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ABSTRACT In this paper, the method of lines is extended to analyze 2-D graphene-based multilayered
structures. The graphene plates with tensor conductivity may cover partially or totally the interfaces between
two consecutive layers. In this paper, the impedance and admittance transformations through the graphene-
contained interfaces are developed. Also, the characteristic equation of the graphene-contained multilayered
structure is obtained by matching the tangential fields at the graphene sheet. To verify the obtained relations,
the following structures are analyzed using the extended method of lines: graphene-based microstrip lines,
graphene-based striplines, and graphene-based parallel-plate waveguides. The results of the analysis of the
graphene-based microstrip line are compared with the results obtained from the spectral domain approach
and COMSOL software, whereas the results of the analysis of the graphene-based stripline and parallel-
plate waveguide are compared with those of COMSOL software, which show a good agreement. The
conductivity of graphene can be adjusted by varying parameters such as the bias of electric and magnetic
fields perpendicular to the graphene sheet. Also, a parametric study is carried out on these parameters by
which the characteristics of the analyzed structures can be controlled. The tunable structures are vastly used
in new microwave applications.

INDEX TERMS Graphene, extended method of lines (E-MOL), impedance and admittance transformation,
multilayered structures, spectral domain method (SDM), microstrip, stripline, parallel-plate waveguide.

I. INTRODUCTION
Graphene, a two dimensional arrangement of carbon atoms
in a hexagonal lattice, is a promising material in the field
of electronics and electromagnetics and have attracted enor-
mous attention in the recent years [1], [2]. Although the
theory of graphene was first explored in 1948, the first sheets
of graphene with dimensions of around a few micrometers
weremade in 2004. The graphene sheets encompass electrical
properties such as tunability of conductivity with a biased
voltage which make it suitable for the electronic devices with
the ability of controlling their characteristics [3]. New devices
with the dimensions of nanometer scale such as antennas,
flexible electronic devices, touch screens and ultrahigh speed
transistors are some of the applications of the graphene
sheets [4]–[6]. Nowadays, the graphene sheets with dimen-
sions of about 30cm are being produced, so that their appli-
cation in the fields of microwave and millimeter wave have
received remarkable interest [4], [7]. The linear and gapless
electronic band structure arising from its particular atomic
structure, have made graphene possess unique and exclusive

properties. Particularly, the linear momentum-energy disper-
sion, analogous to the dispersion of photons in free space,
causes the electrons to act as massless particles. Therefore,
graphene may exhibit a mobility of 500000 cm2/Vs. These
properties have made graphene the subject of great attention
in high speed electronic devices [8], [9].

Kubo [9] presented the most accurate model of graphene
conductivity which includes all parameters affecting the
conductivity:

σ = σd
(
x̂x̂ + ẑẑ

)
+ σo

(
ẑx̂ − x̂ ẑ

)
(1)

where

σd (µc (E0) ,B0) =
e2ν2F |eB0| (ω − j20) }

−jπ

×

∞∑
n=0

{
fd (Mn)− fd (Mn+1)+ fd (−Mn+1)− fd (−Mn)

(Mn+1 −Mn)
2
− (ω − j20)2 }2

×

(
1−

12

MnMn+1

)
1

Mn+1 −Mn
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+
fd (−Mn)− fd (Mn+1)+ fd (−Mn+1)− fd (−Mn)

(Mn+1 +Mn)
2
− (ω − j20)2 }2

×

(
1+

12

MnMn+1

)
1

Mn+1 +Mn

}
(2)

and

σo (µc (E0) ,B0) =
e2ν2FeB0
π

×

∞∑
n=0

{fd (Mn)− fd (Mn+1)+ fd (−Mn+1)

− fd (−Mn)}

{
1

(Mn+1 −Mn)
2
− (ω − j20)2 }2

×

(
1−

12

MnMn+1

)
+

1

(Mn+1 −Mn)
2
− (ω − j20)2 }2

×

(
1+

12

MnMn+1

)}
(3)

with

Mn =

√
12 + 2nν2F |eB0| } (4)

where µc is the chemical potential (which can be controlled
by applied electrostatic bias field E0 = ẑE0, or by doping),
0 is the phenomenological electron scattering rate that is
assumed to be independent of energy, B0 = ẑB0 is the
applied magnetostatic bias field, e is the charge density of
an electron, } = h/2π is the reduced Planck’s constant,
υF = 106m/s is the electron’s energy-independent velocity,
1 is an excitonic energy gap, fd (ε) = (e(ε−µc)/KBT + 1)

−1

is the Fermi-Dirac distribution, which ε is energy and KB is
Boltzmann’s constant.

