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ABSTRACT Camera pose estimation from the image of a planar object has important applications in
photogrammetry and computer vision. In this paper, an efficient approach to find the initial solutions for
iterative camera pose estimation using coplanar points is proposed. Starting with homography, the proposed
approach provides a least-squares solution for absolute orientation, which has a relatively high accuracy and
can be easily refined into one optimal pose that locates local minima of the according error function by using
Gauss-Newton scheme or Lu’s orthogonal iteration algorithm. In response to ambiguities that exist in pose
estimation from planar objects, we propose a novel method to find initial approximation of the second pose,
which is different from existing methods in its concise form and clear geometric interpretation. Thorough
testing on synthetic data shows that combined with currently employed iterative optimization algorithm,
the two initial solutions proposed in this paper can achieve the same accuracy and robustness as the best
state-of-the-art pose estimation algorithms, while with a significant decrease in computational cost. Real
experiment is also employed to demonstrate its performance.

INDEX TERMS Pose estimation, perspective-n-point problem, pose ambiguity.

I. INTRODUCTION
The PnP (Perspective-n-Point) problemwas first proposed by
Fischler andBolles [1] in 1981, which can be defined as deter-
mining the 6 degrees of freedom of a camera’s pose given its
intrinsic parameters and a set of correspondences between 3D
reference points and their 2D images. It is a basic problem in
the fields of computer vision and photogrammetry, and has
been extensively studied during the past decades. This paper
focuses on the case in which the 3D points are coplanar. The
applications of camera pose estimation from the image of
coplanar points can be found frequently in camera calibration,
augmented reality and pose tracking of a space target since
most of the calibration boards and man-made targets have a
planar structure.

In theory, the position and orientation of a camera can
be calculated from four or more coplanar but noncollinear
points, if the intrinsic parameters of the camera and the
correspondences are known. Researchers have applied both
iterative and non-iterative approaches to compute the pose
solution for the case of coplanar points. Among non-iterative
approaches, closed form solutions have been formulated for
configurations of fixed number of points, among which there

are three points and four coplanar points. The P3P prob-
lem (with three noncollinear points) can have as many as
four possible solutions [2]–[6]. While the P4P problem has
a single theoretical solution when the coplanar points are
in an ordinary configuration [1], [7]–[10]. As for config-
urations of arbitrary number of points (N>4), almost all
non-iterative methods are designed to cope with reference
point sets with generic positions (not necessarily coplanar)
as far as we know [11]–[18]. But these methods can also be
used in the coplanar case and some of them have achieved
excellent performance both in accuracy and computational
cost [15]–[18]. In particular, the OPnP algorithm proposed
by Zheng et al. [17] have reached an accuracy compara-
ble with iterative methods, with O(n)- complexity. Gener-
ally speaking, non-iterative approaches are much faster than
iterative ones, but more sensitive to additive noise and may
lose accuracy more or less. What’s more, when applied for
coplanar case, they may not be robust enough. Indeed, even
themost accurate state-of-the-art non-iterative algorithmmay
perform poorly in some configurations of specific pose due
to their inherent defect, as will be shown in section 5 of this
article.
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Anatural alternative to non-iterative approaches is iterative
ones. The classical iterative approach used in photogram-
metry is to formulate pose estimation as a nonlinear least-
squares problem which minimizes a cost function such as
reprojection error, and to solve it by nonlinear optimization
algorithms, most typically, the Gauss-Newton method [19].
Lu et al. [20] formulated the relative pose estimation problem
as a minimization of the object-space collinearity error, and
proposed an orthogonal iterative algorithm (LHM) which
is globally convergent. LHM is one of the most widely
used iterative methods for the PnP problem in recent years.
Based on minimization of a nonlinear cost function, iterative
approaches can achieve high estimation accuracy. However
they have some apparent drawbacks. In addition to large com-
putational cost, these local optimization based methods suffer
from the risk of getting trapped into local minimum, and pro-
vide poor results when they indeed do so. Therefore, a good
initial guess is needed to converge to the correct solution.
Lu et al. [20] used weak perspective approximation as the
default initial guess for their orthogonal iterative algorithm,
which is proven to be unstable when applied to coplanar
cases. Oberkampf et al. [21] first discussed ambiguities that
exist in pose estimation for coplanar feature points, and they
developed their POSIT algorithm which uses scaled ortho-
graphic projection at each iteration step. POSIT starts from
the two minima under orthography, maintains two alternative
solutions, and iteratively refines up to two different poses.
When applying reprojection errors for choosing the better
one, planar POSIT achieves higher robustness than that of
LHM. Schweighofer and Pinz [22] gave a comprehensive
interpretation of ambiguities existing in the planar case and
they enhanced the robustness of LHM by taking two distinct
local minima into account. Based on the first local minima,
they derived an analytical solution that locates the second
minima, and then use it as an initial value for iterative algo-
rithms to get the second pose. The SP method (method by
Schweighofer and Pinz) is one of themost robust and accurate
algorithms for the planar case up to date. However, it did
not give a good initial guess for iteration in the first place,
thus being time-consuming even when the noise level is low.
What’s more, its approach for obtaining the second initial
guess is complicated.

