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ABSTRACT Medical fields have seen increasing attention being given to image based heart rate measure-
ment in recent years. One of the major limitations is motion artifacts of subject’s head. Although there
have been many studies focusing on signal extraction using different parameters and models, the devel-
opment of frequency domain analysis is emerging slowly and moving in many directions. In the field
of contact photoplethysmography (PPG), recent studies employed the acceleration signals to assist their
spectral peak tracking algorithms. Inspired by the development of contact PPG, we are proposing a motion
resistant spectral peak tracking (MRSPT) framework which eliminates the motion artifacts by integrating
facial motion signals. The effectiveness of MRSPT coupled with the optimal image-based PPG (iPPG)
signal has been tested against the state-of-the-art spectral peak tracking algorithms, multi-channel spectral
matrix decomposition (MC-SMD), and the maximum peak selection coupled with optimal iPPG signal
(Optimal MPS). Compared with MC-SMD and Optimal MPS, MRSPT uplifts the success rate-10 (success
rate-5), the probability in which the absolute error is below ten (five) beats per mins, from 54.7% (36.3%)
with MC-SMD and 73.0% (61.3%) with Optimal MPS to 90.7% (75.7%) with MRSPT in motion scenarios
where subject moves arbitrarily with different distance or lighting. MRSPT also enhances the success rate-10
(success rate-5) from 40.7% (26.3%) with MC-SMD and 57.4% (45.7%) with Optimal MPS to 73.4%
(58.4%) with MRSPT in all seven motion conditions including driving and running. Averagely, the success
rate-five of Optimal MRSPT surpass the success rate-10 of both Optimal MPS and MC-SMD.

INDEX TERMS Biomedical signal processing, biomedical monitoring, heart rate, image sequence analysis,
photoplethysmography (PPG), spectral peak tracking.

I. INTRODUCTION
Cardiovascular diseases (CVDs) are prime causes of death
globally. An estimated 17.7 million people died from CVDs
in 2015, representing 31% of all deaths globally [1]. Among
all of the cardiac activity indicators in the diagnosis of CVDs,
heart rate (HR) is one of the most significant indicators
used by medical professionals. Long-term HR monitoring
can not only help physicians prescribe CVDs treatments but
also detect potentially life-threating heart rhythm malfunc-
tions. Conventionally, HR is measured via electrocardiog-
raphy (ECG) or photoplethysmography (PPG). In order to
measure ECG or PPG, patients are required to wear adhesive
gel patches, finger clips, and/or chest straps which can lead
to skin irritation and discomfort. In contrast, non-contact

HR measurement technique serves as a great alternative
when direct contact with subject’s skin should be avoided
(e.g., subjects with skin damage, neonates). Driven by the
advantages of non-contact HR measurement, medical fields
have seen increasing attention being given to non-contact
HR measurement techniques in the recent years, includ-
ing microwave Doppler radar [2], thermal imaging [3], and
image-based PPG (iPPG) [4].

Although non-contact HR measurement technique pro-
vides many benefits, HR measurement techniques using
Doppler radar or thermal imaging shares a common
drawback—the requirement of specialized and expensive
equipment. In contrast, by simply using a regular RGB cam-
era, iPPG can detect human cardiac pulses from variations
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FIGURE 1. The common operating principle of iPPG.

of a person’s skin color. The principle of iPPG is illustrated
in Fig.1. A digital camera is directed at the subject’s face.
The ambient light is the light source. The webcam captures
the skin tone variations caused by the blood-volume pulsa-
tion (BVP) and arterial transmural pressure during the cardiac
cycles. In 2007, Allen described the principle of PPG oper-
ation and reviewed its typical clinical applications in phys-
iological measurement [5]. In 2015, Kamshilin et al. [6]
reported some thought-provoking observations and then pro-
posed a new model for the essence of iPPG. The oscillations
of transmural pressure can lead to deformations to adjacent
tissues and then result in variations of reflected light intensity.
Based on the iPPG algorithms, many advanced physiological
monitors have been developed, including respiratory rate [7],
blood pressure [8], peripheral oxygen saturation (SpO2)
[9], [10], and heart rate variability (HRV) [11], etc. Appli-
cations in vision-based intelligent systems have also been
invented including neonates monitoring [12], mental-stress
detection [13], [14], subject detection [15], [16], and atrial
fibrillation [17], etc.

Over the past several years, various core iPPG algorithms
have been presented. In 2008, Verkruysse et al. used the
green channel of a regular camera pointed at human skin to
estimate HR [18]. Poh et al. [19] proposed a linear combina-
tion of all three channels to extract three independent signals
with independent component analysis (ICA). To reduce the
computational complexity of ICA, Lewandowska et al. [20]
constructed a linear combination with a different technique,
i.e., principle component analysis (PCA). Both of these tech-
niques belong to the blind source separation category (BSS).
In 2016, Cheng et al. [21] extended the BSS to Joint-BSS after
taking the background images into consideration, and then
proposed an illuminance variation-resistant algorithm based
on independent vector analysis (IVA) and ensemble empir-
ical mode decomposition (EMD). In 2017, Xu et al. [22]
improved their illuminance variation-resistant framework by
using partial least squares (PLS) and multivariate EMD.
Qi et al. [23] proposed another type of J-BSS, connectiv-
ity multiset canonical correlation analysis (C-MCCA), and
showed that C-MCCA outperforms ICA.

