
Received March 26, 2018, accepted April 16, 2018, date of publication April 18, 2018, date of current version May 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2828260

Architecture Design and Implementation
of an Autonomous Vehicle
WENHAO ZONG , CHANGZHU ZHANG, ZHUPING WANG,
JIN ZHU, AND QIJUN CHEN, (Senior Member, IEEE)
Robotics and Artificial Intelligence Laboratory, Tongji University, Shanghai 201804, China

Corresponding author: Qijun Chen (qjchen@tongji.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61733013 and in part by the Basic
Research Project of Shanghai Science and Technology Commission under Grant 16JC1401200.

ABSTRACT Architecture design is one of the most important problems for an intelligent system. In this
paper, a practical framework of hardware and software is proposed to reveal the external configuration
and internal mechanism of an autonomous vehicle—a typical intelligent system. The main contributions
of this paper are as follows. First, we compare the advantages and disadvantages of three typical sensor
plans and introduce a general autopilot for a vehicle. Second, we introduce a software architecture for an
autonomous vehicle. The perception and planning performances are improved with the help of two inner
loops of simultaneous localization and mapping. An algorithm to enlarge the detection range of the sensors
is proposed by adding an inner loop to the perception system. A practical feedback to restrain mutations of
two adjacent planning periods is also realized by the other inner loop. Third, a cross-platform virtual server
(named project cocktail) for data transmission and exchange is presented in detail. Through comparisons
with the robot operating system, the performance of project cocktail is proven to be considerably better in
terms of transmission delay and throughput. Finally, a report on an autonomous driving test implemented
using the proposed architecture is presented, which shows the effectiveness, flexibility, stability, and low-cost
of the overall autonomous driving system.

INDEX TERMS Intelligent vehicles, system architecture, sensors, mapping and planning, data transmission.

I. INTRODUCTION
Autonomous vehicles and related techniques have recently
become one of the hottest research topics. As is known,
the two most famous competitions to promote autonomous
vehicle techniques are the 2005 DARPA Grand Challenge
and the 2007 Urban Challenge. Stanford University’s Junior
is a well-known autonomous car, and Google’s car emerged
based on Junior [1]. This car was equipped with two SICK
LMS 291-S14 sensors, one RIEGL LMS-Q120 laser sen-
sor, one Velodyne HDL-64E sensor, two ibeos and cam-
eras. The winner of the 2007 competition, ‘‘Boss’’ from
Carnegie Mellon University, was equipped with six SICK
LMS 291-S14 sensors, one Velodyne HDL-64E sensor, two
Continental ISF 172 LiDARs and two Point Grey Fire-
fly cameras [2]. Almost all of the other teams, such as
Team MIT [3], ‘‘Skynet’’ from Cornell University [4] and
‘‘Odin’’ from Embry-Riddle Aeronautical University [5],
used similar sensor plans to turn a vehicle into a robot. Since
2009, the National Science Foundation of China (NSFC)
has organized an annual competition called ‘‘Intelligent

Vehicle Future Challenge (IVFC)’’ [6]. In this challenge,
every team needs to finish both outskirts and urban track
for over 30 kilometers. Over twenty teams, mostly from
universities and institutions, including Tongji University, par-
ticipate in this competition every year. The appearances of
most vehicles are similar to those of DARPA vehicles, and
the price of sensors is typically approximately 10 times
the price of the vehicle itself. For example, Xi’an Jiao
Tong University [7], [8], Shanghai Jiaotong University [9],
Tsinghua University [10], National University of Defense
Technology [11], [12] designed their vehicles with LiDARs,
Radar, GPS, cameras and other vehicle sensors. Conse-
quently, some breakthroughsmust be achieved for acceptance
of the autonomous vehicle. The solution to this problem
is the revolution of both the hardware and software of the
autonomous vehicle. In 2014, Mercedes Benz presented a
successful demonstration on a Class S 500 equipped with
close-to-production sensor hardware and relied solely on
vision and radar sensors in combination with accurate digital
maps to obtain a comprehensive understanding of complex

21956
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-8126-3552

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 1. Autonomous vehicle developed by Tongji University. (a) Before
2013, most of the sensors were placed outside the vehicle and set up
improperly. (b) Since 2013, the sensors have been rearranged more
appropriately.

traffic situations [13]. Also, teams all over the world keep
thinking of new design and algorithms of the self-driving car
several years after DARPA Challenge, such as [14]–[17], etc.
Currently, both automobile companies, such as Tesla [18],
Mercedes-Benz, Audi, and BMW, and IT companies, such
as Google, Uber, and Baidu, are all devoting considerable
efforts to developing autonomous vehicles. More impor-
tantly, with the development of wireless communication,
autonomous vehicles enable cooperation among multiple
vehicles, which is commonly known as multi-agent sys-
tems [19], [20]. With the development of intelligent vehicles,
new traffic and transportation systems are also being studied
worldwide [21]–[24], etc. To date, state-of-the-art algorithms
have been revealed in a large number of papers, including
vision perception, local planning, navigation, localization,
control theories and so on [21], [25]–[31]. However, few
papers place an emphasis on system architectures, without
which algorithms are simply impractical independent acces-
sories. Although there exists some papers talking about the
system and architecture design, such as [1], [2], [4], [9], [17],
[32]–[36], the problems can be summarized as follows.
• They only talked about how they built the vehicle plat-
forms, but did not give detailed analysis on the mecha-
nism such as the sensor arrangement.

• The actuators of the auto driving system is important,
but most of the papers put emphasis on the drive-by-
wire techniques, which is infeasible to an old vehicle or a
vehicle which can not be lossily modified.

• Although the system diagram was given, not enough
quantitative inner links were revealed. The readers only
know which part of the modules should be connected
together, but how to execute from the data level was
neglected.

• Not enough quantitative experiments were demonstrated
in the above papers. Although some of these had the
analysis on control performance, the other modules such
as perception and data transformation did not prove to
cooperate well on the entire system level.

Fig. 1 shows the evolution of the fully autonomous vehicle
developed by Tongji University (named Tongji’s autonomous

vehicle in the following paper) before and after 2013. This
vehicle has been tested on Tongji University’s campus and on
specific testing fields in Changshu, China, for over 5 years,
during which solutions for both external sensors and inter-
nal architecture have changed considerably to significantly
improve the overall system performance. The solutions men-
tioned here are at the system level rather than algorithms, such
as perception, planning or control. For example, the solutions
include the rationality of the sensor plan, the efficiency of data
transmission, the fusion of algorithms in separate modules,
the stability of the entire system and so on.

In the following sections, we consider the overall architec-
ture of Tongji’s autonomous vehicle. In Section II, two main
parts of the hardware framework are introduced to analyze the
sensor plan from different perspectives and to solve the prob-
lems of external automated chassis control. In Section III,
the software system architecture is introduced to explain how
the modularized system works and two key loops of apply-
ing SLAM to ensure better performance of perception and
planning with inadequate sensors. In Section IV, a detailed
introduction to the data transmission module is presented,
and its performance comparison with the Robot Operating
System (ROS) [37] is shown in Section V. In Section VI,
a short report of an autonomous driving test is presented. The
conclusions and future work are discussed in Section VII.
We sincerely hope to provide anyone who wants to research
fully autonomous vehicles some good advice and a mature
template in this paper.

