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ABSTRACT The prediction of next location for users in location-based social networks has become an
increasing significant requirement since it can benefit both users and business. However, existing methods
lack an integrated analysis of sequence context, input contexts, and user preferences in a unified way,
and result in an unsatisfactory prediction. Moreover, the interaction between different kinds of input
contexts has not been investigated. In this paper, we propose a multi-context integrated deep neural network
model (MCI-DNN) to improve the accuracy of the next location prediction. In this model, we integrate
sequence context, input contexts, and user preferences into a cohesive framework. First, we model sequence
context and interaction of different kinds of input contexts jointly by extending the recurrent neural
network to capture the semantic pattern of user behaviors from check-in records. After that, we design
a feedforward neural network to capture high-level user preferences from check-in data and incorporate
that into MCI-DNN. To deal with different kinds of input contexts in the form of multi-field categorical,
we adopt embedding representation technology to automatically learn dense feature representations of input
contexts. Experimental results on two typical real-world data sets show that the proposed model outperforms
the current state-of-the-art approaches by about 57.12% for Foursquare and 76.4% for Gowalla on average
regarding F1-score@5.

INDEX TERMS Location-based social networks, next location prediction, deep neural network, sequence
prediction, multi-context.

I. INTRODUCTION
With the rapid development of wireless communication tech-
nologies and the popularization of mobile devices, the emer-
gence of location-based social networks (LBSNs), e.g.,
Foursquare, Gowalla, and Yelp, has bridged the gap between
cyberspace and the physical world. In LBSNs, users can post
their physical locations in the form of ‘‘check-ins’’. They
can also share their life experiences in the physical world,
resulting in new opportunities to extract further insights into
user preferences and behaviors [1]. Predicting location in
LBSNs accurately is crucial for helping users find interesting
places and services [2], for contributing to the connection of
next hop in high-speed Internet of Things (IoT) [3] and for
facilitating business owners to launch mobile advertisements
to target users [4]. To gain significant benefit for both users
and business, the prediction of next locations for users has
recently attracted much academic attention [5], [6].

Predicting the next location is not just confined to esti-
mating user preferences, which a general location prediction
focuses on [7] and [8]. It also includes the modeling of
sequence transition from check-ins to predict user’s future
location. This is relevant because human movement exhibits
strong sequence dependency [9], [10]. Current studies on
the modeling sequence pattern are mainly based on first-
order Markov Chain (MC) model such as Hidden Markov
Model (HMM) [5], and Factorizing Personalized Markov
Chain Model (FPMC) [9]. However, those methods are used
to predict the possibility of visiting location based only on the
latest check-in due to the higher computational complexity,
and the influences of short-term and long-term sequence
context (i.e., a set of locations visited before) have been
ignored. Recently, deep neural networks have proved to be
useful in modeling those sequence contexts in next location
prediction. For example, by an analogous user’s check-in
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trajectory to a sentence, Zhang and Chow [10] and
Liu et al. [11] employed the word2vec framework to learn
the hidden representation of locations by capturing the influ-
ence of short-term sequence context. Liu et al. [13] and
Yang et al. [14] leverage recurrent neural network (RNN)
to capture the influence of long-term sequence context on
next location decision. Cui et al. [15] propose a Hierarchical
Contextual Attention-based GRU (HCA-GRU) network to
capture long-term dependency and short-term interest. Their
results show better performance in predicting precision than
MC-based approaches.

The deep neural network has become a promising method
inmodeling complex sequence context. However, thesemeth-
ods still have some limitations. Firstly, multiple types of input
contexts (e.g., time, traffic and weather condition) which
generated from LBSNs have not been adequately considered
to avoid the high computation cost. Those contexts have been
demonstrated to be crucial for the accuracy improvement in
predicting next locations for users [8]. Secondly, the interac-
tion between different kinds of input context and its influence
on users’ check-in behaviors has been neglected in previous
works. For instance, a user goes to cinema depending on
the interaction of the time, geographic distance, and weather
conditions. Thirdly, user preferences which have priority
contribute to the prediction of next location, have not been
well considered in those models. User preferences change
with time; it is naturally determined by the locations that
user visited. Current researches have proved that users are
likely to have different travel schedules if they have differ-
ent preferences even when the sequence trajectories and the
input contexts are similar [16]. For instance, it is suitable to
recommend the theatre for cinephiles, and the gym for sports
fans after dinner.