In this paper, we propose a novel approach to find ini-
tial solutions for iterative pose estimation using coplanar
points. In our approach, both initial solutions for the two
poses that locate local minima are achieved. The first initial
solution is derived from homography applying linear least
square method, which is easy to manipulate and require
almost negligible cost of computation. This initial solution
is accurate enough so that iterative methods using it as a
start point can always converge to the right solution if the
image noise is relatively low. The method for searching for
the second initial solution in this paper is different from that
of Schweighofer and Pinz [22]. Ourmethod is proposed based
on the assumption that when the noise level is high, the solu-
tion will have a chance to flip to a ‘‘mirror’’ pose. The mirror

pose is symmetric to the original pose about a known plane,
which has a much more intuitive and concise expression.
A comprehensive test on synthetic data was conducted in this
study. The results have shown that compared with the method
proposed by Schweighofer and Pinz, the aforementioned two
initial guesses can reach a solution with the same accuracy
and robustness when applying the same iteration algorithm,
while with a dramatic decrease in computing time.

II. PROBLEM FORMULATION
Given n coplanar points qi = [Xi Yi 0]T, i = 1, 2, . . . , n,
on XY-plane in object reference frame, and their correspond-
ing projections on normalized image plane pi = [ui vi 1]T,
the perspective imaging equation can be expressed as follows:

λipi = Rqi + t, i = 1, 2, . . . , n, (1)

where λi denotes the depth factor of the i-th point. The rota-
tionmatrixR and the translation vector t, accounting for cam-
era orientation and position respectively, are the unknowns to
be retrieved. Considering that the third element of qi (i =
1, 2, . . . , n) is zero, equation (1) could be replaced by: uivi

1

 = 1
λi

[
r1 r2 t

]XiYi
1

, i = 1, 2, . . . , n,

(2)

where [Xi Yi 1]T(i = 1, 2, . . . , n) can be defined as homo-
geneous coordinates of the coplanar points in the object
reference frame. r1 and r2 are the first two columns of rotation
matrixR. It is clear that the map between points [Xi Yi 1]T and
[ui vi 1]T(i = 1, 2, . . . , n) is a planar homography, which has
the first two columns orthogonal and with the same norm.

In the following sections, we make an assumption that the
centroid of coplanar points qi (i = 1, 2, . . . , n) is alignedwith
the origin of the object reference frame for convenience.

III. THE FIRST INITIAL SOLUTION
The first initial solution is derived from planar homography.
The approach is mainly inspired by the method in [23] by
which the best rotation matrix is estimated from a general
3×3 matrix, but makes a variation to properly suit the algo-
rithm for non-square matrix with a scale factor. It consists of
two steps. The first step is to solve for the 3×3 homography
matrixH between points on XY-plane in the object reference
frame and their projections on the normalized image plane.
Given a set of four or more point correspondences, H can be
determined up to a non-zero scale factor applying DLT(Direct
Linear Transformation) which is detailed in [19]. It should
be noticed that the first two columns of H are not exactly
orthogonal in practice due to the existence of random noise.
The second step is to normalize H to the ‘‘closest’’ matrix
which has the first two columns orthogonal and with the
same norm. Thus the initial approximation of R and t can
be obtained.
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LetQ be the 3×2matrix consisting of the first two columns
of H. The normalized matrix is expressed by:

kP = k
[
r1 r2

]
(3)

where P denotes a 3×2 matrix satisfying PTP = I2×2, k is a
positive scale factor. The second step is to solve the following
problem:

min
kP
‖kP−Q‖2F subject to PTP = I2×2 (4)