However, BSS based methods may suffer from the risk of
treating other periodic signals such as motion or illuminance
variation as HR signal [24], [25]. To eliminate this problem,
several model based methods have been proposed. Haan and
Jeanne proposed a chrominance-based iPPG (CHROM) by
referencing a standardized skin tone to white-balance the

camera [24]. Based on this study,Wang et al. exploited spatial
redundancy to detect iPPG [25]. Haan, as well as Wenjin
Wang et al., also developed two new ways to extract iPPG,
spatial subspace rotation (2SR) [26] and plane orthogonal
to skin (POS) [27]. With subject-dependent skin-color space
analysis, 2SR can extract iPPG even in complicated illumi-
nance conditions [26]. However, 2SR, an entirely data-driven
algorithm, may bring about unreliable measurement owing to
noisy or poorly-chosen skin-mask. POS resembles CHROM
but reducing different main expected distortions in order [27].
The article [27] also reviews several iPPG recovery methods.
Assuming ambient illuminance spectrum is constant, both
POS and CHROM project the signal onto a fixed plane to
reduce noise. To deal with varying spectrum and motion
artifacts, Feng et al. [28] investigated the effect of region
of interest (ROI) tracking for six different types of motion
and proposed adaptive green red difference method (GRD).
Nonetheless, almost all of the above studies have focused
on the iPPG recovery stage as shown in Fig. 2. In reality,
robustness and quality of iPPG can be enhanced by integrat-
ing frequency analysis. Sun et al. [29] employed a joint time-
frequency analysis method which illustrated the feasibility
to measure HR on relative low frames per second (20 fps).
Cheng et al. [21] have developed frequency analysis method
using EMD to overcome distortion caused by illuminance
variation. Nevertheless, these frequency analysis methods did
not focus on the issue ofmotion artifacts.Wang et al. [30] pro-
posed a sub-band based method to deal with motion artifacts.
Our previous work [31] studied the origins of residual noise
after iPPG recovery algorithms and proposed a wavelet based
method to cope with short duration motion noise.

To further enhance the performance of frequency anal-
ysis, we take reference from the development of con-
tact PPG. In the field of contact PPG signal, frequency
analysis methods like EMD, joint time-frequency analy-
sis, or wavelet analysis are mainly proposed for clinical
scenarios with small motions [32]. For strong motion
scenarios, recent studies have been focusing on the frame-
work of spectral peak tracking to further enhance the accu-
racy [32], [33]. In 2015, Zhang et al. [33] has developed a
TROIKA framework to cope with motion artifacts. In 2016,
Xiong et al. [32] employed the sparse properties and then pro-
posed the state-of-the-art spectral peak tracking algorithm,
multi-channel spectral matrix decomposition (MC-SMD).
However, the requirement of iterations for each window can
be time-consuming.

In this paper, we are proposing a motion resistant spec-
tral peak tracking (MRSPT) method. Referring to related
work as mentioned above, we extend our previous work,
which studied the origins about residual noise [31], to further
identify the motion artifacts on the spectrum of distorted
iPPG signals. These signals include three state-of-the-art
iPPG recovery algorithms (CHROM, GRD, POS). On the
basis of these studies, we have developed MRSPT which can
cope with strong and irregular motion artifacts. Because skin
is a kind of Lambertian source, the motion of facial position
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FIGURE 2. The flowchart of major steps involved in the proposed system.

is related to the motion artifacts. Hence, MRSPT exploits the
x,y-coordinates of facial position to alleviate the motion arti-
facts. To the best of our knowledge, this is the first successful
subject independent spectral peak tracking method applied in
the field of iPPG.

To verify the effectiveness ofMRSPT, we expand andmod-
ify MC-SMD from contact PPG to iPPG as the benchmark
algorithm. In addition, MRSPT is also benchmarked against
three state-of-the-art iPPG algorithms coupled with maxi-
mum peak selection (MPS). Moreover, we also test MRSPT
with realistic conditions like driving conditions where motion
artifacts occur irregularly. The feasibility of iPPG on driving
conditions is rarely discussed before. The experiments show
promising results and confirm the effectiveness of proposed
MRSPT framework in comparison with MC-SMD and MPS.

In summary, the purpose of this paper is twofold: (a) to
preliminarily identify and classify the spectrum distorted by
motion artifacts. (b) to alleviate the motion artifacts and eval-
uate HR more accurately via spectral peak tracking system.

The organization of the paper is as follows. Section II
begins with an overview of the entire system and introduces
spectral peak tracking. Section III highlights the experimental
setup and assessment details. Section IV discusses experi-
mental results. Section V concludes the observations and sets
forth the future work.

II. METHODOLOGY
As depicted in Fig. 2, the proposed system consists
of four stages, Stage I—ROI Detection and Tracking,
Stage II—iPPG recovery, Stage III—Spectral Peak Tracking,
and Stage IV—Kalman Filter and Verification.

FIGURE 3. The green rectangle represents the results of face detection
with (a) glasses and bangs, (b) yawing, and (c) rolling. The red dots
indicate facial landmarks, and the blue dots denote the position of eyes
and mouth. The yellow rectangles in (c) and (d) point out the rolling
compensation. And the pink rectangle in (d) implies the ROI.

