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ABSTRACT In this paper, we study small hammock networks, more precisely the 29 hammock networks
presented by Moore and Shannon in their prescient paper from 1956, where this type of network was
introduced. We will first of all review the concept of the reliability polynomial, and define hammock
networks, and emphasize some of their properties. We will then review the state of the art from three different
angles: theoretical, algorithmic, and design oriented. These will show that results obtained over many years
advocate very strongly for the small hammock networks. Because array-based designs (e.g., FinFETs) seem
to be a perfect fit for small hammocks (as are nanoelectromechanical systems or NEMS), we have decided
to start investigating them closely. The analyses we pursue here are exact, the coefficients of the reliability
polynomials being determined using our own program. The reliability polynomials for non-trivial hammock
networks are reported here as functions of the probability (p) that the device is closed. As far as we know,
this is the first time they have appeared in this form. Our purpose in determining exact results is a practical
one, as we foresee that small hammock networks could play a key role in any array-based design. That
is why their reliability enhancements are evaluated thoroughly, using both classical and non-standard cost
functions. Finally, conclusions are followed by a longer list of future directions of research, some of them
practical while others more theoretical.

INDEX TERMS Hammock network, minimal network, network topology, redundancy, reliability,
two-terminal network.

I. INTRODUCTION
In [1] Moore and Shannon studied improvements in relia-
bility obtained by replacing a single unreliable two-contact
electromechanical relay (switching device) by a (redundant)
network of identical such relays, the network having two
distinguished contacts/terminals: an input or source S, and an
output or terminus T . Nowadays, themost common switching
device is a transistor, namely the complementary metal-
oxide-semiconductor (CMOS) transistors used in present-day
computers and portable devices. In this paper we shall stick
to the original description and notations with a few excep-
tions (which we will stress), while including in parentheses
CMOS interpretations. For the sake of argument, we will
assume that each relay in the network is a ‘‘break contact’’
(i.e., with a < c). In a ‘‘normally closed’’ relay, a is the

probability of a so-called ‘‘stick failure,’’ and 1−c is the prob-
ability of a so-called ‘‘miss failure.’’ By analogy with Science
and Medicine, if one regards the openness of the contacts of
a normally closed relay as a test for the coil being energized,
then 1 − a represents the ‘‘sensitivity’’ of the test (the ‘‘true
positive’’ rate) and c represents the ‘‘specificity’’ of the test
(the ‘‘true negative’’ rate). Note that the examples in [2] are
break contacts, whereas the example on page 194 of [1] is a
‘‘make contact’’ (i.e., with c < a). In a ‘‘normally closed’’
type relay (corresponding to a pMOS transistor), when the
coil (the gate of the transistor) is not energized (‘‘0’’ on
the gate of a pMOS transistor), current is supposed to be
able to flow between the two contacts, and when the coil is
energized (‘‘1’’ on the gate of a pMOS transistor), current is
supposed not to be able to flow between the two contacts.
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In a ‘‘normally open’’ type relay (corresponding to an nMOS
transistor), the opposite holds. Note that—unless they are
extremely unreliable—a normally closed relay will be a break
contact, and a normally open relay will be a make contact.
We will assume that the coils of all the relays in the network
are energized, or not energized, simultaneously (i.e., the gates
of all the transistors are tied together, as is common for
FinFETs). When the coils are energized, the contacts of
each relay remain closed with probability a, independently
of each other. When the coils are not energized, the contacts
of each relay remain closed with probability c, independently
of each other. By symmetry, we will omit the case of a make
contact, without loss of generality (i.e., we shall consider only
relays working like unreliable pMOS transistors). In the orig-
inal article, Moore and Shannon called such relays ‘‘crummy
relays.’’ Their goal was to design a two-terminal network N

of n crummy relays which, with probability greater than c,
admits a short-circuit between S and T when the coils are not
energized (‘‘0’’ on all the gates), and which, with probability
less than a, admits a short-circuit between S and T when the
coils are energized (‘‘1’’ on all the gates). Such a network
N behaves like a single break contact relay but with better a
and c values (i.e., a closer to 0 and c closer to 1 than for the
individual crummy relays). In other words, compared with a
single relay (pMOS transistor), such a networkN of crummy
relays is more reliably closed when it should be closed, and
more reliably open when it should be open.

We will represent the n crummy relays in the network N

by a sequence of independent identically distributed (i.i.d.)
random variables taking the values ‘‘closed’’ with probability
p and ‘‘open’’ with probability q = 1−p. Obviously, the state
(either ‘‘closed’’ or ‘‘open’’) of the network N is a Boolean
function of those random variables, and hence is itself a
random variable. Moreover, the probability that the network
N is closed is a function of p, which we will denote h (p), and
which is known as the reliability polynomial (of degree n).

Moore and Shannon proved that the curve y = h (p) can
cross the line y = p at no more than one particular p =
p0 ∈ (0, 1); see Fig. 1 (a). The ideal h (p) is a Heaviside
step function transitioning from 0 to 1 at p0, with p0 ∈
(a, c); see Fig. 1 (b). However, h (p) is a polynomial in p,
and can only approximate a step function. As an example,
the graphs in Fig. 1 (c) show better and better approximations
to the ideal.

Larger networks can be formed from two smaller networks
by connecting them in series or in parallel, or by composing
them (i.e., using one network as the basic element of the other
network). Moore and Shannon showed that the composition
of networks improves h (p), and if iterating composition with
itself i times we get in the limit

lim
i→∞

h(i) (p) =

 1 p > p0
p0 p = p0
0 p < p0,

(1)

i.e., the ideal Heaviside step function. In fact, the
graphs in Fig. 1 (c) include the first three iterated

compositions—i.e., h(1) (p), h(2) (p), and h(3) (p)—of h (p),
which is also plotted both in Fig 1 (a) and in Fig. 1 (c).
The very practical issue is how we should select an h (p),
corresponding to a (very) small N (i.e., having n small),
which would need (very) few iterations i to achieve a good
approximation to the Heaviside step function. At the outset,
one should know h (p) as precisely as possible (ideally,
exactly).