II. HARDWARE FRAMEWORK
For a vehicle to drive by itself, it needs ‘‘eyes’’, a ‘‘brain’’,
and a ‘‘body’’. Consequently, sensors, CPUs and actuators are
added to a regular vehicle such that it can perceive, think and
do as humans do. In this section, we primarily focus on two
aspects. The first aspect is the sensor placement plan, which
is a difficult and vital link, and the second aspect is a general
autopilot that serves as the actuator to control the steering
wheel, accelerator pedal, break pedal and gear selector.

A. COMPARISON OF THREE SENSOR PLANS
The sensors placed on this vehicle can almost cover every
typical type available on the market, including cameras,
millimeter-wave RADAR, ultrasonic sensors, LiDAR, GPS,
and inertial senors, which considerably differ from each other
in many aspects, such as range, distance, function, perfor-
mance and so on. In this subsection, three sensor plans with
different costs, performances and background algorithms will
be demonstrated.

A suitable sensor plan will balance function, range and
cost; otherwise, serious accidents may occur caused by
weather or blind spots, among others. Therefore, a brief
introduction to some typical sensors is given as follows.
For cameras, different sight ranges and distances can be
covered through different lenses. Generally, a 16 mm focal
length will be used for front detection to balance distance
and field angle (FOV). If the FOV is the most important

VOLUME 6, 2018 21957

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 2. From top to bottom: Sensor ranges and distances of plans A, B
and C. Different colors stand for different sensors.

concern, a 6 mm lens or even a fish-eye lens may be an
alternative. However, note that distortion will sacrifice the
detection distance. LiDAR can provide point clouds of the
environment directly and is much more stable compared with
cameras thanks to its insensitivity to luminance. However,
this type of sensor is not applicable for heavy rain or snow,
and it is typically 10 times the price of a camera. For mil-
limeter RADAR, this type of sensor generally works in com-
bination with cameras for detecting moving metal objects.
Although the sensitivity of millimeter wave RADAR is rela-
tively weak, the resolution is inversely proportional to range;
thus, the RADAR generally has to detect range and dis-
tance. In addition, this is an all-weather sensor because of its
good penetrability. Ultrasonic sensors appear on almost every
modern vehicle and are mainly used for low-speed parking
due to the short distance detection ability, typically less than
5 meters. This type of sensor is clearly the cheapest sensor.
Three sensor plans are shown in Fig. 2.

1) PLAN A
Four cameras, one millimeter wave RADAR, one 32-layer
LiDAR, one 4-layer LiDAR and one GPS+inertial sensor are
utilized in this plan. The cameras can be used for many types
of detections with the help of LiDARs and millimeter wave
RADARs. This plan is the closest to Google’s. The advantage
of this plan is that it can cover most of the area surrounding
the car, as well as be adaptive to different traffic scenes and
weather conditions. However, the disadvantages of this plan
are its extremely high cost and inadaptability for parking tasks
as distances <1 m are undetectable. In conclusion, this plan
is the best for regular city driving, but it is a redundancy in
highway scenes.

FIGURE 3. (a) Steering wheel controller is installed on the steering wheel
and fixed on the front window. (b) Accelerator and brake pedals are
pulled by steel cable and pulleys placed on the pedals. (c) Gear selector is
pulled by lever that is connected to the motor in the trunk.

2) PLAN B
The difference between this plan and Plan A is that the
32-layer LiDAR is replaced by two back-side millimeter
wave RADARs. A considerable enhancement in economy is
obtained at the expense of losing some city driving perfor-
mance since the surrounding information is greatly reduced.
Similarly, parking is still a challenging problem under this
framework. Based on the overall qualities, we recommend
this plan for most users.

3) PLAN C
From the bottom image in Fig. 2, it is easy to observe that
this plan is considerably different from Plans A and B. Only
two regular cameras, three millimeter wave RADARs, one
surrounding camera and one twelve-unit ultrasonic sensor are
utilized. From the perspective of economy, this is the cheapest
plan and can be accepted by most vehicle manufacturers.
However, since the system relies mostly on computer vision,
stability is the largest problem. To this end, much related
work is being conducted worldwide. In addition, by using the
surrounding camera and ultrasonic sensor, parking is not a
problem. As long as some satisfactory results can be obtained
with vision-based SLAM, drivable area detection and so on,
this inexpensive and lightweight plan will be the best choice
in the near future. In recent research, deep-learning-based
end-to-end vision solutions have been proposed by compa-
nies such as NVIDIA and Comma.ai [38].

B. GENERAL AUTOPILOT OF A VEHICLE
An autopilot is a device that enables a vehicle to automatically
turn, shift, accelerate and decelerate. This autopilot is applied
under the circumstance that the vehicle is not equipped with

21958 VOLUME 6, 2018

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 4. Software system architecture.

a wired-control chassis. Although wired-control must be the
future trend, most of the vehicles need such a device now
since the vehicle updating period is typically 5 to 10 years.
As shown in Fig. 3, five main parts, including steering wheel,
accelerator/brake pedals, gear activator and a central con-
troller, constitute the chassis control device. The principal of
our design is efficiency, lossless and feasible to most of the
situations. We do not want the actuators be like a robot sitting
on the driver’s seat [39].

The steering wheel control is the most difficult among
these five parts. Considering that it should be convenient for
users to install and remove this device without causing any
damage to the original vehicle, it is driven by a motor in the
three-talon mechanism clutched on the wheel and attached
to the front window, as demonstrated in Fig. 3 (a). It only
takes a novice less than 5 minutes to dismount and remount
this mechanism. Users can also choose to conveniently drive
by themselves with this mechanism. The pedals and gear
selector are all controlled by steel cables connected to the
rockers on the central controller, also driven by three inside

motors installed in the back trunk. These mechanisms do not
affect human driving; thus, remounting is unnecessary after
being equipped. Here, data transmissions are all through a
controller area network (CAN) bus to make it equivalent for
a wired-control chassis. The advantage of this autopilot is
its practicability and universality, and it can be equipped on
almost any vehicle in less than an hour without modifying the
original vehicle structure. The performance indices are shown
in Table 1.

III. SOFTWARE SYSTEM ARCHITECTURE
The software system architecture is shown in Fig. 4. From
left to right, the automated system is divided into five parts
by task, which are perception, decision, planning [40], con-
trol [41] and chassis. Perception is the most colorful but
difficult task of all, and without any perception, the vehicle is
like a blind man. Hence, researchers have placed great efforts
on detecting vehicles, pedestrians, lane markers and traffic
signs since the last century. Another essential task belonging
to perception is localization, and it cannot be separated from

VOLUME 6, 2018 21959

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

TABLE 1. Autopilot performance indices.

