
Received February 8, 2018, accepted April 3, 2018, date of publication April 17, 2018, date of current version May 24, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2825397

A Generative Model for OCT Retinal Layer
Segmentation by Groupwise Curve Alignment
WENJUN DUAN 1, YUANJIE ZHENG2,3,4, YANHUI DING1, SUJUAN HOU1, YUFANG TANG5,
YAN XU5, MAOLING QIN1, JIANFENG WU6, DINGGANG SHEN7,8, AND HONGSHENG BI9
1School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
2Key Laboratory of Intelligent Computing and Information Security, School of Information Science and Engineering, University of Shandong , Jinan 250100,
China
3Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Institute of Biomedical Sciences, Shandong Normal University,
Jinan 250014, China
4Key Laboratory of Intelligent Information Processing, Shandong Normal University, Jinan 250014, China
5School of communication, Shandong Normal University, Jinan 250014, China
6School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
7Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
8Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea
9Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250355, China

Corresponding author: Yuanjie Zheng (zhengyuanjie@gmail.com)

This work was supported in part by the Natural Science Foundation of China under Grant 61572300 and Grant 61702313, in part by the
Natural Science Foundation of Shandong Province, China, under Grant ZR2014FM001 and Grant ZR2016FQ20, in part by the Taishan
Scholar Program of Shandong Province, China, under Grant TSHW201502038, in part by the Primary Research and Development Plan of
Shandong Province under Grant 2017GGX10112, in part by the Postdoctoral Science Foundation of China under Grant 2017M612338, and
in part by the Shandong Science and Technology Plan Project under Grant J17KB177.

ABSTRACT Retinal layer segmentation from optical coherence tomography (OCT) is of fundamental
importance for measuring retinal layer thicknesses. These thickness measurements have been shown to
correlate well with the severity of different ocular diseases; hence, they provide useful diagnostic information
concerning diseases.Manual segmentation of retinal layers fromOCT remains dominant in ophthalmological
clinical practice but has serious drawbacks: it is time consuming, labor intensive, and results in inter/intra-
rater variations. Computer aided segmentation has attracted intensive research attention because it holds the
potential not only to provide repeatable, quantitative, and objective results but also to reduce the time and
effort required to delineate the retinal layers. However, most of the existing computer based retinal layer
segmentation techniques focus on segmenting specific layers by exploring their unique characteristics; thus,
they can fail to segment a retinal layer that is totally different. In this paper, we propose a generative retinal
layer segmentationmethod based on groupwise curve alignment that combines the capabilities of segmenting
different retinal layers into a unified framework. This method is unique for both its accuracy and its ability
to segment any retinal layer without any special modifications. We experimentally validate that the proposed
method outperforms a representative state-of-the-art technique by using images of both normal healthy eyes
and diseased eyes. Our method is potentially useful in a large variety of practical applications involving
retinal layer segmentation from OCT.

INDEX TERMS Optical coherence tomography (OCT), retinal layer segmentation, dynamic time warping,
joint curve matching.

I. INTRODUCTION
Optical coherence tomography (OCT) enables micrometer-
resolution retinal imaging—both at the optic nerve head
and the macula—and has become an established imaging
modality in ophthalmology. Retinal layer segmentation from
OCT is of fundamental importance for measuring retinal
layer thicknesses, a measurement that correlates well with

the severity of different ocular diseases and, hence, provides
useful diagnostic information concerning possible diseases.
Manual segmentation of retinal layers from OCT remains
dominant in ophthalmological clinical practice but has seri-
ous drawbacks: it is time consuming, labor intensive and
results in inter/intra-rater variations. Computer aided segmen-
tation has attracted intensive research attention because it
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holds the potential not only to provide repeatable, quantitative
and objective results but also to reduce the time and effort
required to delineate the retinal layers.

Until now, published and available computer based reti-
nal layer segmentation techniques fall into two groups,
either fully automated or human intervention. With a fully-
automated method, computer algorithm determines the spe-
cific interfaces with no human supervision. Most of these
techniques focus on segmenting desired retinal layers by
exploring their unique photometric or geometric charac-
teristics within a layer area or at layer boundaries via
intensity-variation measurement [1], pixel classification [2],
Markov boundary modeling [3], edge detection [4], texture
and shape analysis [5], machine learning techniques [2]
image registration [6], and so on. Among these techniques,
the graph-theory based segmentation approaches [7] have
been successful in variousmedical image segmentation appli-
cations, and they are superior to the classic shortest path
algorithms [8]–[13]. However, most of these methods can
deteriorate and produce limited accuracy for real retinal
images that have low contrast between layers and severe
retinal deformities [14]–[16].