A. STAGE I—ROI DETECTION AND TRACKING
Litong noted that successful ROI tracking can compensate
for several types of noise induced by subject’s motions
(i.e. yawing, pitching, rolling, and surging) [28]. Four major
steps involved in ROI detection and tracking are described
in Stage I of Fig. 2. First, we employ Dlib-ml face detection
algorithm [34]. The reason for using Dlib-ml is its ability to
detect face with glasses (Fig. 3a), bangs (Fig. 3a), yawing
(Fig. 3b), and rolling (Fig. 3c).

Even so, face detection may fail for certain frames in some
motion polluted scenarios like driving or exercising. In these
cases, template matching method is applied to further help
track the faces. Secondly, facial landmarks can be carried out
via an ensemble of regression trees based on [35] (red dots
in Fig. 3b). After averaging the feature points around eyes and
mouth, we can acquire the center points of eyes and mouth
(blue dots in Fig. 3c). Thirdly, to compensate for the effect
of head’s rolling, the detected facial rectangle will be rotated
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FIGURE 4. Raw iPPG/motion signals (a) and spectrum (b) in dominant motion signal condition occurs in Intentional Motion Scenario. Raw
iPPG/motion signals (c) and spectrum (d) in multiple peaks condition occurs in Fitness Scenario. The iPPG signals are derived from POS and GRD
algorithm respectively. FaceX and FaceY are frequency domain of facial position signals recorded each frame. The red circles indicate the true
heart rate frequency. The black dotted circles indicate the peaks which are induced by motion signals (FaceX and FaceY). If we regard the highest
bin as HR, these phenomena usually lead to measurement errors.

to parallel the line connecting the positions of eyes (yellow
rectangle in Fig. 3c). To determine the size of ROI, the vertical
length from eyes to mouth is defined as

L = [ym − (yle + Yre/2)] , (1)

where y is the vertical position in rotated image; the subscripts
m, le, and re represent the abbreviation of mouth, left eye
and right eye respectively. Next, the size of ROI centered at
middle point of face is empirically set as 1.3×L multiplied by
0.6×L; the result is drawn in Fig. 3d. The reasons for select-
ing cheeks as ROI are twofold: (a) less influence from glasses,
bangs and expression. (b) better Signal-to-Noise Ratio in
comparison to forehead and mouth [36]. Lastly, the raw iPPG
signal is acquired via taking the average of pixel values within
the ROI as:

iPPGraw(t)

=
Sum of pixel values
width× height

=

∑
x,y∈ROI P(x, y, t)

(1.3× L)× (0.6× L)
. (2)

B. STAGE II—iPPG RECOVERY AND CASE STUDY ANALYSIS
The reason why pulse signal can be acquired by a webcam
focused to skin is that a small fraction (<5%) [24] of inci-
dent light is absorbed by the microvascular network which
varies with blood volume pulse. In view of this, several
studies have demonstrated reliable iPPG recovery algorithms

(i.e., CHROM, POS, and GRD). According to American
National Standard for Cardiac Monitor [37], the measure-
ment range of clinically approved HR monitor is between
30-200 beats per minute (bpm). A finite impulse
response (FIR) band pass filter with 30 and 200 (bpm) cut-off
frequency is applied to iPPG signal. HR can be preliminarily
evaluated from the iPPG signal which has the highest bin
when adopting Fast Fourier Transform (FFT). Because these
techniques are basically linear combination of different chan-
nels, some residual noises might still emerge occasionally.
Our previous work has investigated the reasons why these
noises occur in some extreme situations [31]. The situations
are listed and described as follows.

1) DOMINANT MOTION SIGNAL
Some face movements such as heaving and swaying cannot
be eliminated by ROI tracking [24]. The motion artifacts
bring about dominant motional peaks during some scenarios
like running and driving as shown in Fig. 4 (a) and (b).
Because the motion signal dominates the spectrum, simply
considering maximum peak as HR usually leads to severe
measurement error.

2) MULTIPLE PEAKS CONDITION
As illustrated in Fig. 4 (c) and (d), the iPPG signal is polluted
by residual motion noises from several frequencies, bringing
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FIGURE 5. The flowchart of deriving reference frequency.

about multiple peak condition. Other causes like varying
illuminance and motion blur may lead to similar artifact.

C. STAGE III—MOTION RESISTANT SPECTRAL
PEAK TRACKING
To address the extreme conditions mentioned above, a motion
resistant spectral peak tracking (MRSPT) algorithm is
proposed with three steps: spectral stability calculation,
reference frequency determination, and HR preliminary esti-
mation. First, inspired from the spirit of signal-to-noise
ratio (SNR), we introduce an index, spectral stability (SS),
which is defined as follows

SS(t) = 10× log

(
S2(f̂ , t)∑200

f=30 [S2(f , t)− S2(f̂ , t)]

)
, (3)

where f̂ = argmax f (S(f , t)), f is frequency in beats per
minute, S represents the frequency domain of iPPG at time t .
The difference between SNR and SS is that S(f̂ , t) is not
guaranteed to be the real HR signal (e.g., dominant motion
signal).

In order to distinguish the spectral peak between real signal
andmotion noises, twomotion frequency sets (Mx ,My) under
two standard deviations from the estimated motion frequency
are defined as{

Mx = [f̂x − 2σground−truth, f̂x + 2σground−truth]
My = [f̂y − 2σground−truth, f̂y + 2σground−truth],

(4)

where σground−truth, which is determined from the experiment
illustrated in Section III C (1), is the standard deviation
of ground-truth HR sequences. Subscripts x and y indicate
that the signal is acquired from face position and f̂ is the
frequency bin of highest energy.With twomotion sets and SS,
a peak selection method using reference frequency (fref ) is
illustrated in Fig. 5.