SLAM, which will be discussed in detail in the following
subsections. If perceptionmodules are the ‘‘eyes’’ and ‘‘ears’’
of an autonomous vehicle, then the decision and planning
modules can be deemed as the ‘‘driving brain’’, still closely
related with SLAM, which will also be discussed in detail.
Although Tongji’s autonomous vehicle is fully automated,
it is still possible for a human to interact with it through
the user interface module. As long as the order follows the
safety rules evaluated by the ‘‘driving brain’’, a human is
able to tell the vehicle to do what he requires or even take
control actions on the vehicle. In addition, the log module
makes the system more dependent. This module consists of
two parts: exception logs to record errors of unhandled cases
and offline data logs to save environment, trajectories, control
output data, and so forth on hard disks for a simulator to
playback typical scenes. From bottom to top, the automated
system is a three-layer model (OS layer, data transmission
layer and algorithm layer). To make the systemmore flexible,
a hierarchical architecture is necessary to isolate the logic,
data management and operating system from each other such
that it is easy for developers to modify any part of the system
without influencing other parts. The OS layer consists of
the operating system and process management module (PM)
monitoring every other module by a heart beat signal to judge
whether their states are normal. For our software system,
the data transmission module is of the greatest priority. If the
occurrence of a fault is detected by the PM, then a restart
is necessary for all the modules after the PM restarts first.
Among these three layers, data transmission interacting with
almost every other module is considered in Section III. In the
following subsections, two key inner loops will be introduced
to demonstrate the relationship between real-time SLAM and
other parts of the system.

A. REAL-TIME MAPPING AND FUSION LOOP
Occasionally, the perception module is unable to cover a
sufficient range for self-driving, such as sensor plans B and C

FIGURE 5. Environment mapping loop diagram.

with inadequate sensors because of the cost; thus, an algo-
rithm to solve this problem by estimating the probability of
the positions is proposed in this subsection. First, the outputs
of some sensors will be chosen to perform fusion as the
input of the vehicle rotation and transmission (RT) matrix
ERT estimation. Note that the sensor type can be completely
arbitrary, and the data for fusion also include cloud points,
feature points and detection results such as lane markers, road
curbs and so forth. After a generalized fusion map frame is
obtained, together with history frames, the vehicle ERT can
be estimated by algorithms such as bundle adjustment (BA).
Then, the matrix is transferred to the environment perspec-
tive to renew the fusion data map. By combining current
and renewed data together, the local driving map can be
obtained for the decision and planning modules. This process
is demonstrated in Fig. 5. To describe the algorithm, a concept
named ‘‘probability ellipse (PE)’’ should first be introduced,
in which every point is evaluated by a probability value that
decreases to zero from the center to the edge. Additionally,
different ellipses can overlap with each other, for which the
overlapping section is evaluated by the average probability
values C(x,y) =

∑
i∈L C(xi,yi)/n, where L represents sets of

overlapping ellipses and n is the number of elements in set L.
Here, the vehicle position, velocity and acceleration in

the ith frame of the environment are denoted by sets
Mpi ,Mvi ,Mai , respectively, and M̂pi , M̂vi , M̂ai represent the
data observed by sensors in the ith frame. Hence, by assuming
that the vehicle acceleration does not change between two
consecutive sampling instants, the environment position esti-
mation is given by (1)

Mpi = ERTi
(
Mpi−1 +1tMvi−1 + 0.51t2Mai−1

)
∪ M̂pi ,

Mvi = Mvi−1 ∪ M̂vi ,

Mai = Mai−1 ∪ M̂ai , (1)

where δt is the sampling period. If the k th point M (k)
Pi ∈ MPi

and M (k)
Pi /∈ M̂pi , then this point is either out of sensor

range or misdetected in this frame, for which PE should be
applied, given by

Mpi = Mpi ∪

{
(x, y) |x(k)

2
/R2x(k) + y

(k)2/R2y(k) < 1
}

21960 VOLUME 6, 2018

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 6. Detailed local planning loop diagram.

s.t.


Rx(k) ∝ Dax(k)
Ry(k) ∝ Day(k)

C(x(k),y(k)) ∝
(
1/Dax(k) + 1/Day(k)

)/
2

(2)

whereC(x(k),y(k)) is the probability of center point
(
x(k), y(k)

)
,

Rx(k) and Ry(k) are two axes of PE, and Dax(k) and Day(k)
are the variance of acceleration of

(
x(k), y(k)

)
in a period of

time. After each point in
{
(x, y) |M (k)

Pi ∈ MPi ∩M
(k)
Pi /∈ MPi

}
is expanded by PE, the probability of each point Mai will be
calculated with consideration of overlap. Finally, a probabil-
ity threshold δ is selected for determining the final general
perception result.

The advantage of this algorithm is tremendous when the
vehicle sensor plan has some blind spots. With integration
of the environment, the current blind spots can actually be
covered by history frames. In addition, sensor data will be
greatly increased, which favors some low-density sensors
such as SICK LMS 291-S14 or ibeo LUX.

B. LOCAL PLANNING LOOP
One of the most challenging problems in solving dynamic
trajectory planning is trajectory mutation in two adjacent
planning periods, which results in substantial steering wheel
shaking during a serious crash. This is because the vehicle
pose changes between two planning periods. To make the
trajectory transit smoothly, a feedback is introduced where
the last planning trajectory should be renewed by multiply-
ing by ERT if the trajectory is not updated. This process is
demonstrated in Fig. 6. The general equation for feedback
planning is given as follows:

ESSD
(
xn, yn,ψn

)
= pn − ERT pn−1

argmin
xn,yn,ψn

∥∥ESSD (xn, yn,ψn
)∥∥

2 (3)

where the 2D position and heading of the vehicle are denoted
by x, y,ψ , respectively. The environment RT matrix is
denoted by ERT . pn

(
xn, yn,ψn

)
and pn−1

(
xn, yn,ψn

)
stand

for two adjacent plans.

IV. VIRTUAL SERVER FOR DATA TRANSMISSION
As shown in the above section, every module is indepen-
dent from each other except for data; thus, data transmission
plays a vital role in the system. Thus, the data transmission
module should be stable, safe, efficient and bug-free. Every
involved module can be viewed as a node connecting to it,
with no influence on others, when the corresponding node

FIGURE 7. The three-layer model of Project Cocktail.

is out of work. If module A only needs data from B, then
the others will not send any data to A. Since a transmis-
sion delay is fatal for automated driving, efficiency should
receive the greatest attention. Although the Robot Operating
System (ROS) is a well-known system that has been widely
used for robots, it is found that this system is not very suitable
for an autonomous vehicle after some testing because of
its real-time performance and cross-platform ability. Thus,
to solve these problems, a data transmission module for an
autonomous vehicle is developed, named ‘‘Project Cocktail’’.
Project Cocktail is a pivotal data transmission and exchange
system that can receive/forward messages from/to network
peers (using user datagram protocol). Although designed
for this specific application, Project Cocktail is actually a
general-purpose intermediary that will treat all data flows just
as binary streams, and it does not rely on any concrete data
format of the network peers. Its design allows it to be quite
resilient in the sense that it works efficiently in the face of
many types of data generated from a large number of network
peers.