Human intervention is required to initiate or refine the
segmentation result, which usually requires the experts to
place seed points and the computer interpolating the layers
via point-fitting algorithms [17]. The interactive methods
usually need human to add or delete seed points until the algo-
rithm adequately demarcated the layer [18]. While the gross
errors of interface mis-detection frequented in the automated
techniques are avoided, the manual methods usually time-
consuming and subjective [19], and generally yield higher
inter-grader variability. Additionally, without special techni-
cal re-design or experimental re-training (for classification-
based approaches) most existing computer-based retinal layer
segmentation approaches fail to segment totally different reti-
nal layers or even the same retinal layers but from different
species (e.g., human vs canine [20]). Such limitations confine
the application of the related techniques to a very specific
domain.

To overcome the limitations of the existing techniques for
segmenting retinal layers from OCT, we propose a generative
retinal layer segmentation method based on groupwise curve
alignment. This method is unique both for its accuracy in
retinal layer segmentation and for its ability to segment any
retinal layer without any special modifications. Specifically,
we treat the profile formed by the OCT image intensities
along each A-scan as a curve and align the curves from the
different A-scans in a groupwise manner. The spatial corre-
spondences between the curves obtained from the groupwise
curve alignment process offer information that can determine
a retinal layer boundary when any boundary point is manually
specified. The proposed model first applies pairwise curve
matching to establish initial maps between the curves points.
Additionally, in order to ensure the accuracy of the synthesis
results, we applies a groupwise matching process that solves
a constrained optimization problem [21], [22] by taking

advantage of all the pairwise maps to generate a set of opti-
mized maps.

The main contributions of this paper are as follows.

(1) We present an early work on semi-automated segmen-
tation of retinal layers from OCT that can delineate the
boundaries of any retinal layer after a single boundary
point is manually specified.

(2) We propose an alternative strategy for retinal layer seg-
mentation from OCT that involves a groupwise curve
alignment. This strategy avoids the drawbacks of the
current most popular method for examining the special
characteristics of retinal layer’s area/boundary.

(3) We propose a powerful segmentation tool derived
from the groupwise curve alignment that provides
an opportunity to correct the errors in pairwise
maps using a constrained combinatorial optimization
process.

(4) Our framework of multilayer segmentation can seg-
ment any stratified structure appearing in the OCT
image without any special technical re-design or exper-
imental re-training.

The remainder of this paper is organized as follows:
Section 2 discusses existing works related to curve align-
ment. Section 3 provides a detailed description of the pro-
posed model. Section 4 presents our experimental results and
discussions, and Section 5 concludes this paper and gives
directions for future work.

II. RELATED WORK
A. CLASSICAL WORKS ON DTW
Dynamic time warping (DTW) [23] is an essential point-to-
point matching algorithm, which provides a solution to the
global optimal alignment path (as illustrated in Figure 1).
DTW has been widely adopted in a variety of applications
such as speech processing [24], humanmotion alignment [25]
and time series classifications [26]–[28].

At present, several variants of DTW exist that were
designed sequentially. For example, derivative dynamic time
warping (dDTW) [29] takes the first-order derivatives of
sequences into account when calculating the distance matrix,
and then selects the intuitively correct feature for feature
alignment by DTW between two time series. Weighted
DTW [30] differs from dDTW; it is a penalty based DTW that
utilizes the phase difference between two points to compute
a similarity matrix. Theoretically, these approaches improve
the accuracy of the results and achieve computational effi-
ciency in different ways, but their measurements of the simi-
larity between two points depends solely on their single-point
y-values.

Some other algorithms have been proposed to find the
warping more efficiently based on various constraints. Most
of these algorithms do not compute the full accumulative
distance matrix between two sequences. For instance, [31]
employs compulsive band constraints on the potential warp-
ing path to increase the computational efficiency of dynamic
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FIGURE 1. Example of pairwise A-line alignment by DTW. From left to right: the original gray curves from two different A-lines;
the blue and red colors indicate DTW-aligned local structures.

time warping. Similarly, [24] introduces global warping path
constraints to improve the efficiency and prevent pathological
warping. The authors utilize series local structure information
to constrain the search of the warping path. In detail, they
first respectively detect andmatch feature points using a SIFT
feature point detector and descriptor; then, they regularize the
scope of the warping path according to the matched point
pairs.

