiplier
and FF squarer.

The novelty of proposed work can be described in the
following points:
• Our earlier optimized architecture for unified BHC is
available in [16]. However, the two important con-
tributions in this work are: 1) a dedicated hardware
architecture for ECC and 2) according to author’s best
knowledge, first unified hardware architecture for both
ECC and BHC. Using unified architecture, one can
trade-off between the execution time (i-e., throughput)
and security level in terms of multi curve (ECC and
BHC) as well as multi algorithms (Montgomery and
Double and Add).

• To perform FF multiplication in a single clock cycle,
a digit parallel multiplier is proposed in this work with
a digit size of 32 bits. The proposed digit parallel mul-
tiplier uses least significant bit (LSB) order to per-
form FF multiplication and consumes less hardware
resources than bit parallel multipliers such as hybrid
Karatsuba [17].

• By considering lower hardware resources, a new arith-
metic level scheduling of PA and PD operations to
compute PM for conventional ECC and BHC is pro-
posed. The proposed scheduling is performed by consid-
ering pipelining hazard such as read after write (RAW).
Finally, to optimize the operational clock frequency,
pipeline registers are placed at the input of arithmetic
and logic unit.

The proposed flexible Design III (ACryp-Proc) is syn-
thesized for Virtex 7 device whereas to perform exact

comparison with state-of-the-art, Design I and Design II are
synthesized for different FPGA technologies, i.e., Virtex 4,
Virtex 5 and Virtex 7. Finally, the performance of proposed
flexible and dedicated designs over GF(2163) and GF(2233)
are estimated in terms of a throughput/slices metric. The
achieved throughput/slices figures for our proposed dedicated
and flexible designs on Virtex 7 are 28.53 (Design I-ECC
for GF(2163)), 10.17 (Design II-BHC for GF(2163)),
10.73 (Design I-ECC for GF(2233)), 4.46 (Design II-BHC
for GF(2233)), 15.64 (Design III-ECC for GF(2163)),
7.05 (Design III-BHC for GF(2163)), 5.42 (Design III-ECC
for GF(2233)) and 2.43 (Design III-BHC for GF(2233)) and
are comparable with relevant FPGA based designs.

The remainder of this article is organized as follows:
In Section II, preliminaries of ECC and BH curves over
GF(2m) are presented. In Section III, the selected point
multiplication algorithms over GF(2m) for respective curves
are explained. The proposed hardware architectures for our
designs are presented in Section IV. Section V presents the
FPGA synthesis results, performance of the architecture and
results comparison. Finally, Section VI concludes the article.

II. PRELIMINARIES
This section provides the necessary background for the
selected curves (ECC and BHC) and PM operation.

A. ELLIPTIC CURVE CRYPTOGRAPHY (ECC) OVER GF(2m)
ECC provides two different fields for computations: prime
field GF(p) and binary field GF(2m). ECC over GF(2m) is
selected as it provides the efficient hardware implementations
of FF operations [30]. For GF(2m), a projective (Lopez and
Dahab) form of elliptic curve is defined as a set of points
P(X : Y : Z ), satisfying the following expression:

E : Y 2
+ XYZ = X3Z + aX2Z2

+ bZ4 (1)

In Eq. (1), the variables ‘X ’, ‘Y ’ and ‘Z ’ are the Lopez
and Dahab projective elements of point P(X : Y : Z ),
Z 6= 0, ‘a’ and ‘b’ are the curve constants with b 6= 0.
Furthermore, the points on elliptic curve form a group, called
as an additive group, when they are combined with the ‘point
at infinity’. By definition of additive group, the addition of
two elements in the group defines another element in the
group. For example, consider two distinct points i.e., point ‘P’
and ‘Q’ on the defined elliptic curve, then a point additionwill
be R = P + Q. Where ‘R’ will be the resultant (addition) of
the two points on the curve. Moreover, when both the points
on the curve are same (P+P = 2P) then this is called a point
doubling.

Point addition and doublings are completely rely on the FF
arithmetic operations [30]. Consider a base point ‘P’ and a
large integer ‘k’ of the size of underlying field, the PM will
be the additions of ‘k’ copies of point ‘P’ on the defined
elliptic curve. In other words, PM is defined by repeating
the additions, as illustrated in Eq. 2. It is normally a basic

22780 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

equation for PM, where ‘Q’ is the resultant point.

Q = k.(P+ P+ . . .+ P) = k.P (2)

B. BINARY HUFF CURVES (BHC) OVER GF(2m)
Huff model was first introduced in 1963 [32]. Later on,
the Huff model was revisited in 2010 [33], where the descrip-
tion and formulation for the odd characteristic fields were
provided. Thereafter, in 2011, Devigne and Joye developed
the formal construction of a Huff model for binary field [5].
Consequently, the formal construction in [5] provides the
unified PA and PD formula in the binary field. A binary Huff
curve is defined as a set of projective point P(X : Y : Z )
over GF(2m), satisfying Eq. (3):

E : aX (Y 2
+ YZ + Z2) = bY (X2

+ XZ + Z2) (3)

In Eq. (3), the variables ‘a’ and ‘b’ are the curve parameters
and they ε GF(2m) while considering a 6= b. Interested
readers can consult [14] and [15] for further mathematical
formulations.

III. POINT MULTIPLICATION ALGORITHMS
We have described in the introductory part of this article that
Montgomery algorithm is used for ECC while Double and
Add algorithm is selected for BHC in the proposed designs.
Consequently, this section briefly describes the Montgomery
as well as the Double and Add algorithm.

A. MONTGOMERY ALGORITHM FOR ECC
The implemented point multiplication algorithm for ECC is
presented in Algorithm 1. It requires scalar multiplier ‘k’
along with (xp, yp) coordinates of the initial point ‘P’ as an
input and produces (xq, yq) coordinates of the final point ‘Q’
on the defined elliptic curve as an output. The Algorithm 1
contains three steps:
• Step 1 consists of initializations, where affine to projec-
tive conversions are performed.

• Step 2 is the PM, where PA (P = P + Q) and
PD (P = 2P) instructions are performed, based on the
inspected value of key (ki).

• Step 3 consists of reconversion, where projective to
affine conversions are performed.

B. DOUBLE AND ADD ALGORITHM FOR BHC
The implemented Double and Add algorithm for BHC is pre-
sented in Algorithm 2. It requires scalar multiplier ‘k’ along
with (xp, yp) coordinates of the initial point ‘P’ as an input
and produces (xq, yq) coordinates of the final point ‘Q’ on
the defined binary huff curve as an output. The Algorithm 2
contains three steps:
• In Step 1, initializations are performed to convert affine
co-ordinates into projective co-ordinates.

• Step 2 is the point multiplication, where Unif_Add
instructions are performed, based on the inspected value
of key (ki).

• Step 3 consists of reconversion, where projective to
affine conversions are performed.