The objective function can be written as:

‖kP−Q‖2F = trace
(
(kP−Q)T (kP−Q)

)
= 2k2 − 2k ∗ trace

(
PTQ

)
+ trace

(
QTQ

)
(5)

Since trace(QTQ) is constant, the problem is equivalent to
the one of minimizing 2k2 − 2k∗trace(PTQ). Note that if k
is fixed, this expression is a monotonic decreasing function
of trace(PTQ). Therefore the optimal Pwould be the one that
maximize trace(PTQ).
Let the singular value decomposition of Q be U3×3S3×2

VT
2×2, then

trace
(
PTQ

)
= trace

(
PTU3×3S3×2VT

2×2

)
= trace

(
VT
2×2P

TU3×3S3×2
)

= trace

[ v11 v21
v12 v22

][
r ′11 r

′

12 r
′

13
r ′21 r

′

22 r
′

23

] s1 0
0 s2
0 0


= s1

(
v11r ′11 + v21r

′

21
)
+ s2

(
v12r ′12 + v22r

′

22
)
(6)

Among which

PTU3×3 =

[
r ′11 r ′12 r ′13
r ′21 r ′22 r ′23

]
(7)

It can be verified that the two rows of PTU3×3 are orthogonal
and have norm 1. We can find

r ′11 = v11
r ′21 = v21
r ′12 = v12
r ′22 = v22

namely

PTU3×3 =

[
v11 v12 0
v21 v22 0

]
=
[
V2×2 | 0

]
(8)

such that trace(PTQ) reaches its maximum s1 + s2. Then the
optimal P is obtained:

P = U3×3
[
V2×2 | 0

]T (9)

Substituting trace(PTQ) by s1 + s2in (5), we have

‖kP−Q‖2F = 2k2 − 2k (s1 + s2)+ trace
(
QTQ

)
(10)

It is a quadratic function of k and reaches minimum at

k =
s1 + s2

2
(11)

In conclusion, the solution for (4) isP = U3×3
[
V2×2 | 0

]T
k =

s1 + s2
2

(12)

Accordingly the initial approximation of R and t are
expressed as {

R =
[
r1 r2 r1 × r2

]
t =

h3
k

(13)

where r1 and r2 are the two columns of P, and h3 is the
third column of H. Since this initial solution is derived from
homography, we call it HI in the following sections.

It should be noticed that, since t(3) is always positive,
H should be multiplied by −1 period to the second step if
H(3,3) is negative, in order to ensure the correct solution of
R and t.

IV. THE SECOND INITIAL SOLUTION
To evaluate the performance ofHI, we combine it with LHM
[20], which is one of the most popular iterative approaches
for pose estimation. TakingHI as the start point of LHM, we
can refine up to one unique pose solution. During a full test
for configuration of 10 coplanar points, HI+LHM achieves
100% correctness in pose estimation (The errors increase
smoothly with the increase of image noise, no sharp changes.)
when the image noise level is not greater than 6 pixels, as will
be shown in section 5. When the number of coplanar points
is small, or the image noise grows larger, wrong solutions
arise at the place where the angle between image plane and
object plane is extremely large. We record all of the wrong
solutions that occur in 115600 experiments on synthetic data
that traverse all pitching and yaw angles of the object plane
from−80◦ to 80◦, compare them with the corresponding true
poses, and find that the translation vector t of each wrong
pose is not so far different from its true value, and the real
difference lies in the rotation matrix R. We also noticed that
if the origin of the object reference frame is on the optical axis
of the camera, the relation between the rotation matrix of the
wrong pose and that of the true pose is quite straightforward,
it is summarized in the following approximate representation: r11 r12 r13

r21 r22 r23
r31 r32 r33


︸ ︷︷ ︸

R1

 r11 r12 −r13
r21 r22 −r23
−r31 −r32 r33


︸ ︷︷ ︸

R2

Wrong Pose True Pose

That is to say, with the existence of tiny residual error, R1
and R2 of the two poses can transform to each other by just
inverting the first two entries of the third row and the first
two entries of the third column, while the rest entries keep
unchanged.
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Considering that the rotation matrix may be written as:

R =
[
u v w

]
(14)

where u, v, w represents the basis of the object reference
frame expressed in the camera coordinate system. Then the
relationship between R1 and R2 can be interpreted in a visu-
alized geometrical sense, as shown in Fig. 1.