FIGURE 6. The distribution of total ground-truth HR. This result shows
that ground-truth HR is distributed Gaussian. Consequently, we can
apply Kalman Filter to track the estimated HR.

1) CASE 1
We developed a threshold Th to identify multiple peaks condi-
tion. If SS < Th, it represents that the spectrum is too chaotic
to estimate real spectral peak. As a result, the reference
frequency is previous estimated HR.

2) CASE 2
If SS is larger than threshold but highest spectral peak belongs
to either one of the motion sets, it usually results from
dominant motion signal. As a consequence, previous HR is
considered as the reference frequency.

3) CASE 3
If SS is high and f̂ does not belong to motion sets, the highest
spectral peak is directly regarded as the reference frequency.

With reference frequency, we can derive a signal range
under two standard deviations from the estimated HR,
1HR = [fref − 2σground−truth, fref + 2σground−truth]. Next,
the preliminary HR, HRp(t), can be calculated as

HRp(t) =

∑
f ∈1HR

f × S2(f , t)∑
f ∈1HR

S2(f , t)
. (5)

D. STAGE IV—KALMAN FILTER AND VERIFICATION
According to Fig. 6, the results show that recorded ground-
truth HR is distributed Gaussian. Consequently, the state
vector X (t) at time t can be regarded as HRk (t). Moreover,
considering the system input to be zero and both state transfer
and observationmodel to be identitymatrix, we canmodel the
measured HR as{

X (t) = X (t − 1)+W (t)
Z (t) = X (t)+ V (t),

(6)

where Z (t) is the observed parameter (i.e. HRp(t)), W (t) is
the processing noise with N ∼ (0, σ 2

ground−truth) and V (t) is
observation noise with N ∼ (0, σ 2

p ), where σp, which is
derived from the experiment illustrated in Section III C (1),
is the standard deviation of preliminary HR sequences. Using
the Kalman Filter model [38], we can derive the optimal
estimated pulse rate, HRk (t).

Occasionally, the peak selection algorithm may track the
wrong peak owing to motion artifacts and spectrum perturba-
tion. A verification step is developed to prevent the incorrect
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tracking. Normally speaking, there is no huge HR variation
(>10bpm) between relatively short time duration (0.5 sec);
therefore, a regularization is proposed as follow:

HR(t) =



HR(t − 1)+1r(t),
if HRk (t)− HR(t − 1) > 1r(t)

HR(t − 1)−1r(t),
if HRk (t)− HR(t − 1) < −1r(t)

HRk (t),
otherwise,

(7)

where 1r(t) is the maximum tolerated difference derived
from recorded HR statistics and the variation of estimated
HR(t) within the interval from tminus oneminute to t. Precise
definition is as follows:

1r(t) = σ (t)× ρground−truth, (8)

where σ (t) is the standard deviation calculated from
HR(t) sequence within the interval from t minus one minute
to t and the tolerance ratio, ρground−truth, represents the ratio
of maximum instantaneous ground-truth HR difference to
σground−truth.

ρground−truth

=

max
t
(|HRground−truth(t)− HRground−truth(t − 1)|)

σ ground−truth
, (9)

where the subscript ground− truth represents that the param-
eters come from ground-truth heart rate.

III. ASSESSMENT DETAILS
To assess the proposed algorithm, this section presents the
experimental setup, benchmark dataset, methods compared
and evaluation metrics. First, we expressed general envi-
ronmental setup throughout this work. Next, the bench-
mark dataset with different scenarios is introduced. Third,
the detailed parameter of several state-of-the-art benchmark
algorithms (MC-SMD, CHROM, GRD, and POS) will be
presented as well. Finally, we adopted four evaluation metrics
to assess the performance.

A. EXPERIMENTAL SETUP
All of the facial videos are captured under the environment
listed in Table 1 with default setting of Logitech C920 web-
cam [39], [40]. In this study, we conducted eight realistic sce-
narios. The environment setup of each scenario are illustrated
in Fig. 7, and the corresponding snapshots are shown in Fig. 8.
Detailed scenario description is reported in Section III B.

B. BENCHMARK DATASET
A benchmark dataset containing more than one million
frames has been built under different scenarios. We follow
to a standard procedure, approved by Taipei Medical Univer-
sity. Each subject has given his/her informed consent before
participating in the study. These subjects are recruited from
National Chiao Tung University and none of them has history

TABLE 1. Experimental setup.

FIGURE 7. Environment Setups for each scenario. Stationary Case
(Scenario 1) and Intentional Motion (Scenario 2) are set as (a). Long
Distance (Scenario 3) and Illuminance Variation (Scenario 4) are depicted
in (b) and (c) respectively. The setting of both Driving on Highway
(Scenario 5) and Driving on Campus (Scenario 6) are illustrated
in (d) and (e). The setting of Running in Place (Scenario 7) is depicted
in (f). Fig. (g) and (h) represent the setting of Fitness (Scenario 8).

of cardiovascular issue. Total twenty volunteers with ages
ranging from 21 to 32 years old participated in this study.
Unless otherwise stated, the distance between the subject and
the webcam ranges from 60 cm to 100 cm. The number in
brackets indicates the amount of video frames recorded in the
corresponding scenario.
Scenario 1 Stationary Case (Total 244,423 Frames and

13 Subjects): Subjects sitting in front of a webcam, about
0.5 meter distance, are asked to suppress any conscious
movement. The duration for each trial is around 10 minutes.
The illuminance source is normal fluorescent lamp and the
luminance is about 200 lux.
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FIGURE 8. Snapshots of captured frames in the benchmark dataset.
Detailed setup of each category is described in Section III B.