Algorithm 1 Montgomery Algorithm [28] Over GF(2m)

Input:k = (kn−1, . . . , k1, k0) with kn−1 = 1, P = (xp, yp)
ε GF(2m)
Output: Q(xq, yq) = k.P
Step 1 (Initializations): X1 = xp, Z1 = 1, X2 = xp4 + b,
Z2 = x2p
Step 2 (Point Multiplication): for
(i from n− 2 down to 0) do
if (ki=1) Else
P = P+Q
Return
P(X1,Z1)

P = 2P
Return
Q(X2,Z2)

P = P+Q
Return
P(X2,Z2)

P = 2P
Return
Q(X2,Z2)

Z1 = X2.Z1
X1 = X1.Z2
T = X1+Z1
X1 = X1.Z1
Z1 = T 2

T = xp.Z1
X1 = X1+T

Z2 = Z2
2

T = Z2
2

T = b.T
X2 = X2

2
Z2 = X2.Z2
X2 = X2

2
X2 = X2+T

Z2 = X1.Z2
X2 = X2.Z1
T = X2+Z2
X2 = X2.Z2
Z2 = T 2

T = xp.Z2
X2 = X2+T

Z1 = Z2
1

T = Z2
1

T = b.T
X1 = X2

1
Z1=X1.Z1
X1 = X2

1
X1=X1+T

end if
end for
Step 3 (Reconversion):
xq =

X1
Z1
, yq = (xp +

X1
Z1
)[(X1 + xp.Z1)(X2 + xp.Z2)

+(x2p + yp)(Z1.Z2)](xp.Z1.Z2)− 1+ yp

The Unif_Add in step 2 of Algorithm 2 represents the
following set of equations for PA and PD [15]. Moreover,
X3, Y3 and Z3 are the projective points on the defined curve,
whereas ‘α’ and ‘β’ are the curve constants and can be
computed as: α = (a+ b)/b and β = (a+ b/a.

C. COMPUTATIONAL COST OF PA AND PD
As explained in the introductory part of this article, PM is
the most computational intensive part of any asymmetric
curve based crypto system. However, the cost of PA and PD
to compute PM in Lopez and Dahab projective coordinates
for conventional ECC is 6M + 5S + 3A [30]. Similarly,
the projective Lopez and Dahab cost of unified addition law
(Unif_Add) for PM in BHC is 15M + 3S + 12A + 2D [5]
and in BEC is 16M + 1S + 21A+ 4D [4]. In aforementioned
expressions, ‘M ’ is the cost of a field multiplication, ‘S’ is the
cost of a field squaring, ‘A’ is the cost of a field addition and
‘D’ is the cost of a field multiplication by a constant curve
parameter.

By using single adder, multiplier and squarer units, the
computations involved in the BEC (total of 42) and BHC
(total of 32) are much higher as compared to the conventional
ECC (total of 14) [14]. However, unified addition law of
BHC requires less number of computations (total of 32) as
compared to BEC (total of 42), while providing the same level
of security [14]. Consequently, this article has established a
trade-off between the time of execution and the level of secu-
rity by using ECC and BHC at the same time. Furthermore,

VOLUME 6, 2018 22781



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

Algorithm 2 Double and Add Algorithm [29] Over GF(2m)
Input: k = (kn−1, . . . , k1, k0) with kn−1 = 1, P = (xp, yp)
ε GF(2m)
Output: Q(xq, yq) = k.P

Step 1 (Initializations): X1 = xp, Z1 = 1, X2 = xp4 + b,
Z2 = x2p
Step 2 (Point Multiplication):
for (i from n− 2 down to 0) do
Q = Unif _Add(Q,Q)
if (ki = 1) then
Q = Unif _Add (P,Q)
end if
end for
Step 3 (Reconversion):
xq =

X2
Z2
, yq =

Y2
Z2
2

Unif_Add [15]
m1 = X1.X2, m2 = Y1.Y2, m3 = Z1.Z2, m4 = (X1 +
Z1)(X2 + Z2), m5 = (Y1 + Z1)(Y2 + Z2)
m6 = m1.m3, m7 = m2.m3, m8 = m1.m2 + m2

3, m9 =

m6 (m2 + m3)
2, m10 = m7 (m1 + m3)

2

m11 = m8(m2 + m3), X3 = αm9 + m4.m11 + Z3, Y3 =
βm10 + m5.m8(m1 + m3)+ Z3
Z3 = m11(m1 + m3)

for exact mathematical based comparisons among BEC, BHC
and ECC, interested readers can consult [4], [5], and [30]
respectively.

IV. PROPOSED HARDWARE ARCHITECTURES
In this article, we are presenting three different 2-stage-
pipelined architectures. The first pipeline stage is ‘‘instruc-
tion fetch’’ while the second pipeline stage is ‘‘Execute and
Write back’’. Consequently, the three proposed designs are:
• Design I is architecture for point multiplication in ECC
only.

• Design II is dedicated for point multiplication in BHC
only.

ACryp-Proc (Design III) is the flexible design for point
multiplication in ECC as well as in BHC. For all the three
aforementioned designs, the hardware architectures are capa-
ble to perform PM over GF(2163) and GF(2233). The pro-
posed pipelined architectures of Design I, II and III consist of
a memory unit (MU), Routing Networks (RNs), Arithmetic
and Logic Unit (ALU) and a dedicated Control Unit (CU),
as shown in Figure 1, 2 and 3 respectively. In order to get
the best frequency versus algorithmic execution clock cycle
count compromise, the pipelined registers are placed at the
input of ALU.

A. MEMORY UNIT (MU)
The memory unit of Design I is a register file of size ‘8×m’,
as shown in Figure 1. Whereas the size of register file in
Design II and III is extended up to ‘16 × m’, due to the

complexity of BHC, as shown in Figure 2 and Figure 3.
Moreover, the value of ‘m’ (key length) in all the three designs
(Design I, Design II and Design III) can be either 163 or 233.
This unit is used to store the intermediate results, while imple-
menting Algorithm 1 and Algorithm 2 for respective ECC
and BHC curves. Furthermore, it contains two multiplexers
(MuxM1 andMuxM2), which are used to fetch the operands
(OP1 and OP_2) from MU and a single de-multiplexer
(Demux) to modify the MU contents (Mplex_out).

B. ROUTING NETWORKS (RNs)
The proposed designs constitute two RNs as shown in
Figure 1, Figure 2 and Figure 3: Mux M3 (RN 1) and Mux
M4 (RN 2):
• Inputs to the Mux M3 are curve parameters and an
operand from MU (OP1). The output of Mux M3 is an
operand (OP_1) to the Arithmetic Logic Unit (ALU).
The input curve parameters are different for different
designs, according to the requirements for a particular
curve. In Design III, the curve parameters for ECC
and BHC are muxed through M5 and M6, as shown in
Figure 3.

• Inputs to the Mux M4 are from the ALU and its out-
put goes into MU. The corresponding input and output
parameters for respective ECC and BHC designs are
shown in Figure 1, Figure 2 and Figure 3 respectively.