The algorithm used in our model, shapeDTW [32], is
different from the above studies in that the pairwise point
distances are encoded by the similarities between their local
neighborhoods. Specifically, the major objective of this study
is to improve the accuracy of the results by employing
descriptors to express the spatial position and structure infor-
mation of each point. Based on these ideas, shapeDTW
was developed to align series sequences that may be locally
deformed by stretching, shifting and contractions, but for
which better alignments can be achieved. In our case, gray-
scale waveforms of everyA-scan from oneOCT retinal image
are determined by the structural information of biological
tissues. Concretely, two sets of points from their correspond-
ing A-scans that have extremely similar structures can be
matched by shapeDTW under a condition in which the thick-
nesses of the identical tissues from different locations are
likely to exhibit inhomogeneity.

B. EXISTING RESEARCH ON JOINT MATCHING
In the last few years, joint object matching has become an
emerging topic that utilizes the cycle-consistency criterion
to prune outliers. This algorithm has also become a funda-
mental algorithm in computer vision because it has numer-
ous applications such as finding correspondences across a

set of images [21], determining non-rigid structures from
motion [33], [34], and solving jigsaw puzzles [35]. Moreover,
joint matching can also find consistent relations from given
pairwise matches, which are often very noisy and contain
many false and missing matches [36].

Many off-the-shelf joint matching algorithms [37], [38]
aim at obtaining consistent shape maps from a large collec-
tion of similar relations. These consistency based approaches
usually comprise two steps. First, a pairwise object-matching
method is devised to estimate the computed correspondence
between overall pairs of objects. Then, a spectrum smoothing
technique [39] is employed to maximize the pairwise fea-
ture affinities and cycle consistency across multiple images.
Specifically, Pachauri et al. [37] focused on the ‘‘permu-
tation synchronization’’ problem, which employs spectral
techniques via eigenvector decomposition to create the ini-
tial all-pairwise matching solutions and generates a set of
optimized maps. But the program assumes that the matching
matrices over all object pairs are corrupted by Gaussian-
Wigner noise. Chen et al. [40] aggregated information from
a collection of objects with partial similarities to improve
the densely corrupted correspondences between map pairs.
This method relies on the assumption that the underlying
rank of the variable matrix can be reliably estimated [21],
and it solves the tractable convex programming problem
using a metabolic first-order Alternating Direction Method
ofMultipliers (ADMM).More recently, the problem has been
formulated as one of finding the closest positive semidefinite
matrix to an input matrix that stores the overall pairwise
maps [22], [36]. This family of methods is based on the
observation that the constraint of cycle-consistency can be
mapped to the low-rank and positive semidefinite matrices
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of an initial input matrix. However, the computational effi-
ciency of the semidefinite approach limits its use in real
applications [21].

In contrast to the previously describedmethods, we employ
a global optimization-based approach [21] to identify
true or false pairwise matches by checking all the cycles in
the curve collection. This method formulates the problem as a
low-rank recovery problem that can spontaneously fulfill the
desired semidefiniteness of a solution and, simultaneously,
derive a fast alternating minimization algorithm to optimize
thousands of points. Our experimental results show that this
method has extremely good performance, and it has good
results in optimizing the curve alignments of each A-scan
from one OCT retinal image.

III. PROPOSED APPROACH
This section introduces our generalized method for seg-
menting the layered structures of retina from OCT volumes.
Here, we assume that each scan of OCT retinal volumes has
n A-scans, each of which contains m pixels, and that a
correspondence exists between the points in any pair of
curves for all A-scans. For each scan, the framework of
our generative semi-automatic segmentation strategy is as
follows:
(1) First, each pixel is represented by a slope descrip-

tor. Specifically, each original real-valued sequence
fα = [x1, x2, x3, . . . , xm]T , α ∈

{
1, n

}
, is converted

to a sequence of slope descriptors, denoted as Dα =
[d1, d2, d3, . . . , dm]T ,D ∈ Rm×s.