In [3] several forms for h (p) are mentioned, but it took till
the mid 80’s [4] to have them settled, two forms being

h (p) =
∑n

k=l
Pkpk , (2)

h (p) = f (p, q) =
∑n

k=l
Nkpkqn−k (3)

where q = 1 − p. Nk is the number of ways one can select
a subset of k contacts in the network N such that if these k
contacts are closed and the remaining n−k contacts are open,
then the networkNwill be closed. Obviously, eq. (3) sums the
probabilities of all the different ways in which the network
N can be closed. By replacing q = 1 − p in eq. (3), and
expanding, one gets eq. (2). It also follows that the two vectors
of coefficients

⇀

P = (P0, . . . ,Pn) and
⇀

N = (N0, . . . ,Nn)
correspond uniquely, according to the linear system

⇀

P = M
⇀

N , (4)

where P0 = P1 = · · · = Pl−1 = 0, N0 = N1 = · · · =

Nl−1 = 0, and Pl = Nl 6= 0, andM is the invertible (n+1)×
(n+ 1) lower triangular matrix given by

Mi,j = (−1)i−j
(
n+ 1− j
i− j

)
, 1 ≤ j ≤ i ≤ n+ 1. (5)

Another common form is

h (p) = g (p, q) = 1−
∑n

k=w
Ckqkpn−k , (6)

while, by replacing p = 1 − q in any of eqs. (2), (3) or (6)
and expanding, one gets a reliability polynomial in q

h (q) =
∑n

k=w
Hkqk . (7)

We want to stress that these notations for the reliability
polynomials h (p) differ from those used in the original
article, namely that Nk (eq. (3)) and Ck (eq. (6)), which are
forms from [4], are used instead of Ak ([1, eq. (1)]) and,
respectively, Bk ([1, eq. (2)]), used in the original Moore
and Shannon article [1]. Additionally, it is to be mentioned
that

Nk + Cn−k =
(
n
k

)
=

n!
k! (n− k)!

. (8)

Intuitively, the more parallel N is, the more reliable it is
in closed-circuit mode, and the more serial N is, the more
reliable it is in open circuit mode. As one would expect, the
quality of ‘‘parallel-ness’’ is associated with the width w,
which is the least number of relays which must be opened
in order for the network to be opened (more concisely, w is
the size of a ‘‘minimal cut’’ separating S from T ). Similarly,
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FIGURE 1. Reliability polynomial h(p): (a) smooth; (b) Heaviside; (c) different sigmoids.

FIGURE 2. Minimal N4,4: (a) parallel-of-series (planar); (b) series-of-parallel (planar); (c) a non-planar network.

the quality of ‘‘serial-ness’’ is associated with the length l,
which is the least number of relays which must be closed
in order for the network to be closed (concisely, l is the
length of a ‘‘minimal path’’ from S to T ). This explains why
N0 = N1 = · · · = Nl−1 = 0, the first non-zero coefficient
being Nl , the number of minimal paths from S to T . Moore
and Shannon [1] make these two intuitions more precise by
using eqs. (3) and (6) to show that for p close to 0, h(p)
behaves as Plpl (as Pl = Nl). Similarly, for p close to 1,
h (p) behaves as 1− Cwqw, Cw being the number of minimal
cuts separating S from T . Therefore, a large value of l tends
to produce a more rapid decay of h (p) towards 0 as p tends
to 0, while a large value of w tends to produce a more rapid
approach of h (p) towards 1 as p tends to 1. In this sense, larger
values of both l and w will yield an h (p) curve closer to the
ideal step function of Fig. 1 (b).

However, there is a cost represented by the number of
relays n ≥ wl (see [1, Th. 3]). This motivates the definition
of a minimal networkN, which is one having n = wl exactly.
In [1, Th. 4] the minimal networks N of width w and length
l are characterized as those obtained from a parallel combi-
nation of w series combinations of l relays (Fig. 2 (a)) by
adding connections between specific points in the network,
in a particular way. Namely, considering the column of w
points at which a given column of relays is connected to
an adjacent column of relays, connections between those
points are to be made arbitrarily, and the same goes for
all l − 1 such columns. Therefore, without accounting for
symmetries, there are (Bw)

l−1 minimal networks of width w
and length l, where Bw is the w-th Bell number (i.e., the
number of partitions of a set of w elements). At the two
extremes, no vertical connections are made (leading to a

parallel-of-series or PoS as in Fig. 2 (a)), and respectively all
vertical connections are made (leading to a series-of-parallel
or SoP as in Fig. 2 (b)). By allowing the vertical connections
to ‘‘skip over’’ horizontal rails, non-planar minimal networks
N can be obtained, i.e., minimal networks N which cannot
be realized in 2 dimensions (2D) without an edge crossing
(see Fig. 2 (c) for an example).

In Section II we will describe a special class of minimal
networks Hw,l introduced in [1] as ‘‘hammock networks’’.
Section III will follow, with a review of the current state-
of-the-art on network reliability. Section IV will present
the exact reliability polynomials h (p) for the 29 hammock
networks Hw,l detailed in [1] (for w ≤ 5 and l ≤ 5).
These exact h (p) reliability polynomials will be used for
comparative simulations. The simulations will first of all
show the absolute improvements that the hammocks bring to
reliability, but will also reveal comparisons based on a figure-
of-merit (FoM ) accounting for both reliability improvements
and costs (defined as the redundancy factors). Afterwards,
we will also analyze Hw,l networks by the steepness of h (p)
(by computing h′ (p)), as well as by Shannon’s informa-
tion capacity C (by considering Hw,l networks as binary
channels). These analyses will reveal where and by how
much Hw,l can augment steepness and C . Finally, we will
present a straightforward extension of Hw,l in which we map
the network onto a cylinder. We call the resulting networks
cylindrical (2.5D) hammock networks. In so doing, we are
taking steps towards a practical view of the benefits of small
hammock networks, which seem to be a perfect fit for array-
based design (including FinFETs), and obviously for nano-
electromechanical systems (NEMS). These will be followed
by conclusions and further directions of research.
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II. THE SOMEHOW FORGOTTEN HAMMOCKS
During the evolution of computer technology, the elec-
tromechanical relays discussed by Moore and Shannon were
replaced first by vacuum tubes, then by discrete transistors,
and afterwards by integrated CMOS transistors.