Recently, a few studies focus on capturing the influence of
different kinds of input contexts and sequence context in a
unified manner on the prediction accuracy of next location
for users. In [10]–[12], [14], and [17], sequence context
and input contexts were first modeled separately, and then
combined by adopting an aggregation function. This method
lacks a comprehensive analysis of their joint effects in a
unified way. Although other studies [13], [18] incorporate
input contexts into RNN by using adaptive context-specific
projection matrices to model sequence context and input
contexts simultaneously, these models were designed for a
particular type of input context, and it is difficult to generalize
them to copewith different kinds of input contexts.Moreover,
the interaction of different kinds of input contexts has not
been adequately investigated in the previous works.

In this paper, a novel prediction model has been estab-
lished to improve the prediction performance of user’s next
location, called Multi-Context Integrated Deep Neural Net-
work Model (MCI-DNN). This model is a natural exten-
sion of the deep neural network, which models sequence
context, different kinds of input contexts, and user prefer-
ences in a unified framework. MCI-DNN capture semantic
pattern of user behaviors from check-in data by modeling

sequence context and interaction of different kinds of input
contexts jointly using RNN. Subsequently, a feedforward
neural network (FNN) is constructed to learn users’ high-
level preferences from the locations that user interacts with
and then incorporate into MCI-DNN. To deal with different
kinds of input contexts, embedding representation technique
was adopted to automatically learn an expressive feature
representation of these input contexts [19]. Compared with
the traditional one-hot representation, it is less vulnerable to
the data sparsity problem. Note that although our model is
simple, it is more flexible and capable of capturing the joint
influence of multiple context factors. It also generates a high-
quality prediction.

The main contributions of this paper are summarized as
follows: (1) To the best of our knowledge, it is the first time
that the interaction between different kinds of input con-
texts was investigated to make accurate location prediction.
(2) We integrate sequence context, different kinds of input
contexts, and user preferences into a cohesive framework to
improve the quality and capability for predicting the next
location. (3) The proposed model is flexible and can incor-
porate other kinds of input contexts to make a prediction
economically.

The remainder of this paper is organized as follows:
Section 2 reviews the related works; Section 3 highlights
our MCI-DNN model; Section 4 details the experimental
configuration; and Section 5 depicts the experimental results
and discussion, followed by the conclusion in Section 6.

II. RELATED WORK
Classical location prediction methods are based on users’
check-in records and auxiliary information, such as loca-
tion categories and users’ social relationships, to predict
where a user most likely checks-in in the future. Previous
works [20]–[23] focused on the memory-based or model-
based Collaborative Filtering (CF) to make location pre-
diction. By regarding time as another dimension, Tensor
Factorization (TF) based approaches were proposed to make
location prediction by learning latent factors of users, items,
and time bins [24]. Recently, some other works have taken
different kinds of contexts into account to improve location
prediction accuracy. For example, Liu et al. [8] proposed a
geographical probabilistic factor model by taking geographi-
cal influences and user mobility into account. Ren et al. [25]
proposed a context-aware probabilistic matrix factorization
by exploiting textual information, geographical information,
social information, categorical information, and popularity
information. Zhou et al. [16] proposed a multi-context tra-
jectory embedding model to systematically explore contexts.

Compared with the task of general location prediction in
which the ‘‘check-in’’ data were considered as a whole, and
their temporal relation was neglected, the essential differ-
ence in the prediction of next location is that the strong
sequence dependency largely influences the performance.
Cheng et al. [9] first explored the dynamics of location and
check-ins and proposed a personalized Markov chain model
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for the successive personalized location recommendation. By
considering all visited locations in the check-in history of a
user, the spatial-temporal sequence influence was exploited
in [10] and [26]. However, these methods directly model
transition probability of the observed check-in data, and
fail to estimate the transition probability of the unobserved
data. In addition, a metric embedding algorithm was used
to compute the location transition by projecting each loca-
tion into one object in a low-dimensional Euclidean latent
space [6], [17]. Other works [5], [27] investigate the transition
pattern of location categories to improve location prediction
accuracy. These studies exploit sequence influences which
are confined to first-order transitions due to data sparsity
and computational complexity [10]. They cannot consider the
effects of long sequence influences.