(2) Second, the transformed multivariate descriptor
sequences, D, are aligned by DTW. Finally, the align-
ment path between the descriptor sequences is trans-
ferred to the original A-scan intensity sequences to
form binary correspondence matrices (Li,j)α,β . Then,
the pairwise matches between the points of all curves
are encoded by a large binary matrix L ∈

{
0, 1

}nm×nm.
(3) Third, we apply the global optimization-based

approach to improve the pairwise correspondence
results L by pruning false matches and outputting the
results with higher correspondences X ∈

{
0, 1

}nm×nm.
(4) Finally, the spatial correspondences between the pair-

wise curves obtained from the curve alignment pro-
cess offer information for determining the retinal layer
boundary when any single boundary point is manually
specified.

A. DESCRIPTOR
The intensity inhomogeneity in the OCT image often leads
to a y-shift. Concretely, the same tissue in different positions
may have exactly the same shape in the A-scan series, but a y-
shift exists between them. Therefore, we use the multidimen-
sional slope descriptor to represent the subsequences. Then,
we provide the implementation details of the subsequence
descriptor computation at each point.

Let the intensity from an A-scan be denoted by fα , and
the gray level sequence be obtained from individual A-scans.

We build a subsequence pi constituted by the nearest l points
from xi. Next, we divide the subsequence pi into s equal-
square overlapping or non-overlapping intervals; the dimen-
sion of each interval should be smaller than the length of the
subsequence l. In our task, referring to the results of recent
work, we empirically set l = 20 and s = 4. With respect
to each interval, we adopt the total least square (TLS) line
fitting algorithm [41] to fit a line based on the points that
fall within each interval. Finally, we obtain an s-dimensional
vector descriptor by incorporating the slopes of the fitted
lines from all the intervals to describe the point xi, i.e., di =
fslope (pi) [32].

B. DYNAMIC TIME WARPING
For each possible input curve combination (α, β), dynamic
timewarping can introduce a pairwisematchingmatrix Lαβ ∈
Rm×m that recovers the optimal alignments between two sets
of points from their corresponding A-scan series.

Here, we single out a sample to reveal the computational
process of dynamic time warping. The alignment of two
descriptor subsequences Dα = [d1, d2, . . . , dm] ∈ Rs×m and
Dβ = [t1, t2, . . . , tm] ∈ Rs×m is optimal in the sense that it
minimizes a cumulative distance measure consisting of local
distances [42]. To make the simulations generic, we construct
a sum-of-squares cost function:

Jdtw(P) = min
k∑

r=1

‖dpxr − tpyr ‖
2. (1)

In Eq. (1), P is a correspondence matrix that stores a pair
of path vectors P =

[
pα, pβ

]T
∈ R2×k, where pα and pβ

represent the corresponding indexes of the descriptors in the
sequence, respectively. The parameter k represents the num-
ber of steps needed to align the descriptor series. Therefore,

Pt =
[
pαt , p

β
t

]T
= [i, j]T when the ith descriptor in Dα and

the jth descriptor in Dβ are aligned.
Then, the goal is to find the path associated with the

least cost. The least cost problem can be solved effectively
by dynamic programming [43]. To make the optimization
tractable, as emphasized in previous work, we construct the
following three constraints:

1) Boundary condition: A warping path is a concatenation
of nodes starting from node (1, 1) and ending with node
(m,m). Specifically, all the warping paths start from the
step P1 = [1, 1]T and end at the step Pk = [m,m]T .

2) Monotonicity: pr1 − pr2 ≤ 0, if r1 ≤ r2.
3) Continuity: Pr − Pr−1 ∈

{
[0, 1]T , [1, 0]T , [1, 1]T

}
.

Finally, the iteration-dependent function is defined as fol-
lows:

L∗ (Pr ) = min
w(Pr )
‖dpαr − tpβr ‖

2
+ L∗(Pr+1). (2)

Eq. (2) can be solved in (O (m× m)) time by Bell-
man’s equation. In this section, the objective cost func-
tion L∗ (Pr ) denotes the remaining cost starting at the r th

step to be incurred following the optimum policy w, where
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w :
{
1 : m

}
×
{
1 : m

}
7→

{
[0, 1]T , [1, 0]T , [1, 1]T

}
denotes

the allowed transition between consecutive steps, i.e., pt+1 =
pt + w(pt ). Fig. 2 shows an alignment path resulting from
aligning two series using DTW.

FIGURE 2. An example of two curve alignment paths. Samples: the curves
to be matched. Amp: the amplitude of curve.