To address the objectives of Project Cocktail identified
above, it is necessary to become organized. Layered design
has proven to be particularly effective in the computer soft-
ware literature. The primary idea of layers is that each layer
hides the operation of the layer below from the layer above
and instead provides its own interpretation of all the important
features of the lower layer. This allows us to replace any layer
with another implementation without influencing the logic of
other layers. This is also the reason for the name ‘‘Cocktail’’,
which means that the system is a fusion of data along with a
clear layer logic design. The architecture of Project Cocktail
is shown in Fig. 7. The server and client logic are given in
Algorithms 1 and 2.

A. DATA ACCESS LAYER
At the bottom of Project Cocktail, there must be some
underlying mechanism that leverages the operating system

VOLUME 6, 2018 21961

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

Algorithm 1 Project Cocktail Server Logic
Input: Packets from Modules
Output: Packets to Modules

Listen for every module m in parallel
while module m received packet Pm do
if Pm is Connection and m is allowed to be connected
then
set TargetAddress[m] to the IP:port from Pm

else if Pm is DisConnection and TargetAddress[m]is
IP:port from Pm then
set TargetAddress[m] to NIL

else if Pm is DataUpdate then
if Pm is SinglePacketData then

Send Pm to TargetAddress[Target specified in Pm]
else if Pm is PartialPacketData then
Send Pm to TargetAddress[Target specified in Pm]

end if
end if

end while

(OS)-provided features such as ‘‘socket’’ and ‘‘thread’’. The
data access layer is responsible for managing these low-level
operations. The goal of the data access layer is to provide
easy-to-use and robust utilities to the upper layers, hiding the
particular mechanics of the OS services involved.

Concurrency is always the key to the high-performance
computing of modern hardware with multi-core processors.
Thread is a typical approach that is widely used across
many modern OSes. In Project Cocktail, we introduce the
‘‘IoThreadPool’’ class, which could be treated as an intelli-
gent task scheduler. Whenever an IO operation (e.g., socket
data received, file read, and so on) completes, this scheduler
is smart enough to determine what the best strategy for the
current scenario is, i.e., whether to create a new thread to
process the data or reuse an existing but already terminated
thread to process the data, and which processor the thread will
be assigned to such that the system throughput is maximized.

Another underlying infrastructure is the network IO oper-
ations (i.e., sending/receiving). BSD socket is the de facto
universal interface standard for such operations. Taking Win-
dows for example, Project Cocktail utilizes the WinSock
APIs the Windows-specific implementation of BSD Socket,
which is also highly optimized for Windows OS to wrap
all dirty works such error handling (e.g., DNS not found,
target not available, timeout, and so forth), data marshal-
ing (e.g., mapping from little-endian to big-endian, conver-
sion between bytes array and UDP packets, and so on) and
IoThreadPool integration. This design ensures that it is not
necessary for the upper layer to worry about all these low-
level operations; what they will see is only a simple inter-
face for sending/receiving data to/from the network, and the
data access layer smartly handles all performance-related and
robustness-related issues to allow the entire computer system
exert its full power.

Algorithm 2 Project Cocktail Client Logic
Input: Packages from Server and Local Sensors
Output: Packages to Server

Send Connection Packet PConnection to Server
while listen Pi from Local Sensors and Server do
if Pi.prop is SensorData then

if Pi.size is smaller than 60K then
Construct SinglePacketData DataUpdate and Send
to Server

else
Split Pi into pieces
Send every piece of data as PartialPacketData
DataUpdate to Server

end if
else if Pi.prop is ServerData then

if Pi.prop is DataUpdate then
if Pi.prop is SinglePacketData then
Deal with the data from SinglePacketData

else if Pi.prop is PartialPacketData then
if All other PartialPacketData has been received
then

Combine all PartialPacketData and deal with
it

else
Cache this PartialPacketData in local storage

end if
end if

end if
end if

end while
Send Disconnection Packet to Server

B. ABSTRACT MODEL LAYER
The abstract model layer is themiddle layer of the three-layer
model, which interprets the raw binary stream (i.e., the byte
array used by the data access layer) in the sense of a more
logically organized data structure called a ‘‘packet’’. This
layer consists of three main parts: OutgoingPacketBuilder,
IncomingPacketBuilder, and PacketHub.

1) OUTGOINGPACKETBUILDER
OutgoingPacketBuilder is intended to be used by the Pack-
etHub, which needs to specify the destination and the packet
to be sent. The builder will compose a byte array from the
packet of the sender and then pass this byte array to the
data access layer to actually send the data to the destination
module.

2) INCOMINGPACKETBUILDER
Once the data access layer of the destination module receives
data from the network, it will upcall the IncomingPacket-
Builder and pass the byte array just received to that builder.
The task of IncomingPacketBuilder is just to decompose from
the byte array and constructs a new packet instance, which is
then transferred to the PacketHub.

21962 VOLUME 6, 2018

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

3) PACKETHUB
PacketHub is the heart of this layer, and it is also the only
interface that can be used by the components of the upper
layers. By using PacketHub, the invoker is able to attach
listeners to different types of packets, and it is also able
to send all types of packets to the destination module. All
the works, such as composing messages, maintaining packet
order, and allocating buffer for different types of packets,
will be considered at this layer and be transparent to all the
invokers.

C. BUSINESS LOGIC LAYER
We can now create the complete picture. The data access and
abstract model layers together provide a high-performance
network packet receiving/sending utility, which meets the
requirements that we mentioned above (e.g., generic,
resilient, efficient, and so forth). The remaining part is the
most interesting one, namely, implementing business logic
for the entire application, including the server part and client
part.

The business logic layer is divided into several compo-
nents. Each component, also named a ‘‘transaction’’, is com-
pletely independent of other components. This methodology
of limiting the interactions among components is a proven
way to enforce modularity. Every transaction is either a client
transaction or server transaction, depending on how it handles
packets.

V. TESTING OF PROJECT COCKTAIL
Generally, the performance of a distributed system can be
evaluated by the transmission delay, throughput capacity and
loss ratio. In this section, three test cases will be designed
to compare Project Cocktail and ROS from these three main
perspectives. All of the cases will be tested under two typ-
ical transmission modes. The first mode is called single-to-
single (s2s), in which each module only sends and receives
messages from one module, which forms a chain structure
connected end to end. The second mode is called all-to-all
(a2a), in which each module sends and receives messages
from all the other modules except itself, which forms a com-
plete graph. The sketch maps are shown in Fig. 8(a), (b).

The transmission system can be defined as a directed graph
G (M ,T), whereM (p) stands for the set of nmodules, packet
size is denoted by p, and edges T (t) stand for the set of
connections between each individual module with transmis-
sion delay t . Tij (t) = 0 when t = ∞, which means
that a connection between i and j does not exist; otherwise,
Tij (t) = 1. Additionally, transmission between modules i
and j can be denoted as

〈
mi,mj

〉
. Hence, the total data size

Q =
∑n

i=0

(∑n
j=0 Tijpi

)
, i 6= j. Suppose that pi = p̂,

Qs2s = np̂, andQa2a = n (n− 1) p̂, which is n−1 timesQs2s.
The following comparison test has been implemented on a

server with two Intel(R) Xeon(R) CPUs @ 2.3 GHz, 32 GB
of RAM and a 64-bit operating system. All the modules are
run in the same localhost to avoid uncertainty arising from

FIGURE 8. (a) Transmission mode s2s. (b) Transmission mode a2a.
(c) Transmission mode a2s.