The planar minimal networks known as Hw,l , on which
we have focused our study, can all be realized starting from
networks like the ones in Fig. 2 (a) by connecting pairs
of nodes which are vertically nearby neighbors (i.e., adja-
cent) by short (of length equal to the gap between the hori-
zontal rails) vertical wires. Informally, we shall call such
short vertical wires ‘matchsticks’. It seems that Moore and
Shannon considered only those minimal networks which can
be built using such matchsticks. Of these, without accounting
for symmetries, there are 2(w−1)(l−1) of width w and length l.
This is many fewer than (Bw)

l−1, the number of minimal
networks of width w and length l. It is not clear whether
Moore and Shannon realized that they were neglecting the
majority of the networks characterized by their Theorem 4.
Besides the two extreme cases of no matchsticks (Fig. 2 (a))
and all the (w− 1)× (l − 1) matchsticks (Fig. 2 (b)), Moore
and Shannon [1] consider an intermediate particular case.
In this particular case, of all the possible (w− 1) × (l − 1)
matchsticks, half are present and the other half are absent.
The (w−1)(l−1)2 matchsticks are arranged regularly in an alter-
nate way which gives rise to the well-known ‘brick-wall’
pattern shown in Fig. 3. Moore and Shannon named these
special cases of minimal planar networks ‘hammocks’ (Hw,l)
from their appearance when nodes S and T are pulled apart
and every matchstick collapses into a node—as rectangles
deform into rhombs.

FIGURE 3. The two hammocks for w = 4 and l = 4: (a) H4,4; and (b) H+4,4.

In the case when w and l are both even (i.e., w = 2i
and l = 2j) two distinct cases are possible. This is because
both w − 1 and l − 1 are odd so (w−1)(l−1)

2 is not an integer.

In this paper, the hammock with
⌊
(w−1)(l−1)

2

⌋
matchsticks

will be denoted Hw,l , while the one having
⌈
(w−1)(l−1)

2

⌉
matchsticks will be denoted H+w,l (having exactly one match-
stick more than Hw,l). Fig. 3 (a) shows H4,4 having 4 match-
sticks, while Fig. 3 (b) shows H+4,4 which has 5 matchsticks.

III. TWO-TERMINAL NETWORKS
A brief review of the field of reliability starting from the mid-
50’s (when Moore and Shannon introduced Hw,l [1]) was
presented by Ushakov in 2000 [5] (followed in 2004 by [6]).
Among other problems, Ushakov’s review examines the

two-terminal network reliability problem, emphasizing the
importance of the so-called S-shaped dependence of h(p)
discussed by Moore and Shannon [1]. It has been established
more than once (see later under III. C. DESIGN) that using
very smallHw,l as a device-level redundancy scheme leads to
much more reliable systems than: triple modular redundancy,
von Neumann multiplexing, and even reconfiguration—at
similar redundancy factors (i.e., the multiplicative increase
in the number of identical elements/devices used to replace
one element/device).

The main research directions following on the prescient [1]
have been: (i) theoretical, (ii) algorithmic, and (iii) design
oriented.

A. THEORETICAL
A large body of work has been dedicated to computing two-
terminal connection probabilities or two-terminal network
reliabilities h (p). It was established early on that in general
there are no simple solutions [7]–[9], the two-terminal reli-
ability problem being a #P-complete problem [7]. This
means it is at least as hard as the NP-complete prob-
lems [7]–[9]. Still, exact analytical solutions for the reli-
abilities h (p) of particular ladder networks of arbitrary
size, affected by faulty nodes and/or edges, have been
detailed [4], [10]–[13]. The methods used to obtain such
results work by simplifying the network through pivotal
decomposition or deletion-contraction. Along with classical
series-parallel and triangle-star transformations, simplifica-
tions are repeated backwards (from T to S) taking advantage
of the recursive and regular structure of the network. For
particular ladder networks (e.g., simple, symmetric, Brecht-
Colbourn, fan, double fan, K4, K3 cylinders, Manhattan 3×n
grid) the associated two-terminal network reliability h (p)
was calculated exactly, using a product of transfer matrices
Mi, the elements of Mi being polynomials in the individual
edge and node reliabilities:

Rn = vL ×MnMn−1 . . .M1M0 × vR. (9)

In [13] it was suggested how to extend this approach to
arbitrarily wide networks. In fact, for networks represented by
recursive families of graphs, the two-terminal reliability may
be expressed exactly as a product of transfer matrices, where
individual edge and node reliabilities are taken into account.

It is to be mentioned that similar formulas were determined
in the late 1980’s in the study of the reliability of consecutive-
k-out-of-n : F systems [14]–[16] using the Markov chain
method:

R (k, n; q) = (1, 0, . . . , 0)×Mn
× (1, . . . , 1, 0)t . (10)

Publications such as [4], [10]–[13] also analyzed in depth
the resulting reliability polynomials h (p). A few years later,
Graver and Sobel [17] reiterated the importance of the reli-
ability polynomials h (p), which provide a rich theoretical
basis, for example, for a study of the effects of structural
properties on diffusion dynamics [18].
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Trying to reduce the intrinsic computational burden of the
problem, a particular theoretical approach has focused on
determining bounds. Their accuracy is obviously of critical
importance [19].

Finally, turning our attention toward algorithmic
approaches, Jane et al. [20] have presented an exact algorithm
and modified it for obtaining a practical bounding algorithm.
This has led to both lower and upper bounds on two-terminal
network reliability, and allows a trade-off between execution
time and accuracy (if the algorithm runs to the end the results
are exact).