The pairwise matching binary matrix Lαβ can be con-
structed by the correspondence matrix P from the starting
point. For instance, the (ith, jth) element in this matrix is

1 when
[
pαt , p

β
t

]T
= [i, j]T . The process of descriptor align-

ment leads to a set of
(
Li,j
)
α,β

, which is formulated as a
concatenated matrix:

L =

 L1,1 L1,2 . . . L1,n
...

...
. . .

...

Ln,1 Ln,2 . . . Ln,n


where Lα,β = 1 if α is equal to β.

C. JOINT CURVE MATCHING
In the following, we describe our constrained optimization
formulation in a basic setting, where the input is the corre-
spondences, L, and the output consists of cycle consistent
correspondences X =

{
Xα,β : fα 7→ fβ , 1 ≤ α, β ≤ n

}
between the input curves. The cycle consistency and joint
matching via fast alternating minimization are introduced as
follows.

1) CYCLE CONSISTENCY
Recently, there has been growing interest in jointly matching
many shapes [44]–[46], using the constraint of cycle consis-
tency [22], [37], [40], [47]. Before introducing the proposed
method, we first provide a brief introduction to the cycle
consistency model, under which the joint matching capability
is the easiest to interpret.

Consider a collection of n curves, each containingm points.
Moreover, suppose that a correspondence exists between the
points in any pair of curves (fα, fβ ). Mathematically, one
can consider the ground truth as each point x id in fα having
one or more natural counterparts x jt in fβ . We say that the
system of correspondences for any three curves (α, β, γ ) is
consistent if x id ∼ x jt and x

j
t ∼ xoq together imply that x id ∼ xoq ,

where xoq in fγ . Consequently, the cycle consistency can be

described by Xα,γ = Xα,βXβ,γ . This framework can also be
extended to cases involving more objects.

The results of the present work [22], [37] reveal that the
cycle consistency can be expressed more concisely by giv-
ing a virtual reference ordering (named ‘‘universe’’) that is
defined as the set of unique descriptors d1, d2, d3, . . . , dz that
appear in the curve descriptor collection. Each element in
this ordering is contained in at least one object fα . The true
point mapping between a curve and the universe ordering
can be encoded as Aα ∈

{
0, 1

}m×z, where z is the number
of descriptors in the universe ordering. Then, the ground-
truth correspondences between the αth and βth curves can
be represented by Xα,β = AαATβ ∈

{
0, 1

}m×m. As map
matrices, Xα,β should satisfy the following double stochastic
constraints:

0 ≤ Xαβ1 ≤ 1, 0 ≤ XTαβ1 ≤ 1. (3)

We use a block matrix X ∈
{
0, 1

}N×N where N = nm
to encode the entire collection of partial correspondences
X =

{
Xα,β : fα 7→ fβ , 1 ≤ α, β ≤ n

}
. Supposing that all

the Aαs are concatenated as rows in a matrix A ∈
{
0, 1

}N×z,
the ground-truth correspondence over all the points can be
denoted as follows:

X =

 X1,1 X1,2 . . . X1,n
...

...
. . .

...

Xn,1 Xn,2 . . . Xn,n

 = AAT . (4)

Following the standard Eq.(4), it is easy to see that a desired
X should be both positive semidefinite and low-rank:

X ≥ 0, rank(X ) ≤ z. (5)

As Eq. (5) clearly shows, the consistency can be effec-
tively imposed without checking every cycle of the pairwise
matches. Furthermore, due to the bijection hypothesis (i.e.,
Xα,γ = Xα,βXβ,γ ), partial matching is allowed.

2) JOINT MATCHING VIA RANK MINIMIZATION
The provided pairwise matches over the points in two curves
are encoded by L ∈ Rnm×nm, which is a noisy version
of AAT . The joint matching concerns the recovery of the
globally consistent matches, X . Instead of using semidefinite
programming relaxation, we formulate the problem as a low-
rank matrix recovery problem and employ the nuclear-norm
relaxation approach for rank minimization.