FIGURE 9. Transmission delays of two typical modes. (a) Transmission
delay of mode s2s. (b) Transmission delay of mode a2a.

a physical cable. Seven packet sizes, including 100 B, 1 KB,
10KB, 100KB, 1MB, 10MB and 100MB, have been chosen
to represent data sizes from tiny to large. Moreover, the num-
ber of modules that we choose is 5, 10, 20 and 50, among
which the 100MB packet size has been tested only with 5 and
10 modules in mode a2a due to the RAM constraints of the
server.

A. TRANSMISSION LATENCY
Transmission latency is the period of time between sending
and receiving, and it is one of the most important indices for
evaluating the performance of a real-time system. In this test
case, latency is evaluated via the sending time stamp within
the packet. log (t) is utilized to increase the deviations of
different packet sizes. From the test results shown in Fig. 9,
the transmission delay increases with increasing packet size
and number of modules. In addition, although 5 modules
of mode a2a is equivalent to 20 modules of mode s2s in
terms of total data amount, the transmission delay in a2a
is larger than that in s2s, which indicates that each module
should listen to other modules as little as possible; simi-
larly, repeating listening to one module should be avoided
as much as possible. The comparison indicates that Project
Cocktail performs better than ROS in terms of transmission
latency.

B. THROUGHPUT RATIO
Throughput ratio is also a vital index for evaluating the per-
formance of a system.With the explosion of data, irrespective
of whether data are from local sensors or the cloud, it is

VOLUME 6, 2018 21963

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

likely that the system needs to process a large amount of
data in one control period, particularly for complex systems.
Regarding autonomous vehicles, cameras, LiDARs, maps,
and so on are all large data sources. Throughput ratio deter-
mines the maximum amount of data that can be processed
by CPUs, irrespective of how efficient or accurate intelligent
algorithms are. Generally, throughput ratio is influenced by
both hardware and software, among which software is actu-
ally the decisive factor. In this test case, throughput ratio
will be compared between Project Cocktail and ROS. Here,
p̂ = 10MB is selected, and the sending interval tint starts
from 3000 ms to 1000 ms. In the results shown in Fig. 10,
the color bar indicates the sending interval, which decreases
5 ms every single test. In Project Cocktail, since the system is
optimized with instant transmission latency, which increases
with decreasing sending interval, if the sending interval is
less than the transmission delay, it will continuously increase
with the arrival of new packets until complete block 10(b).
In ROS, this situation is better with the quick increase in
latency at first. Since an autonomous vehicle is a real-time
system, a continuous latency increase will do harm to almost
every module, particularly to those modules that are time rel-
evant, such as SLAM, planning and tracking. Consequently,
a sending interval threshold δ is chosen to define a sudden
change in the average transmission delay t̄ to represent the
maximum throughput ratio. Hence, the throughput ratio is
defined as

TP =
n (n− 1) p̂
ted − tst

,

where ted − tst is the duration from the first packet sent to
the last packet received. In this test, the maximum throughput
ratios of Project Cocktail and ROS with our definition are
83.2 MBps and 80.9 MBps, respectively.

C. LOSS RATIO
After the transmission delay and throughput ratio are tested
on localhost, packet loss does not occur for either of the
systems except for the complete block when CPU occupancy
remains at 100 percent. Since packet loss between terminals
connected by wires or even connected wirelessly undoubt-
edly exists considering the uncertainty of physical links, eve
though loss rate is an important index, this test is omitted in
this circumstance.

D. PARALLEL TRANSMISSION PERFORMANCE
To evaluate the parallel transmission performance, a special
mode called all-to-single (a2s) is simulated, and although
a real mode such as this does not exist, data concurrency
is a probable event when the number of modules or mes-
sages is large. In this mode, all the modules send data at
one time, as shown in Fig. 8(c). With the system thread
pool, the concurrent mechanism is automatically improved.
Both ROS and Project Cocktail achieved almost the same
performance.

FIGURE 10. Throughput test: (a) Trend of transmission delay with
different sending intervals. (b) Relationship between average delay and
sending interval. (a) Project Cocktail. (b) Project Cocktail. (c) ROS. (d) ROS.

VI. AUTONOMOUS DRIVING TEST REPORT
A. OVERALL INTRODUCTION
In this section, a short test report about one journey around
Jiading Campus, Tongji University, will be provided, which
is approximately 23 km in total, with 8 km on campus, 10 km
on the highway and 5 km in town. The weather was cloudy
and with appropriate light and adequate conspicuity. The top
speed was limited to 80 kph. The driving task includes lane
keeping and changing, overtaking, traffic lights, crossing,
U-turn, bridge, obstacle avoidance, semi-structured road driv-
ing and off-road driving. During the test, the vehicle was
mainly equipped with 4 IDS UI-5240CP cameras, one Ibeo
LUX, one Delphi ESR, two Delphi RSDs, and one GPS and
inertial sensor. The processor is an IPC, equipped with an
Intel i7 CPU, 8 GB of RAM and without a GPU accelerator.
Considering the quite long distance, the data and analysis
given below will be limited to the 8 km campus part. The
satellite map of the testing routine with the detailed campus
SLAM map used for localization is shown in Fig. 11.

B. MAIN PERCEPTION RESULTS
To achieve the goal of autonomous driving, some necessary
perception modules are applied to the system, such as obsta-
cle detection, lane detection, traffic light recognition, vehicle
and pedestrian detection, and monocular-vision-based driv-
able region recognition, as well as a data fusion module.
In this subsection, these perception results will be demon-
strated, with some derived from existing algorithms and
others from our unpublished results. The evaluation indices

21964 VOLUME 6, 2018

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 11. The red line in the left image is the 23 km test routine shown on Google Maps. The right image is the enlarged high-precision driving map of
the campus part with GPS data, Ibeo data, lane data, road data, traffic sign data, and so forth. When autonomous driving, these information are the input
priori knowledge for the vehicle planning and decision module.

FIGURE 12. Key performance index curve with some typical scenes highlighted by red rectangles and labeled by blue words. From top to bottom: steering
curve, speed curve and trajectory tracking curve.

in Table 2 are all based on object level, not pixel level, except
for drivable area detection, which means that if the detection
box area is truly the target object that needs to be detected, it is
treated as a true positive (TP). If there is no target object that
we need in the detection box, then it is a false positive (FP).
If the target object does not have a box around it, then it is
counted as a false negative (FN).

1) LANE DETECTION
As the most traditional and necessary perception unit, it has
been strenuously studied for decades [42]–[45]. In this driv-
ing test, a famous early algorithm named GOLD [45] from
Vislab is selected, which can handle most of the cases, such
as solid and dashed, strong shadow and zebra crossing, among

others. However, as a monocular algorithm without 3D infor-
mation, it is difficult for this algorithm to distinguish white
light poles from lanes. Fortunately, through the data fusion
module, with the help of the SLAM map and other sensors,
these false positives can be successfully removed. The single
frame detection result is shown in Fig. 13 and Table 2.