Prediction of users’ next locations relies not only on
the latest visited location but also on the earlier visited
locations [11]. Hence, some current works [11], [12], [28]
explored the influences of the location’s context based on
the word2vec framework by treating each location as a word
and each user’s visited locations as a sentence. Recently,
with the successful application of deep learning on image
retrieval [29], text generation [30], click prediction [10] and
recommendation [31], some studies investigated the long-
term sequence context influence using RNN within a whole
check-in sequence. For example, Yang et al. [14] employed
the RNN and GRU (Gated Recurrent Unit) models to cap-
ture the sequence relatedness in mobile trajectories at short-
term or long-term. Liu et al. [32] also employed LBL
(Log-Bilinear) and RNN to model short-term and long-term
sequence context respectively, and then combined them into
a linear model.

In the last five years, there were a few studies that hade
incorporated context information into the sequence model to
improve the performance of next location prediction [28].
For example, Zhao et al. [12] incorporated temporal contexts
into a word2vect framework to learn location representa-
tion under some particular temporal state. The study [14]
also incorporated social influence, location’ context and
long-term sequence dependence into a unified framework
to improve the performance of next location prediction.
Recently, Liu et al. [13] propose a Spatial-Temporal Recur-
rent Neural Networks (ST-RNN) by modeling local temporal
and spatial contexts in each hidden layer with time-specific
transition matrices and distance-specific transition matrices.
However, these efforts towards each type of context are
ad-hoc, and they limit their capacity in dealing with other
kinds of contexts. Another work proposed by Liu et al. [18]
adopted adaptive context-specific transition matrices to cap-
ture the external situation where user behaviors occurred.
This approach is different from the conventional RNN which
uses constant input and transition matrix. However, it is dif-
ficult to learn numerous parameters sufficiently due to the
sparsity of check-in data. Besides, the previous studies have
revealed that the interaction of different kinds of contexts has
not been investigated.

III. MULTI-CONTEXT INTEGRATED MODEL
In this section, we first formulate the problem of next location
prediction and then present our proposed MCI-DNN model.

A. PROBLEM DEFINITION
Definition 1 (Check-In Point):A check-in point is an action

conducted by a user under the specified context. For each
user u, the check-in point can be denoted as a three-tuple
< l, c, t >, where a representative user u conducts check-
in action on location l under the context c at timestamp t;
l is the location ID or coordinate; and c is multiple-tuple
< c1, c2, . . . , c|c| > such as spatial, temporal and traffic
condition.
Definition 2 (Check-In Sequence): A check-in sequence is

a set of check-in points with chronological order in the light of
timestamp. The check-in sequence of a user u before time tk
denoted as Su = {(l1, c1, t1) , (l2, c2, t2) , . . . , (lk , ck , tk) , k
is time index.

Formally, let U =
{
u1, u2, . . . , u|U |

}
be a set of users and

L = {l1, l2, . . . , l|L| be a set of locations, where |U | and
|L| denote the total number of unique users and locations
respectively. For each user u, given a trajectory sequence Su
before time tk , input contexts ck+1 at the next timestamp tk+1,
the task of next location prediction is to recommend top-N
locations to the user u for his next move.

TABLE 1. Key mathematical notations.

i-
i- k-

d-

B. MODEL DESCRIPTION
The key mathematical notations used in this study are shown
in Table 1. Fig.1 shows the architecture of the MCI-DNN
model. The arrows in Fig.1 represent data flows, ctj represent
j-th input context encoded by one-hot representation. In our
model, we first capture the semantic pattern of users from
sequence context using RNN. Different kinds of input con-
texts are incorporated into RNN by embedding technique.
Subsequently, FNN was used to capture users’ high-level
preferences based on the learned location latent representa-
tion from RNN and incorporated them into MCI-DNN using
pooling operation to make the final prediction. The model is
proposed and described in the following.
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FIGURE 1. Architecture of the proposed Model.