To make the optimization tractable, we perform the follow-
ing two modifications to X . (1) We replace the binary matrix
X by a real matrixX ∈ [0, 1]nm×nm. This approach is practical
when solving matching problems; it constrains the values
of X to the range [0, 1]. Both theoretical and experimental
results prove that the solution values in X are much closer to
0 or 1. (2) We maintain the rank of X as the sum of singular
values. The nuclear norm ||X ||∗ is a tight convex relaxation
that has been shown to be extremely effective in multifarious
low-rank problems.
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Moreover, concerning the doubly sub-stochastic con-
straints in Eq. (3), we propose three additional constraints:
(1) Self-matching is treated as an identity matrix:

Xαα = Im×m, 1 ≤ α ≤ n. (6)

(2) X must be a symmetric matrix:

Xαβ = XTβα, 1 ≤ α, β ≤ n.α 6= β. (7)

(3) The values in X are within [0,1]:

0 ≤ X ≤ 1. (8)

To guarantee that the recovery is close to the real map,
one alternative measure is to maximize the correspondence
agreement between Xαβ and Lαβ for any pair of curves.
Inspired by these works, we propose the following formula-
tion:

∑n
α=1

∑n
β=1 < Lαβ ,Xαβ >. Furthermore, to induce

the sparsity, we propose an objective function, η < 1,X >,
that minimizes the sum of values in X , where η represents a
regularization parameter that balances the agreement to the
sparsity structure. Experimentally, we set η = 0.5 in our
task. As mentioned before, the rank of X is replaced by the
weighted nuclear norm λ||X ||∗. All three terms lead to our
cost function [21]:

F(X ) = −
n∑
α=1

n∑
β=1

< Lαβ ,Xαβ > +η < 1,X > +λ||X ||∗

(9)

where < ., . >denotes the inner product. For computational
simplicity, the form η1 − L is replaced by Z ; consequently,
we obtain the following optimization function:

min
X
< Z ,X > +λ||X ||∗ s.t. X ∈ 0, (10)

where 0 denotes the set of matrices satisfying the constraints
of Eqs. (6)–(8).

With regard to the state-of-the-art methods in [25],
the result does not degrade noticeably when removing the
positive semidefinite constraint and the doubly stochastic
constraint. This result might be attributable to the existence
of the sparsity regularization η < 1,X >. The positive
semidefinite constraint has been ignored for the following
reasons: (1) The constraints of X self-matching are identity
and symmetric. (2) The solution to Eq. (10) turns out to be
nearly positive semidefinite. (3) When λ is sufficiently large,
the negative values of a matrix, if they exist, are negligible
compared to the norm of the matrix. Based on our experimen-
tal observations and referring to the results of recent work,
we set λ = 80.

Most advanced off-the-shelf methods such as alternating
direction methods of multipliers (ADMM) [48] or the proxi-
mal method [49] used to solve the nuclear normminimization
in Eq.(10) are typically based on iterative singular value
thresholding [50], which must be performed in each iteration.
However, this approach is extremely computationally expen-
sive even for medium-sized problems. For practical applica-
tions, recent works on low-rank optimization [51] attempt to

solve the problem more efficiently via a change of variables
X = ABT , where A,B ∈ RN×u are new variables with a
smaller dimension, u < N .

In Eq. (10), ||X ||∗ is defined as below

||X ||∗ = min
A,B

1
2
(||A||2F + ||B||

2
F ), (11)

and Eq. (10) becomes

min
X ,A,B

< Z ,X >+
λ

2
||A||2F+

λ

2
||B||2F s.t. X = ABT ,X ∈0

(12)

which can be minimized by ADMM as detailed in [21].

D. DEALING WITH 3D DATA
The above processes of our framework account for a segmen-
tation of retinal layers in 2D image. It can be extended to vol-
umetric segmentation with a series of tricks as demonstrated
in Fig.3 and detailed below:
(1) Expert used the computer mouse to place the seed point

at a desired OCT layer of first B-scan of the volume,
the marked image as a reference image, and coordinate
of the point is (x, y) (the point at the top left is (0, 0)).
We employ the marked B-scan as a reference image.

(2) We first detect the yth column on each B-scan. We then
apply the dynamic time warping algorithm described
in III to establish maps between each pair of curves
successively. Now that we have obtained the points
from each of the remaining B-scan corresponding to
the seed point.

(3) Then the computer automatically interpolated the layer
based on the optimized maps X . The spatial corre-
spondences between the A-scans obtained from the
groupwise curve alignment process offer information
for determining a retinal layer boundary when a seed
point is manually specified. The strategy used for sur-
face from the remaining B-scans were same as those
used in the reference image.

(4) In order to make the detected interface smooth, we fit a
cubic spline surface based on the points extracted from
each A-scan via the group-wise alignment process.