B. ALGORITHMIC
The early papers on exactly computing h (p), such as,
e.g., [21], relied on the inclusion-exclusion principle applied
to the union of all paths from S to T , and considered both
the reliability of vertices as well as edges. Similarly, [22]
considered the reliability of vertices and edges (when the
failure probabilities of the elements need not be equal, but
the elements are still independent), as well as both directed
and undirected graphs. The authors pointed out that direct
use of the inclusion-exclusion principle requires checking
of a number of cases exponential in the number of paths
from S to T , which is obviously unfeasible for large N.
However, by discarding many irrelevant cases, they were
able to reduce the necessary amount of computation to the
point where N with up to 20 paths between S and T could
be solved. Continuing on the theme of reducing algorithmic
complexity, [23] emphasized that prior factoring methods
were exponentially more complex than similar methods for
the edge-only case. They introduced a new method in which
the expense of including unreliable vertices is less than
exponential, albeit by assuming that elements are indepen-
dent. Similarly, after classifying exact reliability algorithms
as decomposition or factoring, inclusion-exclusion or sum
of disjoint products, [24] credited [7] for showing how to
solve the two-terminal case in time quadratic in the number
of minimal cuts. A few years later, Suh and Chang [25]
presented two algorithms for enumerating the minimal cuts
of N. The one that uses the branch addition method achieves
a time complexity linear in the product between the number
of edges and the number of vertices. A new algorithm for
trimming irrelevant ‘‘culs de sac’’ from N was introduced
in [26]. It was shown that pre-processing N in this way can
save considerable time. The algorithm for undirected graphs
(such as are considered in this paper) was shown to be linear
in the sum of the number of edges and the number of vertices.

After it was established that computing h (p) exactly can
be quite taxing [7]–[9], approximate methods began to attract
attention. One example is [27] where the authors consid-
ered a network N of unreliable elements with two failure
modes, and advocated for randomly seeded genetic algo-
rithms to find approximate optimal solutions in reason-
able time. Other examples are [28] and [29], which also
classified exact reliability computation algorithms for N as
factoring/decomposition and minimal path/cut enumeration.

They reviewed many of the methods for exactly computing
h (p) including: brute-force enumeration, sum of disjoint
products, inclusion-exclusion, reductions and decomposi-
tions, and binary tree methods. The conclusion was that for
large networks none of these methods is feasible. This has
stimulated research on approximate methods (e.g., Monte
Carlo) and studies on upper and lower bounds. In [28],
the Boolean function giving the state of the network was
represented as a function of the states of the devices by a so-
called ‘‘Propositional Directed Acyclic Graph,’’ leading to a
‘structure function’ for the reliability, which is agnostic as to
the choice of reliabilities for the individual devices. In [29]
it was suggested to optimize Monte Carlo by using methods
from machine learning. The main contribution of [29] was an
efficient binary tree algorithm (based on a heuristic search for
the most important minimal cuts) for upper and lower bounds
on h (p), which allowed the user to specify the execution time,
and thus the accuracy of the bounds. Further progress was
made in [30], which used an ordered subset of the minimal
cuts and another ordered subset of the minimal paths to
calculate an all-terminal reliability upper and lower bound,
respectively.

Finally, a fresh publication [31] has proposed an effi-
cient strategy for calculating the two-terminal reliability
of a binary-state network (based on logical-probabilistic
calculus). It is probably the first parallel implementation on
multi-core processors for estimating two-terminal reliability.
With the advent of many cores, graphical processing units
(GPUs), and parallel software we expect to see more progress
on these lines in the future.

C. DESIGN
The reviews [5] and [6] were theoretically-oriented and
did not delve into design-oriented reliability concerns such
as variations (already large and expected to grow), aging
(devices are aging faster), temperature (accelerates aging),
and soft errors (their rates are increasing). These factors are
exactly the ones looked at by Henkel et al. [32]. Such factors
would need to be tackled accurately through an integrated
CAD (computer aided design) flow for design, analyses, and
optimizations. In particular, the interdependence/correlations
of various reliability factors should be properly accounted for,
to avoid pessimistic overdesign. In fact, reliability has been
recognized by ITRS (International Technology Roadmap for
Semiconductors) as amajor design challenge [33] since about
a decade ago. On one side, most hardware redundant design
solutions have focused on the Boolean gate, circuit and
system levels (on error sensing, detection, and masking) [32].
On the other side, for practical design purposes Moore and
Shannon articles [1] and [2] have made a very strong case
for using small hammock Hw,l networks at the device-level
(i.e., the lowest level), as being by far the most effective
solution. Hammock reliability polynomials were computed
exactly for series, parallel, H2,2 and H+2,2 in [1], and H3,3
in [2], but it is Creveling [34] who made the case for ‘quad’
(H2,2) even before (by a fewmonths) hammocks were formally
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introduced by Moore and Shannon. Creveling considered
H2,2 networks of diodes, and analyzed the probabilities of two
different failures: open circuit and short circuit.
An extension of the results of Moore and Shannon to the

case of permanent failures was presented in [35] and [36].
The analysis was done both for H+2,2 (2 × 2 SoP) in [35]
and [36] as well as for H2,2 (2 × 2 PoS) in [36]. These
have considered both a and c, and also the fact that these
are varying in time. The mean time to failure (MTTF) of such
structures was evaluated for the first time.