1) THE RNN MODEL FOR CONTEXT
Input contexts collected from LBSNs generally consist of
multiple fields of categorical data such as location informa-
tion (e.g., location ID and category ID) and temporal infor-
mation (e.g., hour of the day, day of the week, and week
of the month). In contrast to previous works [13], [18] that
directly incorporate different kinds of input context into RNN
by means of adaptive context-specific matrices, we embed-
ded them into a dense low-dimension latent space by way
of embedding representation. The entire contexts were first
represented as a multi-field categorical feature vector by one-
hot encoding. For example, weekday = ‘Tuesday’, the one-
hot encoding can be described as [0, 1, 0, 0, 0, 0, 0]. Then,
for the input feature vector ci,k of the i-th input context in
k-th types, the embedding representation ei is the output of
the embedding layer:

ei = ci,kEk (1)

Ek is embeddedmatrix of k-th type of input context in embed-
ding layer which can be learned during training. We merged
the embedding vector through vector concatenation instead
of element-wise product because the latter could not cap-
ture non-linear interactions between different kinds of input
contexts [19]. Besides, the element-wise product requires the
embedding in the same size space. Then, the value of the
hidden state ht at time t can be computed as:

ht = ρ(M [e1, e2, . . . , eK ]+Wht−1) (2)

where K is the number of different input contexts,ρ(·) was a
non-linear activation function, such as tanh, ReLU and sig-
moid. In this study, we chose tanh as the activation function:

ρ (x) =
ex − e−x

ex + e−x
(3)

Additionally, the information transition from the previ-
ously hidden state is mainly determined by transition con-
texts between adjacent behaviors, such as time interval and
geographical distance (which is a special input context).
In this study, only time transition context was considered for
simplification purposes, but our method can easily extend
to other contexts. Instead of using continuous values of the
time interval, we partitioned all the possible time intervals
between two behaviors into discrete bins and then discretized
them into the floor of the corresponding bin. Finally, the time-
specific transition matrix was utilized. Then, equation (2)
could be rewritten as:

ht = ρ(M [e1, e2, . . . , eK ]+Wct−1ht−1) (4)

where Wct−1 is projection matrix for ht−1 under transition
context ct−1.
The basic RNN model assumes that the temporal depen-

dency changes monotonously along with positions in a
sequence by only modeling one element in each hidden layer.
Such an assumption is reasonable in modeling words in a
sentence or frames in a video, as adjacent words or frames
have significant correlation [18]. However, it is unsuitable
for modeling the complex human mobility in a real situ-
ation because users usually complete successive check-in
numerous of locations in a short time [3], [8]. Hence, pre-
vious check-in behaviors usually have a strong impact on the
current and future decision [18]. To model such short-term
sequence contexts, we further extend RNN to model multiple
elements in each hidden layer to capture location relatedness
context, as is shown in Fig.1. Finally, the equation (4) could
be rewritten as:

ht = ρ(
n−1∑
j=1

M [e1, e2, . . . , eK ]+Wct−1ht−1) (5)

where n is the number of elements modeled in a sequence,
which is also called slide window width. In particular, Equa-
tion (5) will be changed into basic RNN if and only if
one input element was considered in each hidden layer
(i.e., n = 1).

2) THE FNN MODEL FOR PREFERENCE
Naturally, user preferences are determined by the locations
he or she visited. Inspired by [17] and [33], we built a
feedforward neural network (FNN) to learn high-level latent
preference automatically. For simplicity, all users shared the
same size of neurons in the hidden layers, which also helped
us identify the common check-in patterns of users. Given the
d − 1-th hidden layer gd−1, the state of d-th is updated as:

gd = σ (Qdgd−1) (6)

where Q denotes projection matrix for the previous layer as
input, σ (x) := 1/1+ e−x is the logistic sigmoid function.

We regarded each trajectory sequence as an ordered list of
input elements d =

(
el1 , el2 , . . . , elt , . . .

)
, where elt is learned

embedding vector of the location visited by user u at time t

VOLUME 6, 2018 21983



J. Liao et al.: MCI-DNN for Next Location Prediction

according to equation (1). Thus, the input vector g0 could be
represented by a weighted average of all visited elements in
the sequence, computed as:

g0 =

∑|Su|
t=1 w(t)elt∑|Su|
t=1 w(t)

(7)

where w(t) denotes the degree of user preferences on location
lt , which can be any weighting function. We used TF-IDF as
the weighting function. |Su| denotes the length of check-in
sequence.