Scenario 2 Intentional Motion (Total 272,940 Frames and
13 Subjects): To explore the strong motion artifacts, the sub-
jects are asked to move arbitrarily, including widely swing-
ing their body, moving rapidly or slowly, etc. Motions like
swaying is especially encouraged because ROI tracking lacks
adaptability in this case [28]. All of the subjects and the other
settings remain the same as described in Scenario 1.
Scenario 3 Long Distance(Total 35,392 Frames and

4 Subjects): To investigate the motion artifacts with
smaller ROI, motions like swaying and swinging are also
included. In comparison to Stationary Case (Scenario 1),
the distance between subjects and webcam is adjusted to
about 1.5 meters. Under the circumstance, ROIs are much
smaller than those in Scenario 1. All of the other settings
remain the same as in Scenario 1.
Scenario 4 Illuminance Variation(Total 95,493 Frames and

10 Subjects): To investigate the motion artifacts for iPPG
signal under different illuminance conditions, motions like
swaying and swinging are also included. In this scenario,
videos are recorded with the same settings of the same cam-
era (Logitech C920) under different illuminance conditions,
ranging from 20 lux to 300 lux. Other settings and subject
remain the same as in Stationary Case (Scenario 1).
Scenario 5 Driving on Highway(Total 169,279 Frames

and 12 Subjects): Realistic driving situation is taken into
consideration in the scenario, where both motion artifacts

and luminance variations may occur simultaneously. In this
scenario, the road is relatively flatter and straighter in com-
parison to Driving on Campus (Scenario 6). Mild motion of
ROI are induced by such road conditions. At the same time,
head movements (e.g., checking the side mirror) can also
occur occasionally.
Scenario 6 Driving on Campus(Total 85,847 Frames and

9 Subjects): Driving around campus involves frequent direc-
tion changes which result in incident lighting from different
angles. In this condition, signals may be polluted by irregular
motion noise, changing luminance and varying illuminance
spectrum, indicating a more challenging scenario compared
with Driving on Highway Scenario (5). Motions are induced
by several speed bumps throughout our driving route, as well
as occasional head movements like checking the side mirror.
Scenario 7 Running in Place(Total 123,796 Frames and

12 Subjects): Subjects are required to run in place to simulate
irregular motion artifacts and high HR condition. In the sce-
nario, motion artifacts are especially strong because motions
like running often leads to highly dynamic frequency with
higher energy compared with those in previously mentioned
scenarios. Owing to the limitation of webcam, the effect of
motion blur also leads to more challenging scenario in com-
parison with Intentional Motion (Scenario 2). Other settings
are the same as in Stationary Case (Scenario 1).
Scenario 8 Fitness(Total 112,796 Frames and 6 Subjects):

Subjects are running on a treadmill or ridding on a flywheel
in a gym. Compared with Running in Place (Scenario 7),
in which ambient light is homogeneous, both motion arti-
facts and inhomogeneous illuminance are induced under such
unsteady situation. As for motion artifacts, these actions
involve more strenuous exercise in comparison to Running in
Place (Scenario 7), which exhibits high-frequency motions at
a larger scale. Other settings are the same as in the Stationary
Case (Scenario 1).

C. METHODS COMPARED
The MRSPT is intended to be a post processing algorithm
which addresses strong motion artifacts. Several benchmark
details of methods compared issues are described as follows.

1) PARAMETER SELECTION
The proposed MRSPT method has three main param-
eters; the standard deviation of recorded ground truth
HR (σground−truth) and preliminary HR (σP), the threshold
of SS (Th). We derived all of these parameters using HR data
in both Stationary Case (Scenario 1) and Intentional Motion
(Scenario 2). For the remaining six scenarios, the preliminary
HR is not accurate enough for its intended purpose. Then,
the standard deviation are derived to be 4.35 (σground−truth)
and 5.3 (σP) respectively. Next, we found that if the power of
maximum bin is lower than one third of the power in other
bands, it is extremely likely that the multiple peaks condition
occurs; therefore, the threshold of SS (Th) is set as −4.77.
Additionally, the maximum ground-truth HR difference is
2 bpm per second (1 bpm per output period). Referring to (9),
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the tolerance ratio ρrecorded , which is the ratio of maximum
HR difference to σground−truth, is set as 0.2174.

2) MAXIMUM PEAK SELECTION (MPS)
To verify the effectiveness of the proposed framework under
different iPPG recovery algorithms, we compare the per-
formance of MRSPT with maximum peak selection (MPS),
which regards the highest spectral peak as HR. We test the
difference between MRSPT andMPS with three state-of-the-
art iPPG recovery algorithms (i.e., CHROM,GRD, and POS),
but not with entire iPPG system, which means, the steps
other than iPPG recovery like face detection/tracking strictly
follows the method mentioned in Section 2.

All these algorithms are implemented with C++ code
using Visual Studio 2015 and executing on a desktop com-
puter with 4.2 GHz CPU (Intel-Core-i7) and 32-GB RAM.
Both FFT order and window length are 512 points. The order
of band pass filter is 128 and we output estimated HR every
half a second. The default setting of frame rate is 30 fps, but
frame rate may occasionally drop while encountering sudden
illuminance variation (Scenario 4 and 6) due to limitations of
the webcam. To fairly compare the methods, all the parame-
ters remain the same while testing in different scenarios.