Sorensen [37] is most certainly the first paper taking
the concepts of Moore and Shannon at heart and working
out detailed designs for several device-level redundant
circuits: a flip-flop, a reversible counter, and an AND-3
gate. All of these were solid-state switching networks using
discrete diodes, bipolar transistors, resistances and capaci-
tors. The same concepts were used to design a NAND gate
in 1964 [38]. Different probabilities for ‘‘good,’’ ‘‘short,’’
and ‘‘open’’ were considered as well as the fact that various
devices fail in different ways. That is why three different
redundancy schemes have been used: series (H1,2), parallel
(H2,1), and quad as 2 × 2 SoP (H+2,2). The ensuing analyses
were very detailed, taking time into consideration. For one
year of operation the device-level redundant circuits are more
reliable than the non-redundant ones: the flip-flop 300×, the
reversible counter 3300×, and the AND-3 gate 620×. Similar
analyses were performed for circuit-level triple modular
redundancy (TMR). TMR also improved reliability, but about
5× less than when using hammocks, while needing about
25% more devices and dissipating 2.3×more energy. The
conclusion was clearly that using hammocks at the device-
level is superior to circuit-level redundancy as far as relia-
bility improvement, weight, size, number of parts and power
are concerned. These have made the case for hammocks very
strong. Still, hammocks have two drawbacks: firstly that it is
far from trivial to design with them (even when using just
H2,2 and H+2,2), and secondly that the resulting circuits are
very difficult to test. Later, Bolchini et al. [39] used the same
H+2,2 quad (2 × 2 SoP transistor structure) in the design of
CMOS gates, showing (once again) that the H+2,2 quad always
achieves better reliability than TMR structures, even if the
voter is assumed to be perfect (i.e., fault-free).

Anghel and Nicolaidis [40] revisited H2,2 and H+2,2 at
the device-level (CMOS transistors) for INV and NAND-2,
while also showing how such concepts could be intermin-
gled at the gate-level by quadruplicating the wires and the
gates (see also [41]). This blends device-level with gate-
level reliability schemes, and was used for INV, NAND-2,
flip-flops, and memory cells. Each CMOS transistor was
replaced by 4 transistors (either H2,2 or H

+

2,2), and each gate
was replaced by 4 gates, so the overall redundancy factor
ended up being 4 × 4 = 16. Power and delay have been
obtained from simulations of the layout in 0.18µm CMOS.
The fault tolerance was obtained analytically at the logic
level. For transistor defect densities of 1% it was shown
that this quad-quad scheme (at a redundancy significantly

less than modular redundancy, von Neumann multiplexing,
and even reconfiguration) improves reliability by 5× for
NAND-2 and by 30× for MUX-2. The idea of combining
hammocks at the device-level (quadded transistors) with a
gate-level redundancy scheme (quadded logic) was revis-
ited in [42] and [43]. Both articles showed that better reli-
ability than TMR or triple interwoven redundancy (or both
of them combined), is obtained on the ISCAS’85 benchmark
circuits.

The use of H+2,2 in output-wired (ganged logic) MIN-3
gates was analyzed in [44]. These MIN-3 gates were
simulated in 22nm PTM (predictive technology model,
http://ptm.asu.edu/). This was probably the first paper
presenting Monte Carlo simulations of gates using quad-
connected CMOS transistors (instead of analytical analyses).
Almost simultaneously [45] used H2,2 (calling it S2× P2 as
having 2 transistors in series and 2 in parallel, i.e., SoP as
in Fig. 2 (a)) in an AND gate with pull-up resistor (either
with nMOS transistors and negative-logic, or pMOS tran-
sistors and positive-logic). These AND gates were used to
realize k-to-2k DEMUX (k-bit inputs and 2k output lines).
Robinett et al. [45] relied on a detailed analytical analysis
to compare different implementations of a 1-to-64 DEMUX,
which showed that at transistor defect probabilities of 1% the
reliability is increased from 2.2% to 94.5% when using H2,2.
They also suggested extending H2,2 to larger SoP networks
(like Fig. 2 (a)). Shortly afterwards, El-Maleh et al. [46]
designed both classical and quad (both H2,2 and H+2,2) INV,
NAND-2, and NOR-2 gates in a 0.5µm CMOS process.
Delay and power estimates were obtained from simulations,
while circuit failure probabilities were obtained using both
Monte Carlo and analytic approaches. Several of the clas-
sical ISCAS’85 benchmark circuits were compared, showing
(once more) that H2,2 and H

+

2,2 structure are the best for
enhancing reliability (much better than TMR and triple
interwoven redundancy). The paper also suggested replacing
H2,2 and H+2,2 by an n2-transistor structure (an n × n SoP
network, like Fig. 2 (b)), for achieving even better relia-
bilities. Recently, this approach has been reevaluated, for
a combination of duplication with asymmetric transistor
sizing [47].

Finally, [48], [49] presented new design approaches
in standard CMOS for variability hardened digital CMOS
cells. These targeted sub-threshold operation (for reducing
power) in 40nm CMOS. The impact of various nanometer
effects was quantified using dedicated analyses for random
doping fluctuations, inverse narrow-width effects, and short-
channel effects. These suggested that many narrow channel
devices are more efficient than a single wide device, implic-
itly advocating for fingered devices. The concept of using
arrays of minimum size devices is in fact older [50] and the
benefits of segmented bulk MOSFET (SegFET) were appre-
ciated even earlier [51]. Obviously, the proposed vertical FET
(VFET, see Fig. 4 (a)), vertical slit FET (VeSFET) [52], as
well as FinFETs [53], [54] and arrays of beyond CMOS
devices [55] (e.g., various types of nanotubes [56]), and also
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FIGURE 4. (a) Inverter using VFETs (
imec, Scientific Report 2010/
1159089); three possible solutions (with RpMOS ∼= 3RnMOS from Fig. 4(a)):
(b) H2,1 and H2,3; (c) H3,1 and H3,3; (d) H4,1 and H4,3.

NEMS, could very easily take advantage of small hammock
networks.

The preceding cases make it clear that an accurate eval-
uation of the reliability enhancements conferred by small
hammock networks is timely, and is potentially beneficial
to advanced FinFETs as well as to beyond CMOS array-
based designs. However, the present paper is not immediately
intended for practical design purposes, but rather for theo-
retical and mathematical insights into the problem. That is
why we show results for idealized devices (relays/transistors)
whose failures can be described by probabilities (modeling
intermittent faults) which do not vary with time (hence which
ignore ageing). On the other hand, the results reported here
are for small hammock networks and are exact, which should
be of practical interest. In this regard, we plan to follow up
by analyzing simple hammock-based designs for FinFETs
(see Fig. 4 (b)). Such an approach would allow for an accurate
analytical estimate of the probability of an inverter PINV as a
function of p (see [57]). This should be evaluated against:
• approximations like PINV = exp

[
−2VDD

/
σ (Vth)

]
from [58] (which would link p to the supply voltage VDD
and the standard deviation of the threshold voltage Vth);

• detailed Monte Carlo simulations.