C. PARAMETER LEARNING
The prediction of user u visiting location l at time t + 1 can
be influenced by semantic pattern learned from check-in and
users’ personal preferences. Hence, the prediction function
can be written as:

r t+1u,l = ht ⊕ guV (8)

where ⊕ denote pooling operation.
The neural network is usually trained by back propaga-

tion (BP) algorithm in natural language processing. In this
study, only a small number of the visited locations were
recorded in LBSNs. The density of the check-in data used
for location prediction is approximate 0.1%. This value is
largely sparse compared with a traditional recommendation
task, such as movie recommendation. The unrecorded loca-
tions may be either negative feedback or unknown for users.
Similar to [13], we trained our model by Bayesian analysis of
Personalized Ranking (BPR) criteria [34] and Back Propaga-
tion Through Time (BPTT) algorithm to learn the parameters
of the proposed model.

The BPR algorithm is a matrix factorization method that
uses pairwise ranking loss. The basic assumption of BPR
is that a user prefers the selected items to unselected ones.
This method has been used successfully for parameter esti-
mation of RNN-based recommendation models [13]. In the
BPR algorithm, given a visited location l and sampled neg-
ative location l ′, the pairwise preference probability can be
given as:

p
(
l > l ′; u, t + 1 | θ

)
= σ (r t+1u,l − r

t+1
u,l′ ) (9)

where θ = (E,M ,W ,V , Q) denotes all parameters to
be learned. Then, incorporating the negative log-likelihood
function, we have the final objective function:

J = −
∑

lnσ (r t+1u,l − r
t+1
u,l′ )+

λ

2
‖θ‖2 (10)

where λ is the regularization parameter to avoid overfitting.
According to Equation (10), derivations of J with respect to
the parameters θ can be calculated.

Moreover, parameters in RNN can be further learned by
using BPTT algorithm. According to Equation (5), given the
derivation δJ/ht , the corresponding gradients of all param-
eters in the hidden layer can be calculated. Moreover, we
adopted a dropout technique to avoid overfitting. In our work,
we simply set a fixed drop ratio (50%) for each hidden unit.

IV. EXPERIMENTAL CONFIGURATION
In this section, the experimental configuration, including
datasets, evaluation methods, comparative approaches, and
experimental setting is introduced.

A. DATA COLLECTIONS
We took two publicly available large-scale check-in datasets
from real-world LBSNs, Foursquare, and Gowalla to conduct
our experiment.

Foursquare data [35] included long-term (from 12 April
2012 to 16 February 2013) check-ins in NewYork and Tokyo.
New York and Tokyo are the most populous metropolitan
areas in the world, and the most popular check-in cities in
USA and Asia respectively in Foursquare. Therefore, it is
valuable and representative for the study of human mobility.
Taking into account the urban compositions, the cultural
differences of the two cities, and user check-in behaviors that
exhibit different patterns, we conducted our experiment on
the two cities using their datasets (i.e., Foursquare-NYC and
Foursquare-TKY).

Gowalla data [36] consisted of check-ins in California and
Nevada between February 2009 and October 2010. Since
there is no significant cultural difference between these two
adjacent areas, we conducted our experiment on the same
dataset (i.e., Gowalla) without distinguishing cities.

We picked up 5-month check-in data in two datasets
to conduct our experiment. Each check-in is a three-tuple
〈user, venue, time〉 and each venue is associated with the
latitude and longitude. For each dataset, we removed users
who had check-ins fewer than 4 locations each month, and
locations which had been visited by fewer than 10 users.
After preprocessing, the Foursquare (NYC) dataset contains
147,938 check-ins collected from 1083 users at 5135 loca-
tions, Foursquare (TKY) datasets contained 447,570 check-
ins collected from 2293 users at 7873 locations, and
Gowalla dataset contained 762,636 check-ins collected from
3374 users at 7208 locations. Basic statistics of the datasets
are summarized in Table 2.