C. ARITHMETIC AND LOGIC UNIT (ALU)
For all the three designs (Design I, II and III), ALU consists of
adder, squarer and multiplier units. The adder is implemented
through exclusive OR operations, whereas the FF polynomial
squarer is implemented through inserting ‘0’ after every bit of
input [8], as illustrated in Figure 4. The index terms a[0], a[1],
a[m − 2] and a[m − 1] represent the data bits of input
polynomial A(x) and these bits are directly mapped on an
output polynomial D(x) with placement of ‘0’ between two
successive data bits.

In order to perform multiplication of two ‘m’ bit polyno-
mials (A(x) and B(x)) over GF(2m), different FF multipliers
are discussed in [34]–[37]. For example, a serial digit level
multiplier with digit size of 41 bits is implemented in [34],
where each multiplication requires 4 clock cycles (CC).
On the other hand, the work in [36] presents a bit level
pipelined digit serial multiplier. In order to further improve
the speed of PM operation, three bit level pipelined digit
serial multipliers are used in [36]. Moreover, an efficient
architecture to perform FF multiplication over both GF(p)
and GF(2m) fields is discussed in [37]. In this paper, we have
implemented digit parallel least significant bit order multi-
plier with digit size of s = 32 bits, as shown in Figure 5. The
digits with s = 32 bits of polynomial B(x) is created (i.e.,
B1 to B8) and then parallel multiplication of each ‘s’ bit digit
with ‘m’ bit polynomial (A(x)) is performed by generating
partial products. To compute FFmultiplication operation over
GF(2163), a total of six digits are required. Out of these
6 digits, 5 digits are with 32 bit size whereas 1 digit is with
3 bit size. Similarly, for GF(2233), a total of eight digits are

22782 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

FIGURE 1. ECC design for point multiplication (Design I).

FIGURE 2. BHC design for point multiplication (Design II).

VOLUME 6, 2018 22783



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

FIGURE 3. ACryp-Proc for point multiplication (Design III).

FIGURE 4. FF squarer.

required. Out of these 8 digits, 7 digits (B1 to B7) are with
32 bit size whereas 1 digit (B8) is with 9 bit size, as shown
in Figure 5. Parallel multiplication of each B1 to B8 digit
with an ‘m’ bit polynomial A(x) results in ‘s+m− 1’ bits of
polynomials and these resultant polynomials are represented
as D1 to D8, as shown in Figure 5. Once multiplication of
each ‘s’ bit digit with an ‘m’ bit polynomial is completed,
the final resultant polynomial of size 2×m− 1 bit is created
by XOR and shift operations of D1 to D8.

As shown in Figure 4 and Figure 5, after each ‘m’ bit poly-
nomial squaring and multiplication, the resulting polynomial
will be 2× m − 1, hence field reduction is necessary to per-
form [30]. In order to perform polynomial reduction, NIST
recommended field reduction algorithms over GF(2163) and
GF(2233) are implemented in this work and these algo-
rithms are described as Algorithm 2.41 and 2.42 in [30].
For inversion operation, a scalable and unified architecture
is proposed in [38] and [39], where GF(p) and GF(2m) field

22784 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

FIGURE 5. Parallel FF LSD multiplier.

inversions are computed using Montgomery modular inver-
sion algorithm. However, Montgomery inversion requires
higher clock cycles to perform a single inversion than Itoh-
Tsujii algorithm [40]. Therefore, to perform FF inversion, a
square Itoh-Tsujii algorithm has been implemented in this
work by using same hardware resources of multiplier and
squarer units. For GF(2m), it requires ‘m’ squarer operations
whereas 9 and 10 field multiplications are required, when
implementing from GF(2163) to GF(2233) respectively [41].

D. CONTROL UNIT (CU)
The control unit generates control signals in the design
and shown as red color lines in the corresponding figures
(Figure 1, Figure 2 and Figure 3). A 2-stage-pipelined data
path has been used in this work to reduce the data hazards and
minimize the no-operations (NOPs). A careful scheduling of
PA and PD for Algorithm 1 and Algorithm 2 is presented in
TABLE 1 and TABLE 2 respectively.

First column of TABLE 1 and TABLE 2 represents the
clock cycle sequence. Instructions/operations performed dur-
ing each cycle are represented in column 2 where X1, X2,
Y1, Y2, Z1, Z2, m1 to m6 and T1 to T4 represent the inter-
mediate projective points. The x-coordinate of initial point
on the curve is represented by ‘xp’ whereas ‘b’, ‘α’ and
‘β’ represents the curve constants. Column 3 shows the
corresponding RAW hazard during different clock cycles.
Finally, the last column shows the scheduling of instructions

TABLE 1. Proposed scheduling of PA and PD for algorithm 1.

in two pipeline stages, where instruction read (fetch) is rep-
resented as [R] while execute and write back are represented
as [E, WB].

VOLUME 6, 2018 22785



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

TABLE 2. Proposed scheduling of PA and PD for algorithm 2.

1) CONTROL UNIT FOR DESIGN I (ECC)
To implement the Montgomery algorithm, the CU incorpo-
rates a total of 121 states (St), as shown in Figure 6.
• The St: 0 is an idle state whereas St: 1 to St: 6 are
responsible to implement the initialization step of
Algorithm 1 which requires 6 clock cycles. These ini-
tialization states are termed as ‘‘affine to projective con-
version states’’ in Figure 6.

• The proposed scheduling of PA and PD for PM step
of Algorithm 1, shown in TABLE 1, requires a total
of 35 states. Out of these 35 states, 17 states are for
PA and PD when inspected key bit is ‘1’ (shown in
TABLE 1). Similarly, an additional 17 states are required

for PA and PD if the inspected key bit is ‘0’. Further-
more, St: 7 is a conditional state and is used to count the
number of points on the specified ECC curve by using
count signal and also used to check the inspected key
bit. Count has an initial value of ‘m − 1’. St: 8 to St 24
(17 states) are used if the inspected key bit is ‘1’ (IF part
of Algorithm 1 in Section 3). St: 25 to St: 41 (17 states)
are used if the inspected bit for key is ‘0’ (Else part of
Algorithm 1 in Section 3).

• Finally, the reconversion step of Algorithm 1 requires
two FF inversion (Inv) operations, as shown in
Algorithm 1. To check the status of required inver-
sion operations a single bit ‘inv_1’ signal is used. This
signal is checked at last state of inversion operation
i-e., at St: 87 to define one of the next state either
88 or 117. When inv_1 signal is ‘0’ then next state
after the completion of first inverse will be St: 88 oth-
erwise next state will be St: 117. In addition to inver-
sion operations, additional 34 cycles are required to
complete the reconversion step. Each inversion requires
St: 42 to St: 87 for implementations, St: 116 to gener-
ate the addresses for second inversion and remaining
states (St: 88 to St: 115 and St: 117 to St: 120) per-
forms rest of the operations in the reconversion step of
Algorithm 1.

TABLE 3. Clock cycles information for design I, II and III.