IV. EXACT RESULTS FOR SMALL HAMMOCKS
All the computations were performed using Mathematica
ver. 9.0.0.0 running on an HP Z840 workstation, sometimes
in parallel on some or all of the 24 kernels available. Prelimi-
nary results were reported in [59], while more details as well
as results concerning channel capacity will be presented here.

Our first algorithm was our simplest. We considered each
of the 2n possible states of the network, corresponding to
the possible choices of ‘‘open’’ or ‘‘closed’’ for each relay
(i.e., a brute force approach).We tested each state for connect-
edness of S and T , and obtained h (p) = f (p, q) as the
sum of pkqn−k over all states passing this test. The test for
connectedness of S and T was as follows. Terminals S and T
are connected if and only if ((Im + J )n)1,m > 0. This is so

because (Im + J )n =
∑n

k=0

(
n
k

)
J k and (J k )1,m is equal to

the number of paths of length k from S to T . In practice the
performance of this algorithm for some cases was far from
impressive. In particular, the computation of h (p) for those

hammocks for whichw+l ≤ 8 was practically instantaneous,
but for H4,5 and H5,4 this took around 18 minutes, while for
H5,5 it went on for about 4.5 days. Still, this naïve algorithm
has helped us to verify the correctness of several enhanced
algorithms.

Our latest algorithm is based on a recursive depth-first
traversal of a binary tree. The two children of a parent node
in the tree are realized by conditioning on an arbitrary edge
of the graph G. That edge is either deleted (assuming that
the corresponding relay is ‘‘open’’) or contracted (assuming
that the corresponding relay is ‘‘closed’’). The basic idea of
conditioning on an edge of the graph was suggested byMoore
and Shannon [1] (see eq. (3) on page 196) and [60], as well
as by recursive definitions of certain graph polynomials,
e.g., the Tutte polynomial. The recursion terminates when
either S and T coincide, or else when S and T are found
to belong in separate connected components of G. At each
node of the tree, some pre-processing is performed, before
conditioning on the chosen edge. First, any components of
the graph not containing S and T are discarded. Then, any
paths having no other connection to the rest of the graph
than at their start and end vertices are replaced by single
edges labeled with the appropriate probabilities. After this,
any loops are removed and any multiple edges are replaced
by single edges with the appropriate probabilities. Then an
arbitrary edge e of the resulting graph G is chosen, and two
graph minors G/e and G − e are generated, by contraction
and deletion of that edge, respectively. The module then calls
itself recursively, to compute the reliabilities of these two
minors, and finally returns the combined result given by

hG (p) = P (e) hG/e (p)+ [1− P (e)] hG−e (p) . (11)

Here P (e) is the probability associated with the edge e.
In this manner, the module traverses an incomplete binary
tree of graph minors depth-first. This algorithm takes around
0.6 seconds to compute h (p) for H5,5, an improvement by
roughly 640,000 times over the naïve approach.

For each of the hammock networks Hw,l (shown in Fig. 5),
we have computed h (p) exactly as a reliability polyno-
mial in p (i.e., as given by eq. (2)). This complements
the results reported in [59] where we have shown h (p, q)
(i.e., as given by eq. (3)). That is, rather than using numer-
ical methods to approximate h (p) for some large but finite
sequence of values of p, we have computed here all the integer
coefficients Pk of the h (p) polynomials. All these h (p) relia-
bility polynomials are presented in a compact form in Table 1.
As far as we know, these exact h (p) functions for these
small hammock networks have not been published before
in this form, except obviously for series (H1,2, H1,3, H1,4,
H1,5), parallel (H2,1, H3,1, H4,1, H5,1), H2,2, H

+

2,2 (in [1])
and H3,3 (in [2]). It is to be mentioned that Nk (eq. (3)) were

recently reported in [59] and are linked to Pk by
⇀

N = M−1
⇀

P
(see eqs. (4) and (5)).
The h (p) presented in Table 1 have been used to plot

the graphs in Fig. 5. On all of them the yellow/shaded area
shows where no improvements on closure reliability are
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FIGURE 5. All the hammocks Hw,l for w ≤ 5, l ≤ 5 and exact simulation results (log scale).

made, i.e., where the Hw,l network of crummy relays is less
likely to be closed than is a single crummy relay.

V. EVALUATING ENHANCEMENTS
A. RELIABILITY IMPROVEMENTS
A well-established measure for estimating reliability
enhancements was introduced by Klaschka [61] in 1967,
namely the reliability improvement index (RII ), defined as

RII =
log (p)

log [h (p)]
. (12)

A thorough explanation of the method for quantifying the
performance of a redundancy scheme by RII and a cost
factor (cost) was detailed in 1971 [62]. In practice, finding

an optimal redundancy scheme corresponds to either maxi-
mizing RII at a given cost, or minimizing cost for a given
RII . Here we have defined the cost as the redundancy factor
lw (cost = lw), or equivalently cost = n for any minimal
network, including hammocks. It follows that a figure-of-
merit (FoM ) defined as the ratio of the reliability improve-
ment index (RII ) to the redundancy factor (lw) captures both
parameters:

FoM =
RII
cost
=
RII
wl
. (13)

Both the RII and the FoM were calculated exactly for
all the Hw,l networks presented in Fig. 5. They can be
seen in Fig. 6. In the yellow/shaded area, no improvements
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TABLE 1. Reliability polynomials hn(p) for hammocks Hw,l (w ≤ 5, l ≤ 5).

are made. It can be seen that the benefits are impressive
(by several orders of magnitude) for p close to 1, and that
they vanish for p below 0.5. This means that the analysis
should be followed by a similar one for a ‘‘normally open’’
relay type (corresponding to an nMOS transistor), which
would complement the results reported here. In practice the
approach has to be more nuanced as an nMOS transistor
is not the exact ‘opposite’ of a pMOS transistor. However,
reliability improvements could be obtained for both of them,
albeit that the particular Hw,l network for a pMOS might end
up being different from that for an nMOS (see Fig. 4 (b)).