FIGURE 1. The relation between wrong pose and true pose in the case
that the origin is on the optical axis of the camera.

In Fig. 1, u1, v1 and u2, v2 are the first two columns of R1
andR2 respectively. They represent the basis vectors of object
planes corresponding to the wrong pose and the true pose.
The two pairs of vectors are symmetric with each other about
a plane passing through the origin of the object reference
frame O and parallel to the image plane. We can understand
Fig. 1 by considering that when the noise is large, the solution
will have a chance to flip to a ‘‘mirror’’ pose.

In the case that O deviates from the optical axis of the
camera in a large scale, the relation between the two poses
is not easy to find at the first sight of rotation matrices.
However, there is also regularity to follow. Indeed, from
the geometric point of view, the mirror plane always passes
through O, and is perpendicular to the translation vector t,
namely the coordinate vector of O in the camera reference
frame. This conclusion has been verified through experiments
on ordinary positions of O with large noise introduced. It is
shown in Fig. 2.

In summary, the relation between two poses can be written
in a unified form, as shown in (15).

u2 = u1 − 2
ttT

tTt
u1

v2 = v1 − 2
ttT

tTt
v1

t2 = t1

(15)

where u2,v2 are the first and the second column of R2. The
third column w2 can be calculated by the cross-product of
u2 and v2. In practice, after the first pose solution is obtained,
we can use (15) to get the initial solution for the second

FIGURE 2. The relation between wrong pose and true pose in ordinary
case.

FIGURE 3. The definition of α, β and γ in experimental setup.

pose. In addition, since the true value of t is unknown, the
calculated one t1 of the first pose is used to replace it in (15).
Compared with the method proposed by Schweighofer and

Pinz [22] for calculating the second initial pose, which needs
a series of coordinate transformations and a solution for a
polynomial of degree four, the approach represented by (15)
has a much more concise form, and correspond to a clear
geometric interpretation as well.

The two initial solutions above lead us to our new pose
estimation approach:
Step 1:Calculate the homographymatrix between coplanar

points in the object reference frame and their projections on
the normalized image plane, then use (12) and (13) to get the
first initial solution.
Step 2: Estimate a pose (R1, t1) using the first initial

solution as a start point, applying any existing iterative pose
estimation algorithm. In our experiments, theLHM proposed
in [20] is adopted.
Step 3: Use (15) to obtain the second initial solution

(R2, t2).
Step 4: Refine (R2, t2) to get the second pose by applying

the same iterative algorithm as Step 2.
Step 5: Decide the final correct pose (R, t) based on the

error function used by the iterative approach in Step 2 and
Step 4. In our experiments, the object-space collinearity error
is employed.
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FIGURE 4. The distribution of maximum rotation errors for the configuration of N=4.

As a supplement, if the origin O is not aligned with the
centroid of coplanar points, a translation t0 for alignment
should be applied before Step 1. After obtaining (R, t) in
step 5, we can replace t by t+Rt0 to recover the final pose.

V. EXPERIMENT RESULTS
A. EXPERIMENTS WITH SYNTHETIC DATA
1) EXPERIMENTAL SETUP
In this section, we experimentally investigate our approach
for pose estimation from planar objects, referred to as
MHI+LHM, and compare it with state-of-the-art methods.
For all experiments, we use an internally calibrated camera
with focal length of 6mm and pixel size of 3.75um×3.75um.
In the tests demonstrated in 2) to 4), we evaluate the per-

formance of our algorithm by using synthetic planar objects
with 4 coplanar points and 10 coplanar points respectively.
In the configuration of 4 coplanar points, the 4 points are
located at the 4 corners of a square with a size of 1m×1m.
In the configuration of 10 coplanar points, 4 points are also
located at the corners of the square, and the other 6 points are
positioned randomly inside this square. For each configura-
tion, two cases of positions of camera relative to the object
plane are considered. In the first case, the translation vector t
is chosen as (0, 0, 5000)(mm), which indicates the square is
located at the center of camera’s vision field. In the second
case, t is chosen as (2000, 1500, 5000)(mm), which indicates
the location of square is close to the edge of the field. For
each case, synthetic images are obtained using a number of

pitching and yaw angles for the square and different levels
of image noise. At noise level x, the coordinates of image
points are disturbed by vertical and horizontal perturbations
of ±x pixels. The roll angle γ is specified as 0◦ and 90◦.
The pitching angle α ranges from −80◦ to 80◦ with a step
length of 10◦ and yaw angle β ranges from−80◦ to 80◦ with
the same step length. Therefore there are 2×17×17 triplets
of γ , α and β. For each triplet of angles, 200 synthetic
images are obtained with the same noise level. The camera
poses are computed by different algorithms from synthetic
images, and the results are compared with the actual camera
poses. The mean and maximum errors as well as number
of wrong solutions are recorded, respectively with different
noise levels.