Design I requires a total of 3960 clock cycles when
implemented over GF(2163), where 6 cycles are needed
for initializations, 2916 cycles are required to perform
PA and PD. Finally, the reconversion requires 1038 cycles
where 502 cycles are required for each inverse opera-
tion. Similarly, for GF(2233), the Design I covers a total
of 5634 clock cycles. Exact information about the clock
cycles for Design I is tabulated in TABLE 3, and it can also
be calculated by using Eq. (4):

Initial + 18 (m− 1)+ 2(Inv)+ 34 (4)

22786 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

FIGURE 6. CU for Design I.

FIGURE 7. CU for Design II.

2) CONTROL UNIT FOR DESIGN II (BHC)
In order to implement Double and Add algorithm
(Algorithm 2) for PM, the CU consists of 127 states, as shown
in Figure 7.
• The St: 0 is an idle state, while during St: 1 to St: 6, CU
generates control signals for initialization (Initial) step
of Algorithm 2. These initialization states are termed as
‘‘affine to projective conversion states’’ in Figure 7.

• The proposed scheduling of PA and PD (Unif_Add) for

PM step of Algorithm 2 requires a total of 68 states.
Out of these 68 states, 34 states (St: 7 to St: 40) are
used for PD. Similarly, additional 34 states (St: 41 to
St: 74) are required for PA (shown in TABLE 2) opera-
tion. In order to perform either ‘‘PD’’ or ‘‘PA with PD’’,
St: 40 is used to check the inspected key bit and the
number of points on the curve by using count signal
(initially count = m − 1). For each inspected key bit
(either ‘0’ or ‘1’), PD states must be computed. PA is

VOLUME 6, 2018 22787



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

FIGURE 8. Control Unit for ACryp-Proc (Design-III).

only performed when the inspected key bit is ‘1’ and
count is not equal to ‘0’ (Key bit = ‘1’ & count ! = ‘0’).
In addition, the last state of PD and PA (St: 40 and St: 74)
are also responsible to check the status of count signal.
If count becomes ‘0’ then next state from St: 40 and St:
74 will be St: 75 otherwise it will be St: 7.

• Finally, during St: 75 to St: 126 coordinate reconversion
step of Algorithm 2 including finite field inversion (Inv)
is performed, as shown in Algorithm 2. Each inver-
sion requires St: 75 to St: 120 and additional 6 states
(St: 121 to St: 126) are used to implement the rest of the
reconversion step of Algorithm 2.

To compute PM, Algorithm 2 requires a total of 8776 clock
cycles when implemented over GF(2163). In total 6 cycles
are required for initializations step of Algorithm 2 whereas
for most time consuming part i-e., for PA or PD the proposed
design requires 8262 clock cycles. Finally, the reconversion
step requires a total of 508 cycles where 502 cycles are
required to compute FF inversion while rest of the 6 cycles
perform other instructions as presented in Algorithm 2. Fur-
thermore, Design II requires a total of 12553 cycles for
implementation over GF(2233). Total clock cycles for the
proposed Design II are illustrated in TABLE 3 and it can also
be calculated by using Eq. (5):

Initial + 34 (m− 1)+ 34
(m
2
− 1

)
+ inv+ 6 (5)

In order to perform point multiplication, the CU of flexible
ACryp-Proc (Design III) contains a total of 198 states to
generate the control signals, either for ECC (Algorithm 1)
or BHC (Algorithm 2), as illustrated in Figure 8. Out of
these 198 states, there are some common states (St: 1 to
St: 7 and St: 45 to St: 88) for both Algorithms (Algorithm 1
and Algorithm 2). In addition to these common states,
St: 8 to St: 44 and St: 89 to St: 121 are used to implement
Algorithm 1, whereas St: 122 to St: 197 are responsible to
implement Algorithm 2.

3) CONTROL UNIT FOR DESIGN III (ACryp-Proc)
• The St: 0 is an idle state, whereas St: 1 to St: 6 are respon-
sible to generate control signals for initialization step of
either Algorithm 1 or Algorithm 2. These initialization
states are termed as ‘‘affine to projective conversion
states’’ in Figure 8.

• In order to select an appropriate curve (ECC or BHC),
State 7 is a conditional state, which is used to make
the decision for scheduling of PA and PD instructions,
either from TABLE 1 (for ECC) or from TABLE 2 (for
BHC), based on the value of Fpga_selector signal (user
defined input). If Fpga_selector signal is ‘0’ then PA and
PD instructions are scheduled from TABLE 1 for ECC
(Algorithm 1). Otherwise, instructions are scheduled
from TABLE 2 for BHC (Algorithm 2).

22788 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

• To perform PM, the PA and PD states from St: 8 to
St: 42 (35 states) are performed for Algorithm 1. Out of
these 35 states, 17 states (St: 9 to St: 25) are responsible
for PA and PD once the inspected key bit is ‘1’ and
with count not equal to ‘0’ (count is used to check the
number of points on the specified curve and initially it
contains a value of ‘m−1’) whereas rest of the 17 states
(St: 26 to St: 42) are used for PA and PD when inspected
bit for key is ‘0’ with count not equal to ‘0’. Similarly,
Algorithm 2 contains St: 122 to St: 189 (68 states) for
PA and PD operations. Out of these 68 states, 34 states
(St: 122 to St: 155) are responsible to compute PD
operation for each inspected key bit (either ‘0’ or ‘1’).
If inspected key bit is ‘1’ then PA states (St: 156 to
St: 189) are also performed. A two conditional states
St: 8 (for Algorithm 1) and St: 155 (for Algorithm 2)
are also responsible to check the inspected key bit and
count signals.

• Finally, to perform coordinate reconversion step of both
algorithms, 3 inverse operations are required to compute.
Out of these 3 inverse operations, 2 inverse operations
are required for Algorithm 1 (Section 3.1) whereas a
single inverse is required for Algorithm 2 (Section 3.2).
For each inverse operation the common states are St: 45
to St: 88, whereas with these common states two addi-
tional states are required to generate addresses, for
Algorithm 1 St: 43 to St: 44 (for first inverse compu-
tation), St: 116 to St: 117 (for second inverse operation)
and for Algorithm 2 St: 190 to St: 191. To check the sta-
tus of the required inversion operations, CU incorporates
a two additional control signals named as, inv_1 and
inv_2. These signals are checked in the last inversion
state (St: 88) and defines one of the next state either
St: 89, St: 118 or St: 192.When both inv_1 and inv_2 are
‘00’ then next state after first inverse completion for
Algorithm 1 will be St: 89 whereas when these signals
are ‘01’ (inv_1 = 0 and inv_2 = 1) then next state
after second inverse completion for Algorithm 1 will be
St: 118. Moreover, when inv_1 and inv_2 are ‘10’ then
CU defines the next state (St: 192) for Algorithm 2 after
inverse completion. Finally, St: 89 to St: 115 and
St: 118 to St: 121 are responsible to perform rest of the
operations required for reconversion step of Algorithm 1
whereas St: 192 to St: 197 are responsible to perform
other operations, which are required for reconversion
step of Algorithm 2.