2) VEHICLE AND PEDESTRIAN DETECTION
Considering the balance of stability, accuracy and operational
time, DPM [46] is the most suitable for detecting vehicles and
pedestrians. Although the accuracy is less than that with deep
learning [47]–[49], the calculation cost is suitable for our
processor without GPU acceleration. Compared with driver
assist systems, fully autonomous driving cannot tolerate

VOLUME 6, 2018 21965

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 13. Lane detection results. (a-c) The normal lane detection results on both campus and highway roads with different colors
representing different lanes. (d) False positive caused by light pole. (e-h) The stop lanes are represented by blue lines.

TABLE 2. Perception performance indices.

mistakes such as false negatives within a certain distance,
which will be fatal during driving. Consequently, through
adjusting the parameters, we decrease the false negatives to
the greatest extent possible. With the help of the data fusion
module, most of the false positives can be removed.

3) TRAFFIC LIGHT DETECTION
The detection result shown in Fig. 15 is derived from an
improved version of [50], mainly by adding a verification
part to remove false positives and improving arrow light
recognition.

4) VISION-BASED DRIVABLE AREA DETECTION
The result shown in Fig. 16 is the monocular-vision-based
drivable region recognition algorithm, which will be pre-
sented in our future papers. In contrast to the deep learning
methods [47], [51], the processing is real time without any
GPU. Irrespective of whether the road is structured or ill-
structured, curb based or non-curb based, the algorithm
extracts optimal regions as road. The green region represents
drivable areas where vehicles, pedestrians and other obstacles
are eliminated. Similarly, this recognition result is also input
into a real-time mapping module to derive a noiseless and

21966 VOLUME 6, 2018

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 14. Vehicle and pedestrian detection results. (a-b) The detection results from the front camera for nearby pedestrians and
vehicles. (c-h) The detection results from in-car cameras. Irrespective of the vehicle poses, the algorithm can handle it, and
considering the safety, there are some false positives.

FIGURE 15. Traffic light detection results. (a-b) Traffic lights with complex background. (c-h) Detection results under different traffic
scenes.

non-blind zone perception, demonstrated by a green area.
With the recognition of traffic lights and stop lanes, the driv-
able region will increase or decrease, which finally forms
the environment perception result in the data fusion module.
The quantitative index to analyze the algorithm is chosen
from [52].

5) DATA FUSION MODULE
In Fig. 17, the dark blue points are the current scan results
from one Ibeo LUX placed in front of the vehicle, and the
light blue points are the estimated results from the past few
frames introduced in Section III in detail. It is clear that
the algorithm expands Ibeo data and fills up blind zones.
The red points are lane detection results from the current
and past few frames, which fit into the red line by the

probability-based least squares module to be the final lane
result. This fusion result can actually remove most of the
noise caused by a single frame.

C. KEY PERFORMANCE INDEX CURVES
The data plotted in Fig. 12 are the control performance index
curves of steering wheel, speed and tracking accuracy of the
campus part because of the large amount of data and complex-
ity of the open road condition. (a) Steering wheel control is
fast and accurate. Unless in the circumstance of U-turn obsta-
cle avoidance and overtaking, the steering wheel changes
smoothly to ensure an optimal lateral control. (b) Although
the expected speed is given as a step signal, the controller of
the accelerator pedal will guarantee that the acceleration, even
with jerks, changes continuously. Unfortunately, due to the

VOLUME 6, 2018 21967

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

FIGURE 16. Drivable area detection results represented by green color. (a) Unmarked straight road detection on campus.
(b) Unmarked branched road detection on campus. (c) Marked road detection on highway. (d) Marked road detection with parked
cars on campus. (e) Marked road detection with moving vehicles on highway. (f) Marked road detection with guide lines and moving
vehicles on highway. (g-h) Marked road detection with cyclists and pedestrians on campus.

FIGURE 17. Real-time mapping and data fusion results. Light blue points represent Ibeo mapping points. Colored lines represent
lane detection results with mapping system. Traffic detection results are shown on the top right if available. The blue area is the
drivable area, which is represented by a lateral 0.5 m and longitudinal 1.0 m grid map. The brighter the color is, the greater the
probability that the area is trusted as a road area. (a) Marked highway road. (b) T-junction road. (c-d) Left and right turns.
(e) Branched road. (f) Road with a moving front car to shorten the drivable area. (g) Crossing road with red light. (h) U-turn point
with moving vehicles and guide lines.

mechanical deviation of our autopilot, the real-time speed has
an approximate 1 kph control deviation, particularly under
the condition of even-speed driving, which can be avoided
with a controlled-by-wire chassis. (c) In our architecture,

the control module receives trajectories from the upper level.
Thanks to the local planning loop mentioned in Section III
(B), the real-time trajectories are continuous and meet the
vehicle dynamics model. The tracking accuracy is mostly less

21968 VOLUME 6, 2018

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

than 10 centimeters and no more than 20 centimeters during
the driving test.

VII. CONCLUSION AND FUTURE WORK
After five years of overall testing of Tongji’s autonomous
vehicle, the system is proven to be stable and efficient.
Although low-cost sensors are our interest, the hardware sys-
tem appears to be adequate for daily autonomous driving on
structured and half-structured roads. In particular, compared
with ROS, the software performance is satisfactory. In addi-
tion, part of the system has been tested on Roewe E50 of
SAIC Motor, which is one of the largest automotive manu-
facturers in China. However, there is still much work to do
in the near future. The test cases are all performed under the
×86 architecture, which does not appear to be the best choice
for a vehicle platform. Consequently, considerable emphasis
has recently been placed on embedded conversion of the sys-
tem. Recently, end-to-end deep learning autonomous driving
algorithms have been developed by NVIDIA and Comma.ai,
which may be the new trend in the near future. Therefore,
considerable emphasis will be placed on this topic to make
the vehicle drive more like humans drive.

ACKNOWLEDGMENT
The authors would like to thank the Associate Editor and
anonymous reviewers for their constructive comments that
have improved the presentation of this paper.

REFERENCES
[1] M.Montemerlo et al., ‘‘Junior: The Stanford entry in the urban challenge,’’

J. Field Robot., vol. 25, no. 9, pp. 569–597, 2008.
[2] C. Urmson et al., ‘‘Autonomous driving in urban environments: Boss and

the urban challenge,’’ J. Field Robot., vol. 25, no. 8, pp. 425–466, 2008.
[3] J. Leonard et al., ‘‘A perception-driven autonomous urban vehicle,’’ J. Field

Robot., vol. 25, no. 10, pp. 727–774, 2008.
[4] I. Miller et al., ‘‘Team Cornell’s Skynet: Robust perception and planning in

an urban environment,’’ J. Field Robot., vol. 25, no. 8, pp. 493–527, 2008.
[5] A. Bacha et al., ‘‘Odin: Team VictorTango’s entry in the DARPA urban

challenge,’’ J. Field Robot., vol. 25, no. 8, pp. 467–492, 2008.
[6] J. Xin, C.Wang, Z. Zhang, and N. Zheng, ‘‘China future challenge: Beyond

the intelligent vehicle,’’ IEEE Intell. Transp. Syst. Soc. Newslett., vol. 16,
no. 2, pp. 8–10, Apr. 2014.