3) IMAGE BASED MC-SMD
Originally, the MC-SMD framework [32], which consists of
two main parts, was developed to estimate contact PPG more
accurately. The first part employs spectral matrix decompo-
sition method to extract HR signal from the hybrid of two
PPG channels and acceleration signals. Next, a well-designed
spectral peak tracking algorithm is developed to enhance the
extracted signal.

The problem of spectral matrix decomposition can be for-
mulated as:

min
P,Q
‖Y −8(P+ Q)‖2F + λ1 ‖P‖1,2 + λ2 ‖Q‖1,1 ;

s.t. : Y = 8(P+ Q), (10)

where Y is the measurement matrix, P is the motion artifact
matrix and Q is the desired reconstructed spectrum. To main-
tain the spirit of original MC-SMD method, we replace
two PPG signals with bandpass POS and CHROM sig-
nals. Likewise, we substitute the acceleration signals with
x, y-coordinates of facial ROI. All of the signals mentioned
above are processedwith 8 secondswindow and 25%overlap.
These measurements form a matrix of Y ∈ RM×H , where
M is the window size andH = 4, consisting of 2 iPPG signals
and 2 motion signals.

For spectral matrix X = P + Q ∈ CN×H , the accelerated
proximal gradient (APG) is adopted with parameters speci-
fied in the following for a better performance: DFT matrix
8 = 1

N e
j 2πN with N = 1024, λ1 = 0.2

N , and λ1 = 4.1
N .

In addition, to derive the optimal solution considering general
cases, we dropped the assumption of real-valued P,Q and
then redefined the corresponding complex norm as

‖P‖1,2 =
∑N

i=1

(∑R
j=1

∣∣Pi,j∣∣2)1/2. Moreover, the corre-
sponding new optimal solution for function Sε(R) is used for
complex variables, where

Sε (R)i,j =

(1−
ε∣∣Ri,j∣∣ )Ri,j if

∣∣Ri,j∣∣ > ε

0 otherwise.
(11)

Due to the limited quality of remote PPG and recon-
structed sparse signals mentioned above, the thresholds
of number of peaks and searching ranges are also mod-
ified as follows: R1 = 4, R2 = 4 and R3 = 4,
threshold for pc1 = 1, threshold for pc2 = 1. These
parameter values are obtained and optimized by brute force
searching. Although there are many essentially different char-
acteristics between contact PPG and iPPG, we have tried our
best to adapt the MC-SMD.

D. EVALUATION METRICS
The following list outlines two different types of evaluation
metrics:

1) MAE, RMSE, OF PULSE RATE
The mean absolute error (MAE), root mean square
error (RMSE) are applied to assess the performance of dif-
ferent estimators.

2) PRECISION AND SUCCESS RATE
In line with [22], the accuracy of algorithms can be assessed
in term of ‘‘precision,’’ the probability in which the abso-
lute error between reference HR and estimated HR is below
an error tolerance. In this paper, we evaluate the perfor-
mance with a set of error tolerance T ∈ [0, 10] (bpm).
In the precision curve, we are interested in the probability
where the absolute error is under 5 or 10; the probabilities
are hereafter defined as success rate-5 and success rate-10
respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section consists of six parts to fairly evaluate the effec-
tiveness of proposed MRSPT. We first reported the consis-
tency of the best algorithm in each scenario between different
metrics. Secondly, some observations with different algo-
rithms (GRD, CHROM, POS, and MC-SMD) are discussed
respectively. Next, the effectiveness of MRSPT is presented.
Last comes to the overall comparison.

Several tables and figures are referenced throughout this
section. Table 2-5 summarize the experimental results of
MC-SMD,MPS andMRSPT with CHROM, GRD, and POS.
The bold entries in each row denote the optimal algorithm
in corresponding scenario. Fig. 9 illustrates the visualized
version of table 2-5 for easier comparison and discussion.
Also, a real-time experimental demo video is available at
https://youtu.be/MyWYDkeHYx4. Table 6 denotes the time
duration in the sample video for each scenario. The user
interface in the sample video is also illustrated in Fig. 10.
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FIGURE 9. Table II-V are visualized as (a)-(d) for easier comparison and discussion. The number in the x-axis represents the order of Scenario. The
dotted lines are the results of MRSPT with different iPPG recovery algorithms. In view of every metric, the best algorithms in each scenario are
achieved integrating MRSPT.

TABLE 2. Mean absolute error.

TABLE 3. Success rate 5.

A. CONSISTENCY
On the whole, our benchmark metrics possess both consis-
tency and discrimination among algorithms. The best algo-
rithm in each scenario consistently wins the first place in
all of the four benchmark metrics except for the driving

TABLE 4. Root mean square error.

TABLE 5. Success rate 10.

scenarios (Scenario 6 and 7). For instance, MRSPT with
CHROM has the lowest MAE/RMSE, as well as highest
success rate-5 and -10 in Stationary Case (Scenario 1). On the
other hand, the rather incongruent outcomes of MRSPT in
driving scenarios (Scenario 6 and 7) result from the similar
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TABLE 6. Time duration for each scenario in the sample video.