To achieve flexibility, Design III requires a total
of 3961 and 5635 clock cycles when implemented
Algorithm 1 for ECC over GF(2163) and GF(2233) respec-
tively, as shown in TABLE 5. Similarly, Algorithm 2 requires
a total of 8777 and 12554 clock cycles for BHC implemen-
tation over GF(2163) and GF(2233) respectively. Design III
has only 1 cycle penalty for flexibility and is available in
the last column of TABLE 5, as compared with dedicated
designs (Design I and Design II). The 1 cycle penalty is due
to St: 7 where selection between ECC (Algorithm 1) and

BHC (Algorithm 2) is required. The total clock cycles for the
ACryp-Proc are tabulated in TABLE 3 and it can be calculated
by using Eq. 6 (ECC) and Eq. 7 (BHC).

Initial + 18 (m− 1)+ 1+ 2(Inv)+ 34 (6)

Initial + 34 (m− 1)+ 34
(m
2
− 1

)
+ 1+ Inv+ 6

(7)

V. PERFORMANCE RESULTS AND COMPARISON WITH
STATE OF THE ART IMPLEMENTATIOS
A. PERFORMANCE RESULTS
In order to evaluate the performance of a hardware architec-
ture, parameters such as number of clock cycles to execute the
targeted algorithm, the highest achievable frequency and the
hardware resource utilization are required. Hence, in total-
ity, 6 Verilog HDL models have been created to evaluate
the performance of our proposed architecture. The first two
models belong to Design I and implement ECC over GF(2163)
and GF(2233). The next two designs are part of Design II to
implement BHC over GF(2163) and GF(2233). Finally, the last
two models (Design III) for ACryp-Proc have been created
by allowing flexibility in terms of distinct asymmetric curves
and algorithms for both ECC and BHC over GF(2163) and
GF(2233).
The initial curve parameters for respective ECC and BHC

curves have been selected from NIST [42]. In order to per-
form PM using BHC, pre-computed values for ‘α’ and ‘β’ are
used in this work. The proposed dedicated (Design I and II)
and flexible (Design III) models were synthesized for Xilinx
Virtex 7 (xc7v585t-3ffg1157) device using ISE design suite.

The execution time in terms of number of clock cycles
for all the three designs (Design I, II and III), executing
two curves with two different key lengths are arranged in
TABLE 3 using expression (4), (5), (6) and (7). In TABLE 3,
first and second columns show the implemented curve and
key length (m). Third column is showing clock cycle for
execution of an algorithms which is further divided into infor-
mation related to clock cycles required for Initial, PA + PD,
Reconversion and overall processing.

On the other hand, synthesis result of all 6 HDL mod-
els using Virtex 7 FPGA are tabulated in TABLE 4. The
first and second columns show the corresponding curve and
implemented key length (m) respectively. The information
about hardware utilizations in terms of FPGA slices (Slices),
look up tables (LUTs) and flip flops (FFs) are reported in
column 3, 4 and 5 respectively. The achievable frequencies
are shown in column 6. Time and power consumptions for
one PM (k.P) are provided in column 7 and 8 respectively.
In order to evaluate the performance of both dedicated and
flexible designs, throughput/area ratio is computed for each
design, as shown in the second last column. In throughput/
area ratio, throughput is computed using the time required
(in µsec) to perform one PM (k.P) whereas FPGA slices are
used for area. Finally, the last column indicates the power
used by each hardware model.

VOLUME 6, 2018 22789



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

TABLE 4. Implementation results for Design I, II and III on Xilinx Virtex 7.

The main contributions for this work is to, first of all,
propose efficient individual architectures to perform PMwith
ECC and BHC and secondly to realize a flexible architec-
ture (ACryp-Proc). It can be seen from TABLE 4 that our
efficient dedicated designs achieve a throughput/area ratio
of 28.53 and 10.73 for ECC and 10.17 and 4.46 for BHC
over GF(2163) and GF(2233) respectively. On the other hand,
the Acryp-Proc gives performance metric equals to 15.64 and
7.05 for ECC and 5.42 and 2.43 for BHC over GF(2163) and
GF(2233) respectively.

As far as power consumption is concerned, it can be seen
that putting two separate hardware of ECC and BHC will
consumes more power than using a unified architecture for
two applications e-g. in case of key length of 163, the sum
of power consumption of dedicated hardware of ECC and
BHC is more than twice the power consumed by ACryp-
Proc. This feature also supports the idea of using a unified
architecture.

Using the results presented in Table 3 and 4, we can discuss
the tradeoff among parameters such as execution time, area
utilization and security features of proposed architectures.
If we consider the execution speed in terms of clock cycles,
as presented in TABLE 3, for the key length m = 163,
the ratio of clock cycled to execute BHC and ECC is
8776/3960 = 2.2. Hence, more than twice clock cycles
are required to get immunity against SCA using BHC as
compared to ECC for key length of 163. Almost same factor
of extra clock cycles is required in case of m = 233. On the
other hand, in Design I and II the ratio of FPGA slices used
by BHC and ECC for m = 163 is 1.1 whereas for m = 233
this ratio is 1.07. Finally if we look into the throughput/area
ratios, BHC has 0.35 times throughput/area ratio of ECC
(10.17/28.53) for m = 163 for provision of immunity against
SCA. For m = 233 BHCs throughput/area ratio is 0.41 times
as that of ECC. In flexible implementation of ACrypProc
we get better results i-e. for m = 163 and 233 BHC’s
throughput/area ratio is almost 0.45 times as that of ECC to
gain immunity against SCA. With this analysis we can see
that using unified architecture we can achieve a compromise
between the throughput and the immunity against SCAs.

B. COMPARISON WITH STATE OF THE ART
IMPLEMENTATIONS
1) DEDICATED VERSUS UNIFIED DESIGNS
While comparing dedicated and flexible architectures shown
in TABLE 4, we have considered two system configurations:

• A system comprised of individual hardware of ECC and
BHC (i-e. Design-I and Design-II)

• A system with a single flexible ACryp-Proc.

It can be seen from TABLE 4 that 3107 and 3440 slices
are used to realize the hardware in order to compute PM in
ECC and BHC for GF(2163) respectively. Hence, in total,
6547 slices are considered to be used in the first system con-
figuration. On the other hand, Design III (ACryp-Proc) only
uses 4520 slices. It can be deduced that the flexible design
uses 2027 (31%) lesser slices for GF(2163). Similarly, for
GF(2233) the ACryp-Proc uses 25% less hardware resources
(slices) as compared to the combined resources of dedicated
implementations of ECC and BHC.

To compare the throughput/area performances of above-
stated two configurations, we need to first find equivalent
throughput/area ratio of first system configuration (i-e. sys-
tem made up of Design-I and II on single FPGA). Consider
the case of GF(2163) for first system configuration where total
of 6547 slices are used. If PM for ECC is performed, then
3960 clock cycles (TABLE 3) of a clock having a frequency
of 351 MHz (TABLE 4) is used. Here the throughput/area
ratio will be 106/(3960/351)/6457 = 13.54. Similarly, for
BHC with GF(2163) it will be 5.34. For GF(2233), the joint
slices will be 11757 and the throughput/area figures will be
5.18 and 2.31 for ECC and BHC respectively. If we com-
pare these four values of throughput/area ratios with four
through/area figures achieved through ACryp-Proc, it can be
seen that ACryp-Proc gives better throughput/area ratios.