[7] L. Xu, Y.Wang, H. Sun, J. Xin, andN. Zheng, ‘‘Design and implementation
of driving control system for autonomous vehicle,’’ in Proc. IEEE 17th Int.
Conf. Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 22–28.

[8] L. Xu, Y. Wang, H. Sun, J. Xin, and N. Zheng, ‘‘Integrated longitudinal
and lateral control for Kuafu-II autonomous vehicle,’’ IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 7, pp. 2032–2041, Jul. 2016.

[9] T. Xia, M. Yang, R. Yang, and C.Wang, ‘‘CyberC3: A prototype cybernetic
transportation system for urban applications,’’ IEEE Trans. Intell. Transp.
Syst., vol. 11, no. 1, pp. 142–152, Mar. 2010.

[10] W. Yao, Z. Deng, and L. Zhou, ‘‘Road curb detection using 3D lidar and
integral laser points for intelligent vehicles,’’ in Proc. Joint 6th Int. Conf.
Soft Comput. Intell. Syst. (SCIS), 13th Int. Symp. Adv. Intell. Syst. (ISIS),
Nov. 2012, pp. 100–105.

[11] D. Liu, X. An, Z. Sun, and H. He, ‘‘Active safety in autonomous land
vehicle,’’ in Proc. Workshop Power Electron. Intell. Transp. Syst. (PEITS),
Aug. 2008, pp. 476–480.

[12] X. Li, Z. Sun, D. Cao, D. Liu, andH. He, ‘‘Development of a new integrated
local trajectory planning and tracking control framework for autonomous
ground vehicles,’’ Mech. Syst. Signal Process., vol. 87, pp. 118–137,
Mar. 2017.

[13] J. Ziegler et al., ‘‘Making Bertha drive—An autonomous journey on a
historic route,’’ IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20,
Apr. 2014.

[14] J. Levinson et al., ‘‘Towards fully autonomous driving: Systems and algo-
rithms,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2011, pp. 163–168.

[15] C. Berger and B. Rumpe. (2014). ‘‘Autonomous driving-5 years after the
urban challenge: The anticipatory vehicle as a cyber-physical system.’’
[Online]. Available: https://arxiv.org/abs/1409.0413

[16] J. Kim, R. R. Rajkumar, andM. Jochim, ‘‘Towards dependable autonomous
driving vehicles: A system-level approach,’’ ACM SIGBED Rev., vol. 10,
no. 1, pp. 29–32, 2013.

[17] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi,
‘‘Towards a viable autonomous driving research platform,’’ in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2013, pp. 763–770.

[18] M. R. Endsley, ‘‘Autonomous driving systems: A preliminary naturalistic
study of the tesla model s,’’ J. Cognit. Eng. DecisionMaking, vol. 11, no. 3,
pp. 225–238, 2017.

[19] P. Lin,W. Ren, andH. Gao, ‘‘Distributed velocity-constrained consensus of
discrete-time multi-agent systems with nonconvex constraints, switching
topologies, and delays,’’ IEEE Trans. Autom. Control, vol. 62, no. 11,
pp. 5788–5794, Nov. 2017.

[20] J. Qin, C. Yu, and H. Gao, ‘‘Collective behavior for group of generic linear
agents interacting under arbitrary network topology,’’ IEEE Trans. Control
Netw. Syst., vol. 2, no. 3, pp. 288–297, Sep. 2015.

[21] R.-H. Zhang, Z.-C. He, H.-W. Wang, F. You, and K.-N. Li, ‘‘Study on
self-tuning tyre friction control for developing main-servo loop integrated
chassis control system,’’ IEEE Access, vol. 5, pp. 6649–6660, 2017.

[22] Z. He, L. Zheng, L. Song, and N. Zhu, ‘‘A jam-absorption driving strat-
egy for mitigating traffic oscillations,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 4, pp. 802–813, Apr. 2017.

[23] L. Lu, J. Wang, Z. He, and C.-Y. Chan, ‘‘Real-time estimation of freeway
travel time with recurrent congestion based on sparse detector data,’’ IET
Intell. Transp. Syst., vol. 12, no. 1, pp. 2–11, Feb. 2018.

[24] Z. He, L. Zheng, L. Lu, and W. Guan, ‘‘Erasing lane changes from roads:
A design of future road intersections,’’ IEEE Trans. Intell. Veh., to be
published.

[25] K. Chu, M. Lee, and M. Sunwoo, ‘‘Local path planning for off-road
autonomous drivingwith avoidance of static obstacles,’’ IEEETrans. Intell.
Transp. Syst., vol. 13, no. 4, pp. 1599–1616, Dec. 2012.

[26] W. Xu, H. A. Omar, W. Zhuang, and X. S. Shen, ‘‘Delay analysis of in-
vehicle Internet access via on-road WiFi access points,’’ IEEE Access,
vol. 5, pp. 2736–2746, 2017.

[27] M. R. Jabbarpour, H. Zarrabi, J. J. Jung, and P. Kim, ‘‘A green ant-based
method for path planning of unmanned ground vehicles,’’ IEEE Access,
vol. 5, pp. 1820–1832, 2017.

[28] Y. He, D. Sun, M. Zhao, and S. Cheng, ‘‘Cooperative driving and lane
changing modeling for connected vehicles in the vicinity of traffic signals:
A cyber-physical perspective,’’ IEEE Access, vol. 6, pp. 13891–13897,
2018.

[29] X. Li, S. Wu, J. Han, and W. Wang, ‘‘Fast location algorithm based on
an extended symmetry nested sensor model in an intelligent transportation
system,’’ IEEE Access, to be published.

[30] D. Drake, S. Koziol, and E. Chabot, ‘‘Mobile robot path planning with a
moving goal,’’ IEEE Access, vol. 6, pp. 12800–12814, 2018.

[31] P. Friudenberg and S. Koziol, ‘‘Mobile robot rendezvous using poten-
tial fields combined with parallel navigation,’’ IEEE Access, vol. 6,
pp. 16948–16957, 2018.

[32] S. Behere and M. Törngren, ‘‘A functional architecture for autonomous
driving,’’ in Proc. 1st Int. Workshop Autom. Softw. Archit., 2015, pp. 3–10.

[33] S. Liu, J. Tang, C. Wang, Q. Wang, and J.-L. Gaudiot, ‘‘A unified cloud
platform for autonomous driving,’’ Computer, vol. 50, no. 12, pp. 42–49,
2017.

[34] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, ‘‘Development of
autonomous car—Part I: Distributed system architecture and development
process,’’ IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 7131–7140,
Dec. 2014.

[35] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, ‘‘Development of
autonomous car—Part II: A case study on the implementation of an
autonomous driving system based on distributed architecture,’’ IEEE
Trans. Ind. Electron., vol. 62, no. 8, pp. 5119–5132, Dec. 2015.