Various methods have been utilized to analyze the
graphene-contained structures, each having its advantages
and disadvantages. The fully analytical approaches suf-
fer restrictions regarding their use in complex structures
since a limited number of structures can be analyzed ana-
lytically [10]–[15]. Fully numerical methods can be used
to analyze complex structures, however because of their
fully numerical nature, the simulation time may be too
long [16], [2], and [1]. Therefore, a method is required which
is capable of simultaneous numerical and analytical analysis
where the simulation time is reduced due to the fact that a part
of the problem is solved analytically.

Regarding the two-dimensional structure of the graphene,
the graphene-contained structures can be modeled by a mul-
tilayered structure. The method of lines is a semi-numerical
semi-analytical method. Since a part of the problem is ana-
lyzed analytically, the method of lines requires less sim-
ulation time than the fully numerical methods [17]. This
method is considerably useful to analyze the multilayered
structures or the structures that can be divided into several
layers with reasonable approximation [18]. Method of lines
was first used to analyze the semi-plate waveguide structures.
It can also be used to analyze the two-dimensional and three-
dimensional structures which require one-dimensional and
two-dimensional discretizations, respectively [19], [20].

In the present paper, the multilayered two-dimensional
structures with arbitrary number of layers including graphene
sheets between the layers, is analyzed using the extended
method of lines. To this end, the formula for the admittance
transformation through a graphene sheet is developed. From
which, the impedance and admittance transformation of the
entire multilayered structure containing graphene sheets can
be performed. In order to verify the method in the case of
multilayered structures, three example structures are ana-
lyzed. First, a graphene-based microstrip line is investigated
and its characteristic equation in the extended method of
lines is developed using the field matching at the graphene-
contained plate. By varying the chemical potential of the
graphene, the characteristics of the microstrip line can be
modified. The method is verified by comparing the results
of the analysis with those obtained from the spectral domain
approach and COMSOL software. The second structure ana-
lyzed here is a graphene-based stripline. The results of this
structure are also compared with the results of COMSOL
software. Finally, the third structure is a graphene-based
parallel-plate waveguide, the results of which are compared
with those of COMSOL software. The comparison of the
results demonstrates the reliability of the extended method of
lines to analyze the multilayered structures. These examples
aremeant to verify the proposedmethod, whereas thismethod
is general and is able to analyze a variety of two-dimensional
multilayered structures in rectangular, cylindrical, and spher-
ical coordinate systems. In the following and in section II,
the numerical methods are presented to analyze multilayered
graphene-based structures. First, the extendedmethod of lines
is presented to analyze general two-dimensional graphene-
based multilayered structures. Second, the spectral domain
method is explained to analyze the graphene-basedmicrostrip
line. In section III, the calculation details with the COMSOL
software is presented. In section IV, the results obtained from
the analysis of three aforesaid structures using the proposed
method are compared with those of COMSOL software.
Finally, in section V the conclusions are provided.

II. NUMERICAL METHODS
The method of lines can be used to analyze the multilayered
structures. Impedance and admittance transformation through
various layers and also impedance and admittance transfor-
mation through the interfaces are crucial in the method of
lines. In the following, first the application of the method
of lines in the analysis of the multilayered structures is
described, and then the equations of the impedance and
admittance transformation through the graphene-contained
interface of two layers are obtained. In the method of lines, by
the impedance and admittance transformation from the two
sides of the structure and matching the fields within a plane,
the multilayered characteristic equation is obtained. Also,
in the following the characteristic equation of the graphene-
contained multilayered structure is obtained by matching
the tangential fields at the graphene sheet. As an exam-
ple of multilayered structures, the characteristic equation of
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FIGURE 1. Cross section of a planar waveguide with discretized lines,
Solid lines: The electric field lines, Dashed lines: The magnetic field lines.

a graphene-based microstrip line is presented. At the end of
this section, the analysis of graphene-based microstrip line
using the spectral domain method is also presented.