2) ANALYSIS OF ROTATION ERROR DISTRIBUTION
The performance of LHM [20], HI+LHM (LHM using
only the first initial solution),MHI+LHM (LHM using two
initial solutions) and SP+LHM [22] under different image
noise levels are evaluated and presented in the form of col-
ormaps, which show the distribution of maximum rotation
errors against α and β, while γ is 0◦ and t is (0, 0, 5000)(mm).
For the case of 4 coplanar points, three image noise levels
of 0, 1 and 2(pixels) are considered. For the case of 10 copla-
nar points, the noise levels are 0, 3 and 6(pixels).

As can be seen in Fig. 4 and Fig. 5, under the noise free
condition, HI+LHM, MHI+LHM and SP+LHM can all
achieve zero rotation error in both configurations of N=4 and
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FIGURE 5. The distribution of maximum rotation errors for the configuration of N=10.

FIGURE 6. The rate of wrong solutions for N = 4 and N = 10.

N=10. As for the configuration of N = 4, MHI+LHM and
SP+LHM perform better than HI+LHM with increase of
image noise level. While for the configuration of N = 10,
the three approaches perform equally well when the noise
level is less than 6 pixels. It can also be noticed that wrong
solutions always appear at the edge of color maps, which
indicates that pose ambiguity would have a larger probability
to arise in the case where the angle between image plane and
object plane is extremely large(close to 90◦).

3) RATE OF WRONG SOLUTIONS
Fig. 6 compares the rate of wrong solutions for our algorithm,
namelyMHI+LHM andHI+LHM, with SP+LHM, which

is one of the most robust and accurate iterative algorithms
for the pose estimation from planar objects. Four cases are
considered, among which are N = 4, object at the center
of vision field; N = 4, object near the edge of vision field;
N = 10, object at the center of vision field; and N = 10,
object near the edge of vision field, as described in 1). At each
noise level, the rate of wrong solutions is calculated from
2×17×17×200 results. Without loss of generality, a wrong
solution is defined as a solution with the rotation error
over 45◦.
In Fig. 7, we include into some excellent state-of-art non-

iterative PnP algorithms, such as RPnP [16], OPnP[17] and
DLS+++[18]. Only the configuration of 10 coplanar points
is considered in Fig. 7. From Fig. 6 and Fig. 7, We can
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FIGURE 7. The rate of wrong solutions for N = 10.

FIGURE 8. The mean rotation and translation error against noise.

observe that the robustness of MHI+LHM is identical with
that of SP+LHM in all the four cases, and better than other
PnP algorithms. It can also be noticed that, in the case of
N=4, the rate of wrong solutions for HI+LHM increases
more rapidly than the rate for MHI+LHM as image noise
increases, while in the case of N= 10, the rates forHI+LHM
andMHI+LHM keep at the same level. In Fig. 7, It is worth
noting that OPnP always has a high rate of wrong solutions
even under the noise free condition. From our observations,
the solutions of OPnP tend to be unstable when α or β is
close to zero.

4) MEAN ERROR AND COMPUTATIONAL TIME IN
COMPARISON WITH THE SP METHOD
Fig. 8 shows the mean rotation error and mean translation
error of MHI+LHM compared with those of SP+LHM.

Fig. 9 compares average computational time of the two
approaches. We run all codes in MATLAB on a desktop with
2.67GHz CPU and 6GB RAM.