2) DEDICATED DESIGNS VERSUS STATE-OF-THE-ART
In the absence of other flexible implementations, we have
compared our dedicated designs i-e. Design-I and Design-
II with relevant state of the art solutions. In order to ensure
a fair comparison, we have synthesized our designs on the
same FPGA device which is used in a design with which we
are doing the comparison. This is shown in TABLE 5.

The first column of TABLE5 presents the reported designs,
implemented either for ECC or BHC. The implemented key
length ‘m’ is shown in column 2. FPGA devices for imple-
mentations are shown in column 3. Used slice resources,
clock cycles and highest achievable clock frequency are pre-
sented in column 4, 5 and 6 respectively. The time required for
one PM is tabulated in column 7. Finally, the throughput/area
((106/s)/slices) ratio (targeted performance metric in this arti-
cle) is presented in the last column of TABLE 5. At first,
we will compare our Design-I for ECC with relevant works
presented in [7]–[13]. In our design, we have made efforts to
maximize the overall throughput/area ratio.

The best design in terms of (106/s)/slices for GF(2163)
is presented in [7], which is implemented on Virtex 5

22790 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

TABLE 5. Comparisons with state-of-the-art under same conditions.

(XC5VLX110) for ECC. In [7], two hardware architectures
were proposed for ECC to implement PM operation. Out
of these two architectures, the first one was proposed to
achieve high speed with a single pipelined segmented mul-
tiplier whereas the second one was proposed to achieve low
latency with three pipelined segmented multipliers. The key
feature of their architecture is low latency (i.e. 3.99 µs) as
well as throughput (i.e. 250 K k.P/sec) but requires 4 times
FPGA slices as compared to our solution. However, in total-
ity, they achieve a (106/s)/slices figure of 21.28 which is quite
comparable with Design I having a throughput/area ratio of
21.10 for the same technology. It can therefore be claimed that
our design supports scalability and hence multiple instances
of our Design-I working concurrently can provide same
throughput as presented in [7] at same hardware cost. In all
other designs i-e. from [8]–[13] our throughput/area ratio is
higher.

On the same FPGA Virtex 5 (XC5VLX110T) device,
higher hardware resources are utilized in [9] by considering
parallelism at algorithmic level using multiple arithmetic
operators i-e., two FF adders, multipliers and square units.
On the other hand, the proposed design uses only a single
adder, multiplier and squarer units. Due to use of multi arith-
metic operators in [9], the utilized FPGA slices is 6536 which
is comparably 57% more than Design I (2850) whereas the
achieved (106/s)/slices ratio is 11.86 which is comparatively
41% lesser than Design I (20.21). Similarly, on the same
Virtex 5 device, higher hardware resources are also reported
in [11] by implementing a multi stage pipelined bit par-
allel multiplier whereas a digit parallel multiplier is used
in this work. By multi stage pipelined multiplier, the num-
ber of required pipeline registers increases, which results in
more resource utilizations. The utilized FPGA slices (10363)

in [11] is comparably 73% more than Design I (2850).
The achieved (106/s)/slices ratio in [11] is 18.92 which
is almost 6% lesser than Design I (20.21). Parallelism at
design level using three FF cores results in higher hardware
resources, as shown in [8]. While comparing with [8] under
the same conditions on Virtex 4 (XC4VLX80), our design
consumes 38% lower FPGA slices and provides (106/s)/slices
ratio of 6.64 whereas this ratio is reported as 6.23 in [8].
On Virtex 4 (XC4VLX100), Design I achieves 37% higher
(106/s)/slices ratio (6.67) than the work reported in [9] which
is 4.53.

In [12], the digit level multiplier with different digit sizes
is used to perform PM. The optimal digit size of 55 bits is
obtained in [12]. On the other hand, this work implements
the digit parallel multiplier with digit size of 32 bits. Higher
digits (55 bits) in [12] results higher hardware resources than
the lower digits (32 bits) in the proposed work. However,
on Virtex 4 (XC4VLX200), FPGA slices used in [12] is 55%
(17929) more than Design I which is only 8022. Furthermore,
the Design I achieves 3% higher (106/s)/slices ratio of 5.95 as
compared to [12] which is 5.80. In order to reduce hardware
resources, a bit serial FF multiplier is used in [10] where
multiple clock cycles (‘m’ clock cycles for ‘m’ bit key length)
are required to generate the final result. Using a bit serial
multiplier on Virtex 7 in [10], the utilized FPGA resources
are 4665 (slices) which is 34% higher than our work (3107)
and the (106/s)/slices ratio of our work is 28.53 which is
89% higher than the presented work in [10]. Furthermore,
for GF(2233), the proposed Design I provides 6.3% higher
performance than [13] on Virtex 4 (XC4VFX140).

For BHC, we can compare our Design-II with the work
presented in [14] and [15]. Bit parallel multipliers (hybrid
karatsuba) are used in [14] and [15] whereas a digit parallel

VOLUME 6, 2018 22791



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

multiplier is used in our work. Hybrid karatsuba performs
FF multiplication in a chronological order (such as multipli-
cation from lower to higher bits). Therefore, multiplications
with larger bits in hybrid Karatsuba utilizes higher hard-
ware resources and results longer delays [17]. As a result,
the proposed Design II outperforms the solutions presented
in [14] and [15] by achieving almost 9.5% and 8% higher
(106/s)/slices ratio than the work presented in [14] and [15]
respectively.

VI. CONCLUSION
By considering flexibility in terms of security/reliability,
a novel flexible hardware architecture has been presented in
this work. For flexibility, the proposed architecture provides
multi curve (ECC and BHC) as well as multi algorithmic
(Montgomery and Double and Add) support. For exact com-
parison with state-of-the-art, we have proposed the dedicated
designs for both the curves. By utilizing the same hard-
ware resources, flexibility directly influences the cost and
performance of the hardware while dedicated hardware pro-
vides higher performance. The proposed flexible hardware
enables its usage where the users can tradeoff between the
algorithmic execution time and different reliability/security
levels.

REFERENCES
[1] J.W. Bos, C. Costello, P. Longa, andM. Naehrig, ‘‘Selecting elliptic curves

for cryptography: An efficiency and security analysis,’’ J. Cryptogr. Eng.,
vol. 6, no. 4, pp. 259–286, 2016.

[2] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[3] H. Marzouqi, M. Al-Qutayri, and K. Salah, ‘‘Review of elliptic curve
cryptography processor designs,’’Microprocess. Microsyst., vol. 39, no. 2,
pp. 97–112, 2015.

[4] D. J. Bernstein, T. Lange, and R. R. Farashahi, ‘‘Binary Edwards curves,’’
in Cryptographic Hardware and Embedded Systems—CHES (Lecture
Notes in Computer Science), vol. 5154. Berlin, Germany: Springer, 2008,
pp. 244–265.