B. STEEPNESS IMPROVEMENTS
The intention stated in [1] (and [2]) was to replace a single
relay with a two-terminal network of relays (having relia-
bility polynomial h(p)). The step/Heaviside function is the
ideal function (see Fig. 1 (b)). Therefore, the steepness h′ (p)
has to have importance. Steepness also relates to measures
such as Birnbaum’s reliability importance [63]. It follows
that another reliability related cost function could be the
maximum of h′(p) on [0, 1]. This is because, at its point of
discontinuity, the rate of change of the ideal step/Heaviside
function is infinite.

We have computed all the h′ (p) exactly using the h(p)
presented in Table 1. The results are plotted in Fig. 7. It is
worth looking closely at Figs. 6 and 7 once again as they
point to different ‘‘winners.’’ The networks which are optimal
in terms of RII are the more parallel ones (Fig. 6), while the
networks with the steepest h(p) are those for which l = w
(Fig. 7).

C. CHANNEL CAPACITY IMPROVEMENTS
Another well-established measure of the efficacy of a two-
terminal networkN of unreliable relays is its channel capacity
C [64], [65]. As suggested in [1] one could consider the
common state of the coils (i.e., gates) to be the input to the
channel, and the connectedness of S and T to be the output.

Shannon did not obtain an explicit formula for C in terms
of a and c, except in some special cases such as the symmetric
case c = 1 − a. Nor did Moore and Shannon compute h (p)
exactly except for a few of theHw,l networks they considered.
We believe that, but for these obstacles, Moore and Shannon
probably would have computed the channel capacities C of
the 29 hammocks presented in [1] (at least for some particular
choices of a and c). They did observe that C (a, c) = 0
precisely when a = c, but it is Muroga [66] who first showed
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FIGURE 6. The reliability improvement index (RII) versus p is shown in the top row, while the FoM versus p is presented in the bottom one.

FIGURE 7. The derivative h′(p) for: (a) w = 2; (b) w = 3; (c) w = 4; and (d) w = 5.

how to obtain general, explicit formulae for C in terms of a
and c, and Silverman [67] who carried out this work in the
special case of a binary channel. Our study [68] yielded the
formula presented at the bottom of the next page (eq. (14)),
where C is measured in bits per symbol transmitted (the
symbols being 0 and 1).

A perfect binary channel has capacity 1 bit/symbol, but
an unreliable one has capacity between 0 and 1. A two-
terminal network N characterized by a certain h (p), such
as the Hw,l we have considered here, has channel capacity
C (h (a) , h (c)).
For understanding how Hw,l affects C we have plotted

in Fig. 8 a unit cube which shows the capacities C of H1,1
(i.e., no redundancy),H3,3,H5,5, andH7,7 when varying both
a and c in [0, 1]. The reasons we have used H7,7 will become
clear shortly. Its reliability polynomial is:

h7,7 (p) = 296p7 − 276p8 + 217p9 − 2520p10

+ 1673p11 − 2427p12 + 10210p13 − 5130p14

+ 47982p15 − 56503p16 − 600p17 − 610686p18

+ 838991p19 + 168252p20 + 4056898p21

− 7756901p22 − 4985504p23 − 9073832p24

+ 58119079p25 + 41418180p26

− 211199196p27 − 143809927p28

+ 633758144p29 + 551213356p30

− 2501334428p31 − 377539736p32

+ 9856740648p33 − 15868399515p34

+ 6450475602p35 + 14340458076p36

− 27918283370p37 + 22303967257p38

− 4345985716p39 − 10663030843p40

+ 14908944586p41 − 11235463077p42

+ 5854112676p43 − 2235353013p44

+ 631014226p45 − 129146412p46

+ 18218736p47 − 1590393p48 + 64914p49. (15)

For a better understanding we introduce here a capacity
improvement index (CII ) as

CII =
C(h(a), h(c))
C(a, c)

(16)

which is defined analogously to RII (eq. (12)), the channel
capacity being already logarithmic (see eq. (14)). Fig. 9
shows both 3D views and contour plots of CII forH3,3 versus
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FIGURE 8. The channel capacity C(a, c) for: (a) H1,1; (b) H3,3; (c) H5,5; (d) H7,7; (e), (f), (g), (h) associated contour plots.

H1,1,H5,5 versusH1,1, andH7,7 versusH1,1. The contour plot
for H7,7 versus H1,1 (Fig. 9 (f)) shows the emergence of two
‘‘separating lines’’ which are in fact optimal for Boolean logic
(see [69], [70]). That is why we have added H7,7, as from
Figs. 9 (d) and 9 (e) the fact that the separating curves are
closing towards two lines is not yet obvious. As expected, for
the most common values of a and c,H3,3,H5,5, andH7,7 offer
successive improvements on channel capacity over that of a
single relayH1,1. Still, in case both a and c are simultaneously
skewed towards (0, 0) or (1, 1) adding redundancy does not
help (in fact on the contrary). This suggests (once again)
that a two-terminal network needs to be customized for the
particular values of a and c, for both enhancing channel
capacity and improving reliability (see also [71] and [72].

It becomes clear that increased redundancy leads not only
to boosting reliability but also to greater steepness and to
augmenting the channel capacity. Further studies should try
to establish correlations among such cost functions.

VI. EXTENSIONS TO CYLINDRICAL HAMMOCKS
In biology, cylindrical structures like pipelines are ubiqui-
tous. Unexpectedly, fresh publications have identified very
regular arrays reinforcing neurons’ membranes [73]–[77].
These results support the expectation that ion channel distri-
butions on the membrane might follow suit. Lately it has
been argued that such regular spacing might facilitate the
propagation of action potentials [78].