FIGURE 10. The texts within a rectangle and an arrow are only legend.
The rest of this figure is the user Interface of sample video. The red, blue,
and dark line indicated the ground-truth, MPS and MRSPT framework
respectively. On the right hand side is the corresponding captured image
and detected face.

performance using different iPPG recovery algorithms:
(1) For the Driving on Campus (Scenario 6), the perfor-
mance of MRSPT with CHROM, GRD, and POS are 0.33,
0.33, 0.34 in success rate-5, and 0.44, 0.48, 0.49 in success
rate-10 respectively. (2) As for the Driving on Highway
(Scenario 5), MRSPT with CHROM, GRD, and POS carry
out 10.15, 9.52, 9.22 in MAE, and 0.71, 0.69, 0.70 in success
rate 10 respectively. The major cause of this result is the
fact that not only motion but also varying lighting conditions
lead to complexities in motion, specular and intensity noises.
Under such challenging circumstances, it is difficult to select
one algorithm that outdoes the others in every benchmark
metric. To sum up, the metrics provide a set of consistent
and discriminative baseline to assess the performance among
different algorithms.

B. GRD
GRD yields outcomes better than the others only in the
Illuminance Variation (Scenario 4) among iPPG recovery
algorithms supported by MRSPT. The prime reason for
such exclusive results lies in its employment of the adap-
tive color difference method, which effectively improves the
HR estimation under continuously varying illuminance. Both
POS and CHROM assume consistent illuminance spectrum
and in consequence perform less satisfactorily in varying
illuminance condition.

Generally speaking, algorithms with MRSPT yield results
better than all of those without MRSPT, but GRD in Illu-
minance Variation (Scenario 4) is one of the few excep-
tions. Interestingly, in the Illuminance Variation (Scenario 4),
GRD with maximum peak selection is ranked as the first

runner up in MAE, success rate-5 and -10. This result once
again illustrates the importance, as well as effectiveness,
of frame-dependent parameters of GRD in such a dynamic
illuminance environment.

C. CHROM/POS
Because POS resembles CHROMbut reducing different main
expected distortions in order, we are interested in the simi-
larity and difference of their performance. In view of [27],
CHROM reveals weakness in continual specular distortion.
On the other hand, POS is sensitive in nonhomogeneous lumi-
nance over ROI. The phenomenon mainly results from their
assumptions of homogeneity in luminance and projection of
light source in order to alleviate the artifacts. Such char-
acteristics are manifested in Running in Place (Scenario 7)
and Fitness (Scenario 8). For Running in Place (Scenario 7),
regular indoor light serves as the light source and thus
leads to better outcomes in POS; nonetheless, nonhomoge-
neous luminance makes POS inferior to CHROM in Fitness
(Scenario 8). Likewise, for Long Distance (Scenario 3),
the relatively smaller ROI makes iPPG signals more vulner-
able to intensity distortion because the image captures less
light reflected from the subject’s skin but more ambient light.
POS performs better because it eliminates intensity distortion
first. In contrast, CHROM eliminates specular distortion first
and leaves the intensity distortion as residual noise. The
experimental results confirm the characteristics of CHROM
and POS.

D. MC-SMD
In all of the four benchmarks, MC-SMD is not as com-
petitive as expected. One reason for this could be the
fundamental assumption in sparsity of heartbeat signals.
We found that, in some challenging scenarios, multiple peaks
condition contradicts the sparsity assumption in spectrum
ofMC-SMD. Furthermore, in the application of contact PPG,
two signals are derived from nearby positions of body, suf-
fering from similar motion artifacts. Nonetheless, among all
of the iPPG signal recovery algorithms, resistance to similar
motion artifacts varies from algorithm to algorithm, which
also contributes to inferiority. The above-mentioned two rea-
sons provide preliminary explanation to the unsatisfactory
results.

On the other hand, it is noteworthy that the iterative nature
of SMD goes against real-time applications. In contrast,
MRSPT, based on characteristics of iPPG, yields enhanced
results without iteration. As a consequence, it is easier to
transfer original PC based MRSPT to embedded systems for
broader applications.

E. EFFECTIVENESS OF MRSPT
The effectiveness of MRSPT can be verified with the fol-
lowing three reasons: (a) all of the optimal algorithms in
each scenario are achieved by integrating with MRSPT
(see Fig. 9), (b) generally speaking, MRSPT suppress MPS
and MC-SMD, and (c) the worst chosen iPPG recovery
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FIGURE 11. Precision curves (cumulative distribution function) of CHROM, GRD, and POS in each challenging scenarios. The x-coordinate represents
absolute error between reference HR and estimated HR, and the y-coordinate indicates probabilities in which the absolute error is below the
corresponding tolerance.

methods coupled with MRSPT can frequently outperform all
the others using MPS.

Although there are a few cases that MRSPT seems to
be falling behind MPS with different iPPG recovery algo-
rithms, these are reasonable and can be explained. One of
the few exceptions is afore-mentioned GRD in Illuminance
Variation (Scenario 4) benchmarked with success rate-5
and -10. The other exceptions are CHROM algorithm in
Stationary Case (Scenario 1), IntentionalMotion (Scenario 2)
and Fitness (Scenario 8). In these cases, all of the met-
rics possess relatively high value, representing high success
rate-5 and -10, with high MAE and RMSE simultaneously.
As shown in Fig. 12 estimated HR fluctuates owing to select-
ing the maximum peak, leading to severe fluctuation between
real HR and incorrectly selected peaks. In consequence,
the RMSE and MAE are high due to occasionally severe
incorrectly selected peaks although the success rate-5 and -10
are relative high as well. In these cases, the slightly higher
success rate of MPS do not imply better performance com-
pared with the much lesser fluctuation while using MRSPT.
In summary, MRSPT still outperforms MPS in these cases.