IV. EXPERIMENTS
A. IMAGE DATA
Data from the eyes of 54 subjects were obtained with a Hei-
delberg Spectralis OCT system, and each volume contained
908 × 50 × 408 voxels centered on the fovea and recorded
a 6 × 6 × 2 mm3. Of the 54 subjects, 27 were diagnosed
with posterior detachment of vitreous, 18 were diagnosed
with pigment epithelium uplift and neuroepithelium effusion,
while the remaining 9 were health controls. We split the data
into two groups, dataset1 contains 9 volumes acquired from
the retinas of normal healthy eyes, and dataset2 consists of 45
3-D OCT volumes acquired from the diseased eyes.

The ground truth slices showing the marked layer inter-
faces were created by two trained ophthalmologists using
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FIGURE 3. (a) Example OCT cube. (b) Example B-scan within the cube, formed by a series of A-scans at each horizontal location. The
red point in the red circle is a hand-marked seed point. (c) Seed points of the unmarked slices are obtained by aligning group-wisely
the marked A-scan and the corresponding A-scans in unmarked slices.

Adobe Photoshop. All experiments demonstrate that our
method is unique for its accuracy not only for retinal layer
segmentation but for any layered structure, such as a choroid.

B. IMAGE PREPROCESSING
The OCT retinal layer imaging technique generates a cross-
sectional image by recording the axial reflectance profiles
while the transverse position of the optical beam on the
sample is scanned. Thus, an OCT image is a map of the
reflectivity of the sample. The principle of optical imagery
leads to the fact that OCT images contain speckle noise and
gray-intensity inhomogeneities. Intensity normalization can
cause the intensity values observed in a particular tissue type
to be approximately the same within an image and across
populations of images. Just as in most current OCT retinal
layer segmentation algorithms, in our algorithm it is also
important that the gray intensity values of the image are
consistent. To reduce the effect of speckle noise, many current
studies employ a preprocessing strategy such as a median
filter [3], [52], mean filter [1], diffusion filter [13],
[16], or directional filter [53]. Then, because the edge sharp-
ness is affected by the de-noising procedure, the subsequent
segmentation performance is also reduced. In addition, most
of the previous algorithms do not consider the intensity inho-
mogeneity in the OCT imaging process, and this neglect can
also lead to inaccurate segmentation and an inability to detect
all the layers.

Thus, as a coarse de-noising preprocessing step, an aver-
aging filter with a size of 25 pixels was first applied to each
image. Then, to address the intensity inconsistency issues,
which is necessary to enhance the contrast between the differ-
ent layers, we rescaled the contrast of the images by setting
the intensity values smaller than Pm to 0, while those pixels
with intensity values larger than Pm are set to unity. The
threshold Pm was found by calculating the median of the

corresponding A-scan and interpreted as a robust maximum
of the data. This preprocessing maintains the overall intensity
values and edge information while simultaneously removing
the hyperintense reflections found at the surface of the retina
in the B-scan. An example result of this normalization step is
shown in Fig. 4(b).

C. EXPERIMENTAL ENVIRONMENT AND ASSESSMENT
The experiments implemented the proposed algorithm in
MATLAB, and the two data sets were processed on a com-
puter with 8 GB of RAM and a CORE i5 CPU @ 3.30 GHz.
For comparison, the average positioning of two independent
observers were treated as the reference standard in our eval-
uation. The mean signed and unsigned positioning errors
for the ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL,
ONL/OLM, ISP, OSP/RPE, RPE/BRC, CHR/SCL and patho-
logical structure boundaries were computed.

This paper developed a generative model to segment
OCT images of human retinal layers, and demonstrated the
algorithm’s excellent performance. We compared our semi-
automated results against the reference standard by com-
puting the mean and standard deviation (shortest distance
of a point on an algorithm-produced border to a manually-
specified border) of the unsigned and signed retinal layer
positioning errors. Fig. 5 shows the samples of the intera-
retinal boundaries found by the manual and the proposed
methods. As a baseline comparison, we also performed the
same evaluation using a graph-based multi-surface segmen-
tation method. This approach was similar to the techniques
proposed in [11] and has been shown to produce highly
accurate segmentations of retinal layers in macular OCT
images of patients. Nevertheless, for comparison, we devised
our approach to find all retinal boundaries in our 2 datasets.
No feature extraction step was used to improve the exper-
imental results; instead, a single program groupwise curve
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FIGURE 4. (a) Original OCT image. (b) After intensity normalization.