A. METHOD OF LINES IN THE ANALYSIS OF THE
MULTILAYERED STRUCTURES
The electromagnetic fields in the planar waveguide struc-
tures, which are used in optical or microwave integrated
circuits, can be obtained from two independent field com-
ponents or two independent potential components. The
components ez and hz must satisfy the Helmholtz equation
within each layer [17]:

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ k2ψ = Lψ = 0 (5)

k2 = εrk20 k0 = ω
√
µ0ε0 (6)

where ψ represents each of the components ez and hz. The
microstrip line illustrated in Fig. 1 is considered as an exam-
ple. Assume that the number of discretized lines for the ez
and hz fields in Fig. 1 is equal to N. The fields ez and hz on
the discretized lines are collected in Ez and Hz vectors. The
i’th component of the Ez vector indicates the electric field ez
on the i’th line. It should also be noted that Ezi is a function
of y. In order to discretize (5), the derivative with respect to x
must be replaced by an appropriate fraction. We have [21]:

h
∂ez
∂x
→ DEz (7)

h
∂hz
∂x
→ −DtHz (8)

Equation (8) shows that the difference operator D which
is used to take the derivative of ez can also be used to take
the derivative of hz. The difference operator D has a form
that satisfies the lateral boundary conditions. Also the second
derivative of the fields can be defined as [22]:

h2
∂2ez
∂x2
→−DtDEz = −PDNEz (9)

h2
∂2hz
∂x2
→−DDtEz = −PNDEz (10)

By substituting (9) or (10) into (5), the following ordinary
differential equation is obtained:

d2

dy2
ψ+

[(
k2 − k2z

)
I − h−2P

]
ψ = 0 (11)

The convention for the wave propagation in the z direc-
tion is considered as e−jkzz, ψ represents the vectors Ez or
Hz, and P is their corresponding difference matrix. In this
equation I is the unity matrix. Since P is a tridiagonal matrix,
in (11) three components ofψ vector are always dependent to
each other, and consequently these equations can’t be solved
directly. To solve this problem a transformation is carried
out [17]:

ψ = Tψ̄ (12)

requiring that:

T tPT = λ2 (13)

The matrices λ2 and T are the diagonal eigenvalue matrix
and eigenvector matrix of P, respectively. For different
BCs determining the P matrix, the matrices λ2 and T are
calculated analytically. Since the matrix P is symmetric, with
a suitable normalization of the eigenvectors, the T matrix
reduces to an orthogonal matrix:

T−1 = T t (14)

By substituting (12) and (13) into (11) [17]:[(
d2

dy2
+ k2 − k2z

)
I−h−2λ2

]
ψ̄ = 0 (15)

Let

k2yi = k20
(
λ̄2i − εr + εre

)
εre =

k2z
k20
, λ̄2i =

λ2i

(k0h)2
(16)

Hence the general solution for the i’th component of ψ̄
vector can be written as:

ψ̄ i = Ai cosh kyiy+ Bi sinh kyiy (17)

In the method of lines, in most cases the field components
and their derivatives at the interface between the layers are
required. Using (17) the relation between the field compo-
nents and their derivatives in a layer with the thickness d ,
shown in Fig. 2, can be obtained as [17]:[

ψ̄
′
(y1)

ψ̄
′
(y2)

]
= k2y

[
γ α

α γ

] [
−ψ̄ (y1)
ψ̄ (y2)

]
(18)

where

¯
ψ
′

=
1
k0

d
dy
ψ̄ (19)

α = diag
(
kyi
k0
sinh kyid

)−1
(20)

γ = diag
(
kyi
k0
tanh kyid

)−1
(21)

ky = diag
(
kyi
k0

)
(22)
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FIGURE 2. Cross section of a multilayered structure.

Using the Maxwell equations, the transformed field com-
ponents are calculated from the independent components Ēz
and H̄z as:

εd

[
Ēx

η0H̄x

]
= j

−
√
εreδ̄ −I

1
k0

∂

∂y

I
εr

k0

∂

∂y
√
εreδ̄

t

[ Ēz

η0H̄z

]
(23)

εd

[
Ēy

η0H̄y

]
= −j

 I
√
εre

k0

∂

∂y
δ̄
t

εrδ̄ I
√
εre

k0

∂

∂y

[ Ēz

η0H̄z

]
(24)

where

δ̄ = (k0h)−1 δ, δ = T thDT e, εd = εr − εre (25)

The matrix δ is a diagonal or quasi-diagonal matrix. In the
above equation, T e is the transformation matrix for Ez,
and Th is the transformation matrix for Hz. The system of
equations (23) and (24) is written for the interface
plates A and B, represented in Fig. 2. Hence from (18) and
this system of equations, we have [17]:

η0


−jH̄zA

H̄xA

−jH̄zB

H̄xB



=


−εdγ h γ hδ̃ −εdαh αhδ̃

δ̃
t
γ h γ E δ̃

t
αh αE

−εdαh αhδ̃ −εdγ h γ hδ̃

δ̃
t
αh αE δ̃

t
γ h γ E




ĒxA

−jĒzA
−ĒxB

jĒzB

(26)
where

δ̃ =
√
εreδ̄,αE = ε

−1
d

[
εrk2yeγ e − δ̃

t
γ hδ̃

]
,

γ E = ε
−1
d

[
εrk2yeαe − δ̃

t
γ hδ̃

]
(27)

In the above equations the subscripts e or h are used for
the parameters α, γ and λ considering that ψ represents each
of ez or hz. Using the abbreviations:

H̄A,B = η0

[
−jH̄zA,B

H̄xA,B

]
, ĒA,B =

[
ĒxA,B

−jĒzA,B

]
(28)

and also

ȳ1 =

[
−εdγ h γ hδ̃

δ̃
t
γ h γ E

]
ȳ2 =

[
−εdαh αhδ̃

δ̃
t
αh αE

]
(29)

FIGURE 3. Multilayered structure and graphene-contained interfaces.

the equation (26) is reduced to the simple form:[
H̄A

H̄B

]
=

[
ȳ1 ȳ2
ȳ2 ȳ1

] [
ĒA

−ĒB

]
(30)

Assuming an electric wall at the 0’th interface, the tan-
gential electric field on that interface is zero

(
Ē0= 0

)
, so

from (30) for the first layer in the first step we have:

H̄1 = Ȳ
(1)
t Ē1 (31)

where

Ȳ
(1)
t = −ȳ1 (32)

The parameter ȳ1 is calculated using the properties of the
1’st layer. In the same way, using (30), the impedance and
admittance transformation equation between the two plates
of a layer can be obtained.

To utilize the method of lines in the graphene-based multi-
layered structures, the impedance and admittance transforma-
tion equations through the graphene-contained interface will
be derived in the next section.

B. IMPEDANCE AND ADMITTANCE TRANSFORMATION
THROUGH A GRAPHENE CONTAINED INTERFACE
As shown in Fig. 3, the interfaces are numbered and the fic-
titious planes just above and below an interface are indicated
by + and − signs, respectively.
As shown in Fig. 3, the graphene plates are placed on

the zx plane. In the method of lines, the equations are
solved analytically in the y direction so the impedance and
admittance transformation is performed in the y direction.
A graphene-contained interface is numbered m. Then, the
relation between the admittance above

(
Ȳ(m)t−

)
and below(

Ȳ(m)t+

)
the interface must be obtained. The current density

in the graphene plate is calculated as:[
Jx
Jx

]
=

[
σxxEx + σzxEz
−σzxEx + σxxEz

]
=

[
σxx σzx
−σzx σxx

] [
Ex
Ez

]
= σ .

[
Ex
Ez

]
(33)
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The transverse electric fields at the m’th interface are con-
tinuous, so we have:[

Ex
Ez

]m+
=

[
Ex
Ez

]m−
=

[
Ex
Ez

]m
= EEm (34)

The boundary condition for the magnetic field at the inter-
face between each two layers is:

n̂×
(
EH2 − EH1

)
= EJs (35)

where at the m’th interface, it takes the form:

n̂×
(
EHm+ − EHm−

)
= EJm = σ .EEm (36)

By the substitution of:

EHm+ = Hxm+ x̂ + Hzm+ ẑ (37)
EHm− = Hxm− x̂ + Hzm− ẑ (38)

in (36) and assuming that n̂ = ŷ, we have:

ŷ×
(
Hxm+ x̂ + Hzm+ ẑ− Hxm− x̂ − Hzm− ẑ

)
= σ .EEm

−Hxm+ ẑ+ Hzm+ ẑ+ Hxm− ẑ− Hzm− ẑ

= (σxxExm + σzxEzm) x̂ + (−σzxExm + σxxEzm) ẑ (39)

By separating this equation into x̂ and ẑ components, we
have:

Hzm+ = Hzm− + σxxExm + σzxEzm (40)

Hxm+ = Hxm− + σzxExm − σxxEzm (41)

The electric and magnetic fields vectors are defined as:

E =
[
Ex
−jEz

]
H = η0

[
−jHz
Hx

]
(42)

Accordingly, (40) and (41) can be rewritten as:

η0

[
−jHzm+
Hxm+

]
= η0

[
−jHzm−
Hxm−

]
+ η0

[
−jσxx σzx
σzx −jσxx

] [
Exm
−jEzm

]
(43)

Hm+ = Hm− +
[
−jη0σxx η0σzx
η0σzx −jη0σxx

]
Em (44)

In the method of lines, impedance and admittance trans-
formation is performed in the transformed domain. There-
fore, (44) must be written in the transformed domain and
subsequently, using the fields relations in the transformed
domain, the impedance and admittance transformation is per-
formed. It is assumed here that discretization is done in one
direction. The fields discretization positions and parameters
of graphene for a microstrip line are illustrated in Fig. 4.
It should be noted that each parameter σxx and σzx must be
discretized in two different positions: the solid lines and the
dashed lines. The conductivity σxxh indicates the value of σxx
on the dashed lines, and σxxe indicates the value of σxx on the
solid lines. In the same way, σzx is indicated by the two terms
σzxh and σzxe. The conductivity σzxh shows the value of σzx on

FIGURE 4. Graphene-based microstrip line and the discretization lines.

the dashed lines, and σzxe shows the value of σzx on the solid
lines. Then, (40) and (41) are rewritten as:

−jη0Hzm+ = −jη0Hzm− − jη0σ xxhExm
+ η0σ zxe (−jEzm) (45)

η0Hxm+ = η0Hxm− + η0σ zxhExm
− jη0σ xxe (−jEzm) (46)

Another point that should be noted is that the position
of the fields components are different from each other, for
instance in (45) the component Ex is discretized at dif-
ferent positions than those of Ez and Hx components, and
Hence the term σ zxhExm cannot be added or subtracted
from them directly. Also, in (46) the Ez component is dis-
cretized at different positions than those of Ex and Hz com-
ponents, and consequently the term σ zxe (−jEzm) cannot be
added or subtracted from them directly. To overcome this
problem, the interpolation matrices should be utilized to
obtain the values of σ zxhExm and σ zxe (−jEzm) at the correct
positions. Accordingly, (45) and (46) are rewritten as:

−jη0Hzm+ = −jη0Hzm− − jη0σ xxhExm + η0M
e
xσ zxe (−jEzm)

(47)

η0Hxm+ = η0Hxm− + η0M
h
xσ zxhExm

− jη0σ xxe (−jEzm) (48)

As the impedance and admittance transformation is per-
formed in the transformed domain, the fields components in
the transformed domain are obtained by their multiplication
with suitable transformation matrices according to their dis-
cretization position. Here we assume that the widths of the
two layers at both sides of the m’th interface are equal, and
also the boundary conditions for the two layers are the same.
As seen in Fig. 4, the components that are placed on the
lines are transformed by the matrix T e, and the components
which are placed on the dashed lines are transformed by the
matrix Th. As a result, in the transformed domain (47) and
(48) are written as:

−jη0ThH̄zm+ = −jη0ThH̄zm− − jη0σ xxhThĒxm
+ η0Me

xσ zxeT e
(
−jĒzm

)
(49)

η0T eH̄xm+ = η0T eH̄xm−

+ η0Mh
xσ zxhThĒxm − jη0σ xxeT e

(
−jĒzm

)
(50)
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By multiplying both sides of (49) by T−1h , and multiplying
(50) by T−1e , we then have:

−jη0H̄zm+ = −jη0H̄zm− − jη0T
−1
h σ xxhThĒxm (51)

+ η0T−1h Me
xσ zxeT e

(
−jĒzm

)
η0H̄xm+ = η0H̄xm− + η0T

−1
e Mh

xσ zxhThĒxm
− jη0T−1e σ xxeT e

(
−jĒzm

)
(52)

which, in matrix form, it is written as:[
−jη0H̄zm+

η0H̄xm+

]
=

[
−jη0H̄zm−

η0H̄xm−

]
+

[
−jη0T−1h σ xxhTh +η0T−1h Me

xσ zxeT e
η0T−1e Mh

xσ zxhTh −jη0T−1e σ xxeT e

] [
Ēxm
−jĒzm

]
(53)

From the following definitions:

Ē =
[

Ēx
−jĒz

]
H̄ = η0

[
−jH̄z

H̄x

]
(54)

Equation (53) can be written as:

H̄m+ = H̄m− +

[
−jη0T−1h σ xxhTh η0T−1h Me

xσ zxeT e
η0T−1e Mh

xσ zxhTh −jη0T−1e σ xxeT e

]
Ēm

(55)

H̄m+ = H̄m− + ȲgmĒm (56)

where

Ȳgm =
[
−jη0T−1h σ xxhTh η0T−1h Me

xσ zxeT e
η0T−1e Mh

xσ zxhTh −jη0T
−1
e σ xxeT e

]
(57)

It is assumed that by starting from the bottom of the
structure and appropriate admittance transformation, H̄m− is
computed as:

H̄m− = Ȳ tm−Ēm− = Ȳ tm−Ēm (58)

By substitution of this term in (56) we have:

H̄m+ = Ȳ tm−Ēm + ȲgmĒm =
(
Ȳ tm−+Ȳgm

)
Ēm= Ȳ tm+Ēm

(59)

Hence the admittance matrix above the interface
(
Ȳ tm+

)
is calculated with respect to the admittance matrix below the
interface

(
Ȳ tm−

)
:

Ȳ tm+ = Ȳ tm− + Ȳgm (60)

As a result, the admittance transformation at the graphene-
contained interface is performed by (60). Notice that in the
case that the graphene plate has not covered the entire inter-
face, (60) can still be used for admittance transformation.
To do so, the values of conductivity for the lines which are
not on the graphene plate are considered zero.

C. OBTAINING THE CHARACTERISTIC EQUATION
USING GRAPHENE PLATE
In the method of lines, for the analysis of the eigenmodes of
a structure, the impedance and admittance are transformed
from both sides of the structure. Finally, by writing the
boundary conditions on a plate, the characteristic equation
is obtained. The question which arises is that if this plate
contains graphene, what would be the characteristic equation.
As seen in Fig. 3, the graphene-contained interface has num-
ber k if counted from the bottom of the structure and has the
number l if counted from the top of the structure. In other
words, the fields m− and m+ are related to the numbers k
and l, respectively. The boundary condition on the graphene-
contained interface is:

ŷ×
(
EHl − EHk

)
= EJs,m (61)

By expanding the fields and the current, we have:

ŷ×
(
Hx,l x̂ + Hz,l ẑ− Hx,k x̂ − Hz,k ẑ

)
= Jx,mx̂ + Jz,mẑ

(62)

The above equation is rewritten as:

η0

[
−jHz,k
Hx,k

]
− η0

[
−jHz,l
Hx,l

]
= η0

[
jJx,m
Jz,m

]
(63)

The position of the discretization forHz and Jx are the same
and the matrix Th is used to transform these quantities. The
same is true for the discretization of Hx and Jz. Accordingly,
the matrix T e is used to transform these quantities. If the
fields are discretized, the first row of (63) is multiplied
by Th, and the second row is multiplied by T e, this equation
can be written in the transformed domain as:

η0

[
−jH̄z,k

H̄x,k

]
− η0

[
−jH̄z,l

H̄x,l

]
= η0

[
jJ̄x,m
J̄z,m

]
(64)

From the definitions H̄ = η0

[
−jH̄z

H̄x

]
and J̄ = η0

[
jJ̄x
J̄z

]
,

(72) is written as follows:

H̄k − H̄l = J̄m (65)

Starting from the bottom and top of the structure, and
applying an admittance transformation to the graphene-
contained interface, the fields are obtained as:

H̄k = Ȳ tk Ēm, H̄l = −Ȳ tlĒm (66)

By substitution of these expressions into (65) we have:(
Ȳ tk + Ȳ tl

)
Ēm = J̄m (67)(

Ȳ tk + Ȳ tl
)−1

J̄m = Ēm (68)

Since admittance transformation is done at the transformed
domain, (67) and (68) are also obtained in the transformed
domain. To apply appropriate boundary conditions and obtain
the characteristic equation, these equations should be written
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in the space domain, thus (68) in the space domain is written
as: [

Th 0
0 T e

] [
Z̄11 Z̄12
Z̄21 Z̄22

] [
T th 0
0 T te

]
×

[
jη0Jx,m
η0Jz,m

]
=

[
Ex,m
−jEz,m

]
(69)[

Z11 Z12
Z21 Z22

] [
jη0Jx,m
η0Jz,m

]
=

[
Ex,m
−jEz,m

]
(70)

The current and electric field vectors at the plane m in the
microstrip line shown in Fig. 4, are as follows:

Jm = η0


0x,ls
jJx,g
0x,rs
0z,ls
Jz,g
0z,rs

Em =


Ex,ls
Ex,g
Ex,rs
−jEz,ls
−jEz,g
−jEz,rs

 (71)

The g index in the above quantities indicates the lines on
the graphene plate, the index ls indicates the lines located
in the slot region at the left side of the graphene plate, and
rs indicates the lines located in the slot region at the right
side of the graphene plate. Regarding the zero components of
the current vector, columns of Z in (70) which are multiplied
by these components can be omitted and the matrix can be
reduced to:

Zr,ls11 Zr,ls12

Zr,g11

Zr,rs11

Zr,g12

Zr,rs12

Zr,ls21 Zr,ls22

Zr,g21

Zr,rs21

Zr,g22

Zr,rs22


[
jη0Jx,g
η0Jz,g

]
=



Ex,ls
Ex,g
Ex,rs
−jEz,ls
−jEz,g
−jEz,rs


(72)

After reducing Z matrix, the vector on the right hand
side of (72) contains the field components either in the slot
regions or on the graphene plate. Hence the submatrices can
be divided into left slot (ls), right slot (rs), and graphene plate
(g) groups. Therefore, (72) can be decomposed into three
equations, as follows:[

Zr,ls11 Zr,ls12
Zr,ls21 Zr,ls22

][
jη0Jx,g
η0Jz,g

]
=

[
Ex,ls
−jEz,ls

]
(73)[

Zr,g11 Zr,g12
Zr,g21 Zr,g22

] [
jη0Jx,g
η0Jz,g

]
=

[
Ex,g
−jEz,g

]
(74)[

Zr,rs11 Zr,rs12
Zr,rs21 Zr,rs22

] [
jη0Jx,g
η0Jz,g

]
=

[
Ex,rs
−jEz,rs

]
(75)

The current on the graphene plate is calculated as:[
Jx
Jz

]
=

[
σxxEx + σzxEz
−σzxEx + σxxEz

]
=

[
σxx σzx
−σzx σxx

] [
Ex
Ez

]
= σ .

[
Ex
Ez

]
(76)

The current vector in the discretized form is as follows:[
jη0Jx,g
η0Jz,g

]
=

[
jη0σ

g
xx,h −η0

(
Me

xσ zx,e
)g

−η0
(
Mh

xσ zx,h
)g

jη0σ
g
xx,e

] [
Ex,g
−jEz,g

]
(77)

It should be noted that the positions of the field com-
ponents are different from each other, for instance, in (77)
the Ex components are discretized at different positions than
those of Ez components, and hence these components cannot
be added or subtracted from each other directly. To over-
come this problem, the interpolation matrices have been uti-
lized in (77) to obtain the values of the terms σ zxhEx,g and
σ zxe

(
−jEz,g

)
at the correct position.

By substituting (77) into (74), we have:[
Zr,g11 Zr,g12
Zr,g21 Zr,g22

] [
jη0σ

g
xxh −η0

(
Me

xσ zxe