[36] C. Berger. (2014). ‘‘From a competition for self-driving miniature cars to
a standardized experimental platform: Concept, models, architecture, and
evaluation.’’ [Online]. Available: https://arxiv.org/abs/1406.7768

[37] M.Quigley et al., ‘‘ROS: An open-source robot operating system,’’ inProc.
ICRA Workshop Open Source Softw., 2009, vol. 3. nos. 3–2, p. 5.

[38] E. Santana and G. Hotz. (2016). ‘‘Learning a driving simulator.’’ [Online].
Available: https://arxiv.org/abs/1608.01230

VOLUME 6, 2018 21969

W. Zong et al.: Architecture Design and Implementation of an Autonomous Vehicle

[39] A. Belbachir, J.-C. Smal, and J.-M. Blosseville, ‘‘A robotic platform to
evalute autonomous driving systems,’’ in Proc. 15th Int. IEEE Conf. Intell.
Transp. Syst. (ITSC), Sep. 2012, pp. 1874–1879.

[40] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, ‘‘Real-time trajectory planning
for autonomous urban driving: Framework, algorithms, and verifications,’’
IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 740–753, Apr. 2016.

[41] S. E. Li, F. Gao, D. Cao, and K. Li, ‘‘Multiple-model switching control of
vehicle longitudinal dynamics for platoon-level automation,’’ IEEE Trans.
Veh. Technol., vol. 65, no. 6, pp. 4480–4492, Jun. 2016.

[42] Y. Wang, E. K. Teoh, and D. Shen, ‘‘Lane detection and tracking using
B-snake,’’ Image Vis. Comput., vol. 22, no. 4, pp. 269–280, Apr. 2004.

[43] Q. Li, N. Zheng, and H. Cheng, ‘‘Springrobot: A prototype autonomous
vehicle and its algorithms for lane detection,’’ IEEE Trans. Intell. Transp.
Syst., vol. 5, no. 4, pp. 300–308, Dec. 2004.

[44] Z. Kim, ‘‘Robust lane detection and tracking in challenging scenarios,’’
IEEE Trans. Intell. Transp. Syst., vol. 9, no. 1, pp. 16–26, Mar. 2008.

[45] M. Bertozzi et al., ‘‘GOLD: A framework for developing intelligent-
vehicle vision applications,’’ IEEE Intell. Syst., vol. 23, no. 1, pp. 69–71,
Jan./Feb. 2008.

[46] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
‘‘Object detection with discriminatively trained part-based models,’’ IEEE
Trans. Pattern Anal.Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep. 2010.

[47] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, ‘‘Learning hierarchical
features for scene labeling,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[48] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, ‘‘A unified multi-scale
deep convolutional neural network for fast object detection,’’ in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 354–370.

[49] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, ‘‘Subcategory-aware convolu-
tional neural networks for object proposals and detection,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017, pp. 924–933.

[50] W. Zong and Q. Chen, ‘‘Traffic light detection based on multi-feature
segmentation and online selecting scheme,’’ in Proc. IEEE Int. Conf. Syst.,
Man (SMC), Oct. 2014, pp. 204–209.

[51] R. Mohan. (2014). ‘‘Deep deconvolutional networks for scene parsing.’’
[Online]. Available: https://arxiv.org/abs/1411.4101

[52] J. Fritsch, T. Kuhnl, and A. Geiger, ‘‘A new performance measure and
evaluation benchmark for road detection algorithms,’’ in Proc. 16th Int.
IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2013, pp. 1693–1700.

WENHAO ZONG received the B.S. degree in
automation from Tongji University, Shanghai,
China, where he is currently pursuing the Ph.D.
degree in control theory and control engineer-
ing. He has been the Team Leader of the Tongji
Autonomous Vehicle Group for six years. His
current research interests include intelligent sys-
tem architecture, computer vision, and pattern
recognition.

CHANGZHU ZHANG received the Ph.D. degree
in mechatronics engineering from the City Univer-
sity of Hong Kong, Hong Kong, in 2012. From
2013 to 2014, he was an Associate Research Fel-
low with the Institute for Advanced Study, Tongji
University, Shanghai, China, where he is currently
an Associate Professor with the School of Infor-
matics and Electronics Engineering. His current
research interests include intelligent control, net-
worked control systems, signal processing, and
vehicle control.

ZHUPING WANG received the B.Eng.
andM.Eng. degrees from the Department of Auto-
matic Control, Northwestern Polytechnic Univer-
sity, China, in 1994 and 1997, respectively, and
the Ph.D. degree from the National University
of Singapore, Singapore, in 2003. She is cur-
rently a Professor with the College of Electronics
and Information Engineering, Tongji University,
Shanghai, China. Her research interests include
the intelligent control of robotic systems and
nonholonomic control systems.

JIN ZHU received the B.S. and master’s degree
in automation from Xi’an Jiaotong University,
Shanxi, China, in 1982 and 1984, respectively. He
is currently an Associate Professor with the Col-
lege of Electronics and Information Engineering,
Tongji University, Shanghai, China. His research
interests include control theory and robotic
system.

QIJUN CHEN (M’14–SM’14) received the B.S.
degree from the Huazhong University of Science
and Technology, Wuhan, China, in 1987, the M.S.
degree from Xi’an Jiaotong University, Xi’an,
China, in 1990, and the Ph.D. degree from Tongji
University, Shanghai, China, in 1999. He was a
Guest Professor with the University of Hagen,
Hagen, Germany, in 2002, and a Visiting Profes-
sor with the University of California at Berkeley,
Berkeley, CA, USA, in 2008. He is currently a

Full Professor with the College of Electronics and Information Engineering,
Tongji University. He has published over 100 papers in journals and confer-
ence proceedings. His research interests include robotics control, the envi-
ronmental perception and understanding of mobile robots, and bio-inspired
control.

21970 VOLUME 6, 2018

	INTRODUCTION
	HARDWARE FRAMEWORK
	COMPARISON OF THREE SENSOR PLANS
	PLAN A
	PLAN B
	PLAN C

	GENERAL AUTOPILOT OF A VEHICLE

	SOFTWARE SYSTEM ARCHITECTURE
	REAL-TIME MAPPING AND FUSION LOOP
	LOCAL PLANNING LOOP

	VIRTUAL SERVER FOR DATA TRANSMISSION
	DATA ACCESS LAYER
	ABSTRACT MODEL LAYER
	OUTGOINGPACKETBUILDER
	INCOMINGPACKETBUILDER
	PACKETHUB

	BUSINESS LOGIC LAYER

	TESTING OF PROJECT COCKTAIL
	TRANSMISSION LATENCY
	THROUGHPUT RATIO
	LOSS RATIO
	PARALLEL TRANSMISSION PERFORMANCE

	AUTONOMOUS DRIVING TEST REPORT
	OVERALL INTRODUCTION
	MAIN PERCEPTION RESULTS
	LANE DETECTION
	VEHICLE AND PEDESTRIAN DETECTION
	TRAFFIC LIGHT DETECTION
	VISION-BASED DRIVABLE AREA DETECTION
	DATA FUSION MODULE

	KEY PERFORMANCE INDEX CURVES

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	WENHAO ZONG
	CHANGZHU ZHANG
	ZHUPING WANG
	JIN ZHU
	QIJUN CHEN