Axons (and dendrites) are used for communica-
tion, and therefore several reliability investigations have
modeled them as cylindrical consecutive-k-out-of-n:F
systems [79]–[81]. Hammock-inspired alternatives were
suggested earlier [82], [83], being evaluated with respect
to power/energy consumption, while their reliabilities were
only approximated. Inspired by the periodic actin-spectrin-
based membrane skeleton organization we followed [82]
and [83] by extending the classical (planar or 2D) hammocks
Hw,l [1] to cylindrical hammocks H2.5D

w,l [84] (2.5D, as such

C(a, c) =



log2


[
(1− a)(1−a)caac

(1− c)a(1−c)cac

] 1
c−a

+

[
(1− c)(1−a)(1−c)c(1−a)c

(1− a)(1−a)(1−c)aa(1−c)

] 1
c−a
 0 < a, c < 1, a 6= c

0 0 ≤ a ≤ 1, a = c

log2
[
1+ a(1− a)

1−a
a

]
0 < a < 1, c = 0

log2
[
1+ c(1− c)

1−c
c

]
a = 0, 0 < c < 1

log2
[
1+ (1− a)a

a
1−a

]
0 < a < 1, c = 1

log2
[
1+ (1− c)c

c
1−c

]
a = 1, 0 < c < 1

1 (a, c) ∈ {(1, 0), (0, 1)}

(14)

VOLUME 6, 2018 25421



S. R. Cowell et al.: On the Exact Reliability Enhancements of Small Hammock Networks

FIGURE 9. The capacity improvement index (CII(a, c)): (a) H3,3 versus H1,1; (b) H5,5 versus H1,1; (c) H7,7 versuss H1,1; (d), (e), (f) associated
contour plots.

TABLE 2. Reliability polynomials hn(p) for cylindrical hammocks H2.5D
wl (w ≤ 6, l ≤ 6).

networks, being hollow, are not properly 3D). These are
obtained by wrapping classical hammocks Hw,l around a
cylinder and adding (l − 1)

/
2 matchsticks (equivalent to

connecting the two sides of the classical hammock using a
zipper). For keeping the brick-wall pattern appearance these
cylindrical hammocks can be defined only for even values of
w (due to the need of having alternating matchsticks). On one
side, by [1, Th. 4], H2.5D

w,l still belong to the same class of
minimal 2-terminal networks as Hw,l . On the other side, they
have w (l − 1)

/
2 matchsticks instead of (w− 1) (l − 1)

/
2,

which means that H2.5D
w,l have slightly more paths between S

and T than Hw,l (i.e., they are more parallel). Using the same
algorithm, we have determined exactly the reliability polyno-
mials h(p) associated to small cylindrical hammocks H2.5D

w,l .
The results are reported in Table 2 as reliability polynomials
in p (given by eq. (2)). These complement the results reported
in [84] which have presented h(p, q) given by eq. (3).

We could take the same route and plot these reliability
polynomials and compare them with those of equivalent Hw,l
(see Fig. 10 comparingH2.5D

4,l withH2D
4,l ). Recent results allow
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FIGURE 10. Reliability of cylindrical (2.5D) hammocks versus classical (2D) hammocks for w = 4: (a) h2D
4,3 (green) and h2.5D

4,3 (red); (b) h2D
4,4 (cyan),

h2D+
4,4 (cyan dotted) and h2.5D

4,4 (red); (c) h2D
4,5 (blue) and h2.5D

4,5 (red).

for a different approach. In [85] we have shown that it is
possible to determine exactly the first non-zero coefficient
of the reliability polynomials associated to any hammock
network. For the particular case of H2.5D

w,l the first coefficient
is Pl = Nl = w × 2l−1 for any w and l [84] (red and
bolded in Table 2).When taken together with the values of the
first non-zero coefficients for H2D

w,l [85] it becomes clear that
h2.5D (p) > h2D (p), hence cylindrical hammocks are slightly
more reliable than classical ones for the same w and l when
p is close to 0 (see Fig. 10).

VII. CONCLUSION
This paper has looked at small hammock networks, focusing
on exactly determining their associated reliability polyno-
mials h(p). We have also extended classical hammocks to
cylindrical ones (by mapping them onto cylinders). The state-
of-the-art has revealed that array-based designs are a very
good fit for (very) small Hw,l networks, as are NEMS, hence
accurate analyses should prove useful. The coefficients of the
reliability polynomials have been determined exactly, while
we have also shown that cylindrical hammocks exhibit only
a marginal reliability advantage.

Our short-term plan falls on the practical side aiming to
use these exact reliability polynomials for evaluating the
reliability enhancements (very) small hammocks can bring to
Boolean logic gates (e.g., when implemented using FinFETs
connected asHw,l , as suggested in Fig. 4 (b)). These should be
analyzed both analytically as well as through detailed Monte
Carlo simulations.

In the long-term we aim to study 3D non-planar networks
akin to the cytoskeleton inside axons and dendrites [86]–[89]
(e.g., for understanding the reliability/availability of cellular
transport networks), with an introductory example presented
in [90], where the results reported are approximations
(obtained through bounding).

While working on this paper we have been able to identify
a few interesting open problems:

• analyze upper/lower bounds on h (p) with respect to
accuracy (e.g., start from Nlplqn−l and 1 − Cwqwpn−w,
and afterwards include Nl+1 and Cw+1, etc.);

• obtain formulas for Nl and Cw as functions of w and l
(for Nl the formula is reported in [85]);

• express h (p) exactly as a product of transfer matrices,
considering individual node/edge reliabilities;

• analyze non-hammock matchstick minimal networks N
with the same (w−1)(l−1)

2 number of matchsticks;
• analyze non-matchstick planar minimal networks N;
• determine if there exist planar minimal networks N not
realizable as in [1, Th. 4] without skipping horizontal
rails;

• analyze non-planar minimal networks N, and in partic-
ular whether there are such networks which are more
reliable than any planar minimal network N.
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