FIGURE 5. Example slices from the OCT volumes of healthy eyes. (a) manual segmentation results; (b) proposed method.

TABLE 1. Summary of mean unsigned retinal layer positioning errors for dataset1.

alignment was performed. Fig. 6 illustrates the segmented
lesion surfaces on three slices of disease volumes. For
our method and the graph-based multi-surface segmentation
method, the mean and standard deviation of the unsigned and
signed retinal layer positioning errors of all B-scans were
computed as listed in Tables 1–4.

D. DISCUSSION
The experimental results show that our framework can accu-
rately segment all the layers—even when their small size and
similar textures make the retinal layers difficult to distinguish

visually. The proposed method produced segmentations of
the retina layers that aligned well with the reference stan-
dard, even though the B-scans in dataset1 are cross-sectional
slices centered on the fovea. Thus, our approach is robust to
fovea, which may have allowed the retinal images containing
pathological structures to be segmented by this algorithm.
While the conclusion is indirect, the result is promising
considering that many retinal pathological structures have
a slight similarity to fovea, such as layered structures that
are inconspicuous. Simultaneously, the experimental results
on dataset2 illustrate that our generative retinal layer seg-
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FIGURE 6. Example slices from the OCT volumes of diseased eyes. The left column shows the original OCT cross-sectional scans.
The right column shows the segmentation results of all layer interfaces on each cross-sectional of diseased retina by our
segmentation method.

TABLE 2. Summary of mean signed retinal layer positioning errors for dataset1.
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TABLE 3. Summary of mean unsigned retinal layer positioning errors for
dataset2.

TABLE 4. Summary of mean signed retinal layer positioning errors for
dataset2.

mentation method based on curve alignment is unique for
its accuracy in retinal layer segmentation and its ability to
segment any layer without any special modifications.

Tables 1 and 3 provide the results of the means and stan-
dard deviations (the shortest distance from a point on an
algorithm-produced border to a manually-specified border)
of the absolute retinal layer positioning errors between the
proposed algorithm and the reference standard. From the
results, we can see the following. (1) Most of the devia-
tions are smaller than those computed between the observers.
For example, the manual tracings of the two independent
observers differed in their segmentations of the total retina
by an average of 1.90 pixels, whereas our algorithm differed
from the ground truths by an average of 1.55 and 1.43 pixels
on two data sets, respectively. (2) The accuracy of the seg-
mentation results on each layer is consistent with the results
of artificial segmentation. Experimentally, we calculated that
the difference of the two manual segmentation results for
the CHR/SCL boundary on dataset2 is 7.56 pixels, which
is obviously greater than that of other layers. On the same
layer, the difference between the algorithm segmentation
result and the reference standard is 2.06 pixels. Similarly, this
result is worse than the means from other layers obtained by
the proposed algorithm. (3) Our method achieves an aver-
age thickness accuracy improvement of approximate 2 pix-
els compared to the graph-based multi-surface segmentation
technique over the layers of the full retina.

Table 2 and Table 4 list the results of the total signed sur-
face positioning errors between the proposed method and the

reference standard. The top rows of these tables show the seg-
mentation results of the pathologic region and the remaining
rows shows the segmented results of successive retinal layers.
As can be seen, the total signed surface positioning errors
between the artificial marks were respectively approximately
−1.84 and −0.67 pixels. These results indicate that manual
segmentation is a subjective process.

V. CONCLUSION AND FUTURE WORK
This paper introduced an early work on semi-automated seg-
mentation of retinal layers from OCT, which can delineate
the boundaries of any retinal layer when a single boundary
point is manually specified. The powerful segmentation tool
integrates segmentation, curve alignment, and joint matching
to comprehensively employ the image information derived
from each A-scan series. To evaluate the repeatability of
the proposed method, we compared the proposed solution
with segmentations performed manually by two independent
observers. The experimental results demonstrate the pro-
posed method’s promising results. The experiment validated
that our algorithm is unique for its accuracy in retinal layer
segmentation and ability to segment any layer without any
special modifications, and that it avoids the drawbacks of
the current most-popular method of examining the special
characteristics of the retinal layer’s area and boundary.

There are several open problems and directions that this
work can research deeply in this field. Next, we plan to
focus on automatically acquiring the pathological informa-
tion using the generative model and exploring its roles in
auxiliary diagnoses of retinal diseases.
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