TABLE 2. Statistics of two datasets.

B. EVALUATION METHODS
As there is no explicit rating for test dataset, we evaluated
our model based on the ranking list of the predicted locations.
We presented each user with a certain number (N) of locations
sorted by the predicted score using equation (8). We com-
puted the precision, recall, F1-score and NDCG based on
those locations which were visited by the user.

Precision and recall [8]. Given a top-N predicted location
list SN ,preu,t sorted in descending order of the prediction values,
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FIGURE 2. Precision, Recall and NDCG of MCI-DNN and other approaches (MFCF, MC, FPMC, PRME, RNN, and CA-RNN) with the increasing N from
1 to 10 (with the interval of 5) using the Foursquare (NYC) dataset.

precision and recall are defined as:

Precision@N =
1
|U |

|U |∑
u=1

Ltest∑
t=1

SN ,preu,t ∩ Svisitedu,t

N
(11)

Recall@N =
1
|U |

|U |∑
u=1

Ltest∑
t=1

SN ,preu,t ∩ Svisitedu,t

Svisitedu,t
(12)

where Svisitedu,t are the locations a user has visited in the test
data, Ltest is the length of the test sequence of each user. Note
that the precision and recall are computed by averaging all
the precision and recall values of all the users respectively.

F1-score [8]. An F1-score combines precision and recall.
It is the harmonic mean of precision and recall.

F1− score =
2× Precision× Recall
Precision+ Recall

(13)

NDCG@N is defined as: NDCG = DCG@N/IDCG@N ,
where DCG@N =

∑N
i=1 (2

reli − 1)/log2(i+1) . IDCG@N is
equal to the DCG@N on condition that the recommended
locations are ideally ranked, and rel i refers to the graded
relevance of the result ranked at the position i [37].

C. COMPARATIVE APPROACHES
We compared our MCI-DNN with the following six baseline
approaches which representing the state-of-the-art location
recommendation techniques:

1) Matrix Factorization based CF [38]: MFCF is the con-
ventional collaborative filtering with matrix factoriza-
tion, which factorizes the user-item preference matrix
with BPR.

2) Markov Chains based model [10]: MC is a com-
monly used sequence model for sequence prediction,
which computes the transition probability by a counting
method.

3) Factorizing Personalized Markov chains model
[9], [39]: FPMC is the state-of-art method that extends
conventional MC methods and factorizes personalized
probability transition matrices of users.

4) Personalized Ranking Metric Embedding [6]: PRME
integrates sequence information, individual preference,

and geographical influence to improve the recommen-
dation performance.

5) Recurrent Neural Network [31]: RNN is the state-of-
the-art method for sequence prediction, which has been
successfully applied in natural language processing,
click prediction and sequence recommendation task.

6) Context-Aware RNN [18]: CA-RNN is an extension of
RNN for the sequence recommendation using adaptive
context-specific matrices.

D. EXPERIMENTAL SETTING
According to the contextual information in the two datasets,
similar to [18] and [19], we extracted three kinds of input con-
texts: seven days in a week, twenty-four hours in a day, and
time intervals between adjacent behaviors. For time interval,
discretization was completed in one-day time bins. For those
whose time intervals were larger than 30 days, they were
treated as one time bin to avoid data sparsity. Note that our
model is a generic and flexible model that can be extended to
easily incorporate other input contexts that are not limited to
the above three input contexts. Moreover, we converted the
location that a user visited into an id as input of MCI-DNN.

In our experiment, for each behavioral historical sequence
in the two datasets, 80% check-ins of each user were selected
for training data and remaining 20% for the test data. The
learning rate of the proposed model was initialized as 0.1 and
decay dynamically. Regularization parameter in the proposed
model is set to 0.001 according to experimental results. More-
over, to avoid gradient explosion, the gradient range was
limited to [−5, 5] using the clip gradient technique.

V. RESULTS AND DISCUSSION
A. PERFORMANCE COMPARISON
The results of our proposed MCI-DNN and other compar-
ative approaches with well-tuned parameters are compared
and reported by using the Foursquare and Gowalla datasets.
It should be noted that only the performance when N is set to
1, 5, and 10 is shown because a greater value of N is usually
ignored by users.