[5] J. Devigne and M. Joye, ‘‘Binary huff curves,’’ in Topics in Cryptology—
CT-RSA (Lecture Notes in Computer Science), vol. 6558. Berlin, Germany:
Springer, 2011, pp. 340–355.

[6] Z. Lijun,W. Kunpeng, andW. Hong, ‘‘Unified and complete point addition
formula for elliptic curves,’’ Chin. J. Electron., vol. 21, no. 2, pp. 345–349,
2012.

[7] Z. U. A. Khan and M. Benaissa, ‘‘High-speed and low-latency
ECC processor implementation over GF(2m) on FPGA,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp. 165–176,
Jan. 2017.

[8] Y. Zhang, D. Chen, Y. Choi, L. Chen, and S.-B. Ko, ‘‘A high perfor-
mance ECC hardware implementation with instruction-level parallelism
over GF(2163),’’ Microprocess. Microsyst., vol. 34, no. 6, pp. 228–236,
2010.

[9] R. Azarderakhsh and A. Reyhani-Masoleh, ‘‘Efficient FPGA implementa-
tions of point multiplication on binary Edwards and generalized Hessian
curves using Gaussian normal basis,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 20, no. 8, pp. 1453–1466, Aug. 2012.

[10] T. T. Nguyen and H. Lee, ‘‘Efficient algorithm and architecture for elliptic
curve cryptographic processor,’’ J. Semicond. Technol. Sci., vol. 16, no. 1,
pp. 118–125, 2016.

[11] Z. U. A. Khan and M. Benaissa, ‘‘High speed ECC implementation on
FPGA over GF(2m),’’ in Proc. 25th Int. Conf. Field Programm. Logic
Appl. (FPL), 2015, pp. 1–6.

[12] H. Mahdizadeh and M. Masoumi, ‘‘Novel architecture for efficient FPGA
implementation of elliptic curve cryptographic processor over GF(2163),’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 12,
pp. 2330–2333, Dec. 2013.

[13] C. Rebeiro and D. Mukhopadhyay, ‘‘High speed compact elliptic curve
cryptoprocessor for FPGA platforms,’’ in Proc. 9th Int. Conf. Cryptol.,
2008, pp. 376–388.

[14] A. Chatterjee and I. Sengupta, ‘‘High-speed unified elliptic curve cryp-
tosystem on FPGAs using binary huff curves,’’ in Progress in VLSI
Design and Test (Lecture Notes in Computer Science), vol. 7373. Berlin,
Germany: Springer, 2012, pp. 243–251.

[15] S. Ghosh, A. Kumar, A. Das, and I. Verbauwhede, ‘‘On the implementation
of unified arithmetic on binary huff curves,’’ in Cryptographic Hardware
and Embedded Systems—CHES (Lecture Notes in Computer Science),
vol. 8086. Berlin, Germany: Springer, 2013, pp. 349–364.

[16] A. R. Jafri, M. N. Ul Islam, M. Imran, and M. Rashid, ‘‘Towards an
optimized architecture for unified binary huff curves,’’ J. Circuits, Syst.
Comput., vol. 26, no. 11, p. 1750178, Nov. 2017.

[17] M. Imran and M. Rashid, ‘‘Architectural review of polynomial bases finite
field multipliers over GF(2m),’’ in Proc. Int. Conf. Commun., Comput.
Digit. Syst., 2017, pp. 331–336.

[18] G. Hanaoka and S. Yamada, ‘‘Survey on identity-based encryption from
lattices,’’ in Mathematical Modelling for Next-Generation Cryptography,
vol. 29. Singapore: Springer, 2018, pp. 349–365.

[19] L. Sujihelen and C. Jayakumar, ‘‘Inclusive elliptical curve cryptography
(IECC) for wireless sensor network efficient operations,’’ Wireless Pers.
Commun., vol. 99, no. 2, pp. 893–914, 2018.

[20] K. Leng, L. Jin, W. Shi, and I. Van Nieuwenhuyse, ‘‘Research on agricul-
tural products supply chain inspection system based on Internet of Things,’’
Cluster Comput., pp. 1–9, Feb. 2018.

[21] N. Assaf, B. Alkazemi, and A. A.-A. Gutub, ‘‘Applicable light-weight
cryptography to secure medical data in IoT systems,’’ J. Res. Eng. Appl.
Sci., vol. 2, no. 2, pp. 50–58, 2017.

[22] A. F. M. Piedrahita, V. Gaur, J. Giraldo, Á. A. Cárdenas, and S. J. Rueda,
‘‘Leveraging software-defined networking for incident response in
industrial control systems,’’ IEEE Softw., vol. 35, no. 1, pp. 44–50,
Jan./Feb. 2017.

[23] N. Pedemonte, T. Laliberté, and C. Gosselin, ‘‘A haptic bilateral system
for the remote human–human handshake,’’ J. Dyn. Syst., Meas., Control,
vol. 139, no. 4, p. 044503, 2017.

[24] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[25] T. Plos, M. Hutter, M. Feldhofer, M. Stiglic, and F. Cavaliere, ‘‘Security-
enabled near-field communication tag with flexible architecture supporting
asymmetric cryptography,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 21, no. 11, pp. 1965–1974, Nov. 2013.

[26] A. A.-A. Gutub and A. F. Tenca, ‘‘Efficient scalable VLSI architecture
for Montgomery inversion in GF(p),’’ Integr., VLSI J., vol. 37, no. 2,
pp. 103–120, May 2004.

[27] M. Rashid, M. Imran, and A. R. Jafri, ‘‘Comparative analysis of flexible
cryptographic implementations,’’ in Proc. 11th IEEE Int. Symp. Reconfig-
urable Commun.-Centric Syst. Chip (ReCoSoC), Jun. 2016, pp. 1–6.

[28] P. L. Montgomery, ‘‘Speeding the pollard and elliptic curve methods of
factorization,’’ Math. Comput., vol. 48, no. 177, pp. 243–264, Jan. 1987.
[Online]. Available: http://www.jstor.org/stable/2007888?seq=1#page_
scan_tab_contents

[29] Elliptic Curves-Double and Add Algorithm. Accessed: Jan. 2018. [Online].
Available: http://www.hyperelliptic.blogspot.com/2009/06/double-and-
add-algorithm.html

[30] J. López and R. Dahab, ‘‘Fast multiplication on elliptic curves over GF(2m)
without precomputation,’’ in Cryptographic Hardware and Embedded
Systems—CHES) (Lecture Notes in Computer Science), vol. 1717. Berlin,
Germany: Springer, 1999, pp. 316–327.

[31] Z. Liu, D. Liu, and X. Zou, ‘‘An efficient and flexible hardware imple-
mentation of the dual-field elliptic curve cryptographic processor,’’ IEEE
Trans. Ind. Electron., vol. 64, no. 3, pp. 2353–2362, Mar. 2017.