It can be seen from Fig. 8 and Fig. 9 thatMHI+LHM can
achieve the accuracy similar to SP+LHM, while the average
computational time is much less than that of SP+LHM.
We can explain the computational efficiency ofMHI+LHM
in two aspects: (1): The second initial solution has a very con-
cise expression. In theory, the computational cost required in
obtaining the second initial solution is a negligible constant.
By contrast, the SP method for calculating the second initial
solution needs a series of coordinate transformations and a
solution for a polynomial of degree four, which is more com-
plicated. and (2): The first initial solution helps to improve the
convergence speed for iterative algorithms to reach the first
local minima, especially in the case of low noise. Moreover,
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FIGURE 9. The average computational time.

FIGURE 10. The mean and median errors against N.

the process for obtaining the first initial solution is approxi-
mately the process for solving a 2D homography in terms of
time cost, which is computationally very fast.

5) MEAN AND MEDIAN ERRORS AGAINST
NUMBER OF POINTS
A more general test has been made to evaluate the accu-
racy of our approach. In this test, the reference points are
uniformly distributed in the range [−2000, 2000]×[−2000,
2000]×0 (mm) of object reference frame, while the rota-
tion matrices are randomly generated and translation vectors
are randomly chosen from the range [−500, 500]×[−500,
500]×[4000, 12000] (mm). Gaussian noise with σ = 3
pixels is added to the projected image points, and for each
number of reference points, 1000 test data sets are generated.
Fig. 10 shows the mean and median rotation errors and trans-
lation errors plotted against the number of reference points.
We can see that the performance of MHI+LHM is always
similar to SP+LHM, which further validates the two initial
solutions we proposed.

FIGURE 11. Experimental condition. (1) LED fixed on the disk target,
(2) 2-axis inclinometer, (3) 3D rotation stage, (4) COMS camera,
(5) 2D rotation stage for leveling.

B. EXPERIMENTS WITH REAL IMAGES
In this section, we use MHI+LHM to track the movement
of a disk target. Four circular LEDs fixed on the disk target
are used as the feature points to be extracted, which form
the four corners of a square with diagonals of 440mm length.
The object reference frame is built on the disk target with the
origin located at the center of the square, as shown in Fig.11.

A 2-axis inclinometer with precision of ±0.01◦ and mea-
surement range of ±30◦ is installed in the center of the disk
target as a benchmark of rotation. A calibrated CMOS camera
with a resolution of 1280×1024 and focal length of 6mm
is applied in this experiment. Our algorithms run on a DSP
platform connected to the camera. The calculated rotation
matrix R is decomposed into three rotation angles, which
are roll angle, pitching angle and yaw angle. The calcula-
tion results of DSP including rotation angles and translation
vectors along with the outputs of inclinometer are sent to PC
through RS-232 in real time.

We first adjust the attitude of the disk target and the COMS
camera to the extent that the outputs of inclinometer as well
as the three rotation angles calculated by DSP are close to 0◦,
then successively change the pitching angle and roll angle of

22264 VOLUME 6, 2018



K. Zhou et al.: Complete Initial Solutions for Iterative Pose Estimation From Planar Objects

FIGURE 12. The calculation results of DSP for the three angles compared
with the 2-axis inclinometer outputs.

the disk target, while recording the outputs of inclinometer
and the calculation results of DSP at the same time. We try
to ensure that when one of the three angles is being adjusted,
the other two angles stay close to zero and keep unchanged.
The recorded data is plotted in Fig. 12, which indicate that the
DSP platform can stably output calculation results of the three
rotation angles, among which the roll and pitching angles are
comparable with the inclinometer outputs. It is also verified
that when executing the algorithm on a hardware platform,
the method for obtaining the two initial solutions is very
computationally efficient.

VI. CONCLUSION
The robustness of iterative algorithms for PnP problems
deeply relies on the choice of initial values. For planar case,
we have presented two initial solutions that can be stably
refined into the two poses that locate local minima. They
both have simple forms that can be obtained effectively. The
significance of the first initial solution mainly lies in two
aspects: (1) it helps to improve the convergence speed for
iterative algorithms to reach the first local minima; and (2)
it can directly reach the global minima in the case of low
image noise and large number of coplanar points. The sec-
ond initial solution in this paper is proposed based on our
new concept of ‘‘mirror’’ pose, which has a more concise
form compared with the SP method, while the robustness
of the corresponding final results is equally well. Besides
their simple expressions, the two initial solutions proposed
in this paper are not dependent on any specific iterative
algorithm or error function. Those characteristics make them
a good reference for choosing initial values in applications

of iterative pose estimation where optimal accuracy and effi-
ciency are required.
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