Figs. 2 and 3 show the precision, recall and NDCG
achieved on the Foursquare datasets of NYC and TKY, and
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FIGURE 3. Precision, Recall and NDCG of MCI-DNN and other approaches (MFCF, MC, FPMC, PRME, RNN, and CA-RNN) with the increasing N from
1 to 10 (with the interval of 5) using the Foursquare (TKY) dataset.

FIGURE 4. Precision, Recall and NDCG of MCI-DNN and other approaches (MFCF, MC, FPMC, PRME, RNN, and CA-RNN) with the increasing N from
1 to 10 (with the interval of 5) using the Gowalla dataset.

TABLE 3. F1-score in the dataset from foursquare.

Table 3 shows the F1-score values. Results show that (a) our
proposed MCI-DNN significantly outperforms all of the
baseline methods. From Table 3, compared with CA-RNN,
the relative improvements, in terms of F1-score@10, are
more than 54.22% and 14.46% of NYC and TKY respec-
tively; (b) MC-based approach significantly outperforms
MFCF, which demonstrates the important influence of check-
in sequences on human decision process [40]; (c) The per-
formance of RNN significantly outperforms the MC-based
model. This is because MC based approaches only model the
transition probability between the current location and the
latest visited location, while the influence of other previously

visited locations was ignored [32]. Although a higher-order
MC can capture the influence of other previously visited
locations, it is subjected to huge prediction state space and
computational complexity [1]. Compared to MC, RNN can
capture relatively long sequence dependency. Thus, such a
significant improvement of RNN is reasonable; (d) By taking
the input and transition contexts into RNN, CA-RNN pro-
posed by Liu et al. [18] performs better than RNN, indicating
the importance of input context on the prediction of next
locations.

TABLE 4. F1-score in dataset from Gowalla

Fig. 4 shows the precision, recall and NDCG achieved
on the Gowalla dataset, and the corresponding F1-score val-
ues are shown in Table 4. We observe that the proposed
MCI-DNN performed consistently better than all the baseline
approaches. From Table 4, we can observe about 63.62%
improvements in terms of F1-score@10 for MCI-DNN
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TABLE 5. Performance comprise of MCI-DNN variants using datasets from foursquare and Gowalla.

over CA-RNN. In addition, we observe that our model
performed better on Gowalla than Foursquare in precision,
recall, and F1-score and NDCG. The reason lies in the
fact that each user’s check-in data size in Gowalla is larger
than Foursquare. As shown in Table 2, the average check-
ins per user in Gowalla is about 65% and 15% larger than
Foursquare (NYC) and Foursquare (TKY) dataset, which
enable the model to capture users’ preferences more accu-
rately. Therefore, it is reasonable for the better performance
of MCI-DNN on Gowalla dataset than Foursquare dataset.

The improvements in precision, recall, F1-score, and
NDCG for the proposed MCI-DNN can be ascribed to the
following reasons. Firstly, an MCI-DNN model with mul-
tiple elements was utilized in each hidden layer to capture
the influence of sequence contexts. This is different from
conventional RNN where only one element was considered.
Visiting behaviors of a user are usually related to a series of
related activities in a short time, making that the previous
check-in behaviors have close connections to current and
future decision [6], [9], [41]. Therefore, the performance of
predicting next locations is significantly improved by con-
sidering sequence contexts. We will report the experimental
results in Section 5.2. Secondly, the interaction of differ-
ent kinds of input context was considered in our model,
and the embedding representation technology was adopted
to avoid the data sparsity of input contexts. Although
CA-RNN models different kinds of input contexts using
context-specific projection matrices, it fails to capture the
interaction of different kinds of input contexts. Thirdly, user
preferences were considered to enhance the performance of
next location prediction. In Table 5, MCI-DNN∗ is the vari-
ant of MCI-DNN in which user preferences were not taken
into account. We observe that we achieved about 16.43%
improvement on average in term of recall@5 and 41.2%
improvement on average in term of precision@5.

B. PARAMETER SENSITIVITY ANALYSIS
In this experiment, we investigated the impact of the window
width and the dimension of the hidden layer on the perfor-
mance of the proposed MCI-DNN using the Foursquare and
Gowalla datasets.