F. OVERALL COMPARISON
The precision curves of all scenarios and algorithms are
drawn in Fig. 11. With the curves, first we compare the
difference between Driving on Highway (Scenario 5) and
Driving on Campus (Scenario 6). Next, we describe the rea-
son why POS/CHROM suppress GRD with MRSPT but fall
behind them while using MPS. Third, we briefly discuss the
influence of lighting variation in different motion scenarios.
Lastly, we conclude the performance with MRSPT.

We found that, whether MRSPT is applied or not,
CHROM, GRD and POS in Driving on Campus (Scenario 6)
consistently result in lower success rate in comparison with
Driving on Highway (Scenario 5). It is because the road
condition of highway is much straighter, smoother and flatter
than country roads and hilly roads on campus. Additionally,
incident light while Driving on Highway (Scenario 5) is more
consistent than that while Driving on Campus (Scenario 6).

On the other hand, because GRD dynamically changes the
parameters of linear combination, GRD with MPS is less
influenced by above-mentioned fluctuating HR phenomenon
and thus yields the lowest MAE/RMSE in most MPS cases.
Nonetheless, GRDwithMRSPT only wins in the Illuminance
Variation (Scenario 4). It is because MRSPT can eliminate
the fluctuating HR phenomenon of original CHROM, POS
signals, leading to significant improvement.

Interestingly, in Fig. 11, we observe that MRSPT
enhances success rate much more obviously in relatively
consistent lighting scenarios, including Intentional Motion
(Scenario 2), Long Distance (Scenario 3), Driving on High-
way (Scenario 5), and Running in Place (Scenario 7);
nonetheless, relatively less improvement occurs in Illu-
minance Variation (Scenario 4), Driving on Campus
(Scenario 6) and Fitness (Scenario 8). Although it illustrates
the inferior improvement under combination of motion arti-
facts and illuminance variation, the promising progress in the
former scenarios once again guarantees the effectiveness of
MRSPT in wide variety types of motion artifacts.

To conclude the effectiveness of MRSPT during motion
scenarios, we take the average of success rate-5 (left) and
success rate-10 (right) with respect to different algorithms in
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FIGURE 12. A sample of estimated HR using different algorithms. The
x-axis represents the time in frame number and y-axis denotes HR (bpm).
The blue, red and yellow lines represent the Ground Truth, estimated HR
using MPS and estimated HR using MRSPT respectively.

FIGURE 13. The bar charts illustrate the success rate-5 (left) and success
rate-10 (right) with respect to different algorithms in experimental
motion conditions (a) and total motion conditions (b). The ‘Optimal’
indicates that the results are derived from the optimal iPPG recovery
algorithm for the framework (MPS or MRSPT) in each scenario. Please
note that MRSPT coupled with any iPPG recovery algorithm outperforms
the Optimal MPS. Moreover, the success rate-5 of Optimal MRSPT surpass
success rate-10 of Optimal MPS.

three experimental motion conditions, including Intentional
Motion (Scenario 2), Long Distance (Scenario 3), and Illumi-
nance Variation (Scenario 4) as shown in Fig. 13. Likewise,
we also take the average of all seven motion conditions
including Driving on Highway (Scenario 5) and Running in

Place (Scenario 7). The ‘Optimal’ indicates that the results
are carried out with the optimal iPPG recovery algorithm in
each scenario for the framework (MPS or MRSPT). Com-
pared with MC-SMD and Optimal MPS, MRSPT enhances
the success rate-10 (success rate-5) from 54.7% (36.3%)
with MC-SMD and 73.0% (61.3%) with Optimal MPS to
90.7% (75.7%) with MRSPT in experimental motion sce-
narios where subject moves arbitrarily with different dis-
tance or lighting conditions. As for all motion conditions,
MRSPT raises the success rate-10 (success rate-5) from
40.7% (26.3%) with MC-SMD and 57.4% (45.7%) with
Optimal MPS to 73.4% (58.4%) with MRSPT. Moreover,
it is noteworthy that the MRSPT coupled with arbitrary
iPPG recovery algorithm defeats the Optimal MPS in both
experimental motion conditions and realistic motion cases.
Interestingly, the success rate-5 of Optimal MRSPT surpass
success rate-10 of Optimal MPS. A real-time experimental
demo video is available at https://youtu.be/MyWYDkeHYx4.

V. CONCLUSION
We have proposed a motion resistant image based HR mon-
itoring system, MRSPT. Our analysis preliminarily identify
and classify the spectrum distorted by motion artifacts. Next,
inspired by current studies of contact PPG, we are proposing
an entire framework which uplifts the accuracy of HR estima-
tion. To the best of our knowledge, this is the first successful
subject independent spectral peak tracking method applied in
the image based PPG field. Our algorithm has been tested
and verified to be effective among eight different challenging
scenarios and compared to the three different state-of-the-
art iPPG recovery algorithms. It is noteworthy that MRSPT
coupled with any iPPG signal outperforms the MPS coupled
with optimal chosen iPPG signal in both experimental motion
conditions and realistic motion cases. The results show that
MRSPT represents a promising framework to estimate HR
from a regular webcam in a wide variety of motion scenarios.
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