[32] D. L. Huff, ‘‘A probabilistic analysis of shopping center trade areas,’’ Land
Econ., vol. 39, no. 1, pp. 81–90, 1963.

[33] M. Joye, M. Tibouchi, and D. Vergnaud, ‘‘Huff’s model for elliptic curve,’’
in Algorithmic Number Theory (Lecture Notes in Computer Science),
vol. 6197. Berlin, Germany: Springer, 2010, pp. 234–250.

[34] Z.-U.-A. Khan and M. Benaissa, ‘‘Throughput/area-efficient ECC pro-
cessor using Montgomery point multiplication on FPGA,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 62, no. 11, pp. 1078–1082, Nov. 2016.

22792 VOLUME 6, 2018



M. Imran et al.: ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication

[35] A. A.-A. Gutub, ‘‘GF(2K ) elliptic curve cryptographic processor archi-
tecture based n bit level pipelined digit serial multiplication,’’ in Proc.
ACS/IEEE Int. Conf. Comput. Syst. Appl., Jul. 2003, p. 12.

[36] A. A.-A. Gutub, ‘‘Fast elliptic curve cryptographic processor architecture
based on three parallel GF(2k ) bit level pipelined digit serial multipli-
ers,’’ in Proc. 10th IEEE Int. Conf. Electron., Circuits Syst., Jan. 2004,
pp. 72–75.

[37] A. A.-A. Gutub, ‘‘Area flexible GF(2k) elliptic curve cryptography copro-
cessor,’’ Int. Arab J. Inf. Technol., vol. 4, no. 1, pp. 1–10, 2007.

[38] A. A.-A. Gutub, A. F. Tenca, E. Savaş, and C. K. Koç, ‘‘Scalable and
unified hardware to compute Montgomery inverse in GF(p) and GF(2n),’’
in Cryptographic Hardware and Embedded Systems—CHES (Lecture
Notes in Computer Science), vol. 2523. Berlin, Germany: Springer, 2003,
pp. 484–499.

[39] A. A.-A. Gutub, ‘‘High speed hardware architecture to compute galois
fields GF(p) Montgomery inversion with scalability features,’’ IET
Comput. Digit. Techn., vol. 1, no. 4, pp. 389–396, Jul. 2007.

[40] T. Itoh and S. Tsujii, ‘‘A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,’’ Inf. Comput., vol. 78, no. 3,
pp. 171–177, 1988.

[41] M. Imran, I. Shafi, A. R. Jafri, and M. Rashid, ‘‘Hardware design and
implementation of ECC based Crypto processor for low-area-applications
on FPGA,’’ in Proc. 11th IEEE Int. Conf. Open Source Syst. Technol.,
Dec. 2018, pp. 54–59.

[42] (1999). National Institute of Standards and Technology: Recommended
Elliptic Curves for Federal Government Use. [Online]. Available:
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf

MALIK IMRAN received the bachelor’s degree
in computer engineering from the COMSATS
Institute of Information Technology, Abbottabad,
Pakistan, in 2011, and the M.S. degree in telecom-
munication and networks from Abasyn Univer-
sity, Islamabad, Pakistan, in 2015. He is currently
with Bahria University as a Teaching Assistant
for assisting in programming fundamentals course
and lab work. Apart from teaching activities, he is
involved in the research related to efficient hard-
ware solutions for asymmetric cryptography.

MUHAMMAD RASHID received the Ph.D.
degree in embedded systems design from the Uni-
versity of Bretagne Occidentale, Brest, France,
in 2009. He was with Thomson Research and
Development, Paris, France. He is currently with
the Computer Engineering Department, Umm
Al-Qura University, Makkah, Saudi Arabia. His
research is mainly focused on electronic design
automation for embedded systems.

ATIF RAZA JAFRI received the B.Sc. degree in
electrical engineering fromUET Lahore, Pakistan,
in 1999, the M.S. degree from the University
of Nice Sophia Antipolis, France, in 2007, and
the Ph.D. degree from Telecom Bretagne, Brest,
France, in 2011. He served with the Research
and Development Sector for over 10 year. He has
been with the Electrical Engineering Depart-
ment, Bahria University, Islamabad, Pakistan,
since 2015, where he is currently serving as an

Associate Professor. His research interests include hardware architectures
implementation for wireless communication and cryptographic applications
using both HDL and HLS. He is currently engaged in the research related to
architectures of physical layer of future wireless communications and ultra-
light weight and asymmetric cryptography.

MUHAMMAD NAJAM-UL-ISLAM received the
bachelor’s degree in electrical engineering from
LUMS and the master’s degree in computer sci-
ences from UET, Lahore, Pakistan, and the Ph.D.
degree in electrical engineering from Telecom
ParisTech, France. During the Ph.D. studies, he
was with EURECOM, Sophia Antipolis, involved
on the research theme of flexible radios for multi-
standard wireless communication devices. He has
also with the Government of Pakistan in Research

and Development projects from 1998 to 2004. He is currently a Professor
and the Dean with the Faculty of Engineering and Sciences, Bahria Univer-
sity, Islamabad. He has authored or co-authored over 40 papers in reputed
international journals and conferences. His current research interests include
information security, flexible radios, and renewable energy.

VOLUME 6, 2018 22793


	INTRODUCTION
	RELATED WORK
	HARDWARE IMPLEMENTATIONS OF PM FOR ECC
	HARDWARE IMPLEMENTATIONS OF PM FOR BHC
	APPLICATION DEMANDING FLEXIBLE ARCHITECTURES
	STATE-OF-THE-ART ON FLEXIBLE ARCHITECTURES

	OUR WORK

	PRELIMINARIES
	ELLIPTIC CURVE CRYPTOGRAPHY (ECC) OVER GF(2m)
	BINARY HUFF CURVES (BHC) OVER GF(2m)

	POINT MULTIPLICATION ALGORITHMS
	MONTGOMERY ALGORITHM FOR ECC
	DOUBLE AND ADD ALGORITHM FOR BHC
	COMPUTATIONAL COST OF PA AND PD

	PROPOSED HARDWARE ARCHITECTURES
	MEMORY UNIT (MU)
	ROUTING NETWORKS (RNs)
	ARITHMETIC AND LOGIC UNIT (ALU)
	CONTROL UNIT (CU)
	CONTROL UNIT FOR DESIGN I (ECC)
	CONTROL UNIT FOR DESIGN II (BHC)
	CONTROL UNIT FOR DESIGN III (ACryp-Proc)


	PERFORMANCE RESULTS AND COMPARISON WITH STATE OF THE ART IMPLEMENTATIOS
	PERFORMANCE RESULTS
	COMPARISON WITH STATE OF THE ART IMPLEMENTATIONS
	DEDICATED VERSUS UNIFIED DESIGNS
	DEDICATED DESIGNS VERSUS STATE-OF-THE-ART


	CONCLUSION
	REFERENCES
	Biographies
	MALIK IMRAN
	MUHAMMAD RASHID
	ATIF RAZA JAFRI
	MUHAMMAD NAJAM-UL-ISLAM