Tables 6 and 7 depict the influences of window width
n on the prediction accuracy for the Foursquare dataset.

TABLE 6. Impact of window width on the performance of MCI-DNN using
foursquare (NYC).

TABLE 7. Impact of window width on the performance of MCI-DNN using
foursquare (TKY).

Note that results regarding the Gowalla dataset are similar
to those regarding the Foursquare dataset, and thus are not
presented here. The parameter n being set to 1 only means
that the current element was considered as input to RNN.
We observe that with the increase of window width in two
datasets, the performance improves significantly. The smaller
window width results in a worse performance. In this case,
only a few previous behaviors were considered. In contrast,
the larger window width results in better performance. This
is attributable to the fact that most of the successive check-
ins occurred within a short period, such as two hours. Hence,
the result is consistent with the finding in [9], which reported
that almost 40% and 48% successive check-ins occurred
within two hours in Foursquare and Gowalla respectively.

By setting window width n as 9, we further studied the
impact of D on the prediction accuracy using the Foursquare
and Gowalla datasets. Fig. 5 shows the result of F1-score
values with the variation of D from 5 to 40 (with the interval
of 5). The result shows that with the increase of D in three
datasets, the F1-score values become higher, indicating better
performance. However, when D was higher than 35, lower
F1-score values were obtained in Foursquare (NYC) and
Foursquare (TKY) datasets illustrated in Figs. 5(a) and 5(b).
This phenomenon implies that overfitting may occur when

VOLUME 6, 2018 21987



J. Liao et al.: MCI-DNN for Next Location Prediction

FIGURE 5. Impact of Dimension of Hidden Layer on the performance of MCI-DNN at different predicted location number using the Datasets
from (a) Foursquare (NYC), (b) Foursquare (TKY) and (c) Gowalla.

FIGURE 6. Convergence curves of F1-Score using MCI-DNN at different predicted location numbers using the dataset (a) Foursquare (NYC),
(b) Foursquare (TKY), (c) Gowalla.

D is very large. Moreover, for the Gowalla dataset, F1-score
changed smoothly when D was larger than 35, but the trend
of F1-score was not obvious. Then, according to the curves,
the best dimension size can be set to 30, 35, and 40 for
Foursquare (NYC), Foursquare (TKY), and Gowalla,
respectively.

C. EFFICIENCY ANALYSIS
We further investigated the computational time and the con-
vergence of the learning progress of the proposed method.
Fig.6 illustrates the convergence curves of F1-score that
were obtained by using the proposed method on three
datasets. Results show that MCI-DNN converged in a rela-
tively small number of iterations. For the Foursquare (NYC)
dataset, the learning process converged in about 30 iterations,
while the learning process converged in about 35 iterations
on the Foursquare (TKY) and 45 on the Gowalla dataset.
This is because the average check-in number per user for the
Foursquare (NYC) is smaller than the Foursquare (TKY) and
the Gowalla dataset.

The results of computational efficiency in each iteration
are shown in Table 8. The computation time was measured
in seconds. We observe that all these methods had rela-
tively short training time. Although the computation time
of MCI-DNN is longer than RNN and CA-RNN, the

TABLE 8. Comparing of computation time.

computation time of MCI-DNN with a significant perfor-
mance improvement is still acceptable.

VI. CONCLUSION
We have presented an integrated analysis of the joint effect
of multiple factors, i.e., sequence context, input contexts, and
user preferences, on the process of a user’s decision to the
next location. We have also developed an effective Multi-
Context IntegratedDeepNeural NetworkModel (MCI-DNN)
to improve the accuracy of next location prediction. The pre-
diction results by two datasets from Foursquare and Gowalla
demonstrate the significant joint influence of sequence con-
text and the interaction of different kinds of input contexts
on the user’s decision to the next locations. The average
improvement in term of F1-score@5 was about 57.12% for
Foursquare and 76.4% for Gowalla. The model developed
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herein performed better than the state-of-the-art approaches
in view of prediction accuracy and stability. The proposed
method shows significant potential for next location pre-
dictions in several applications where sequence context and
input context characteristics exist, such as a recommendation
system, advertising delivery, traffic jams forecasting, urban
planning and so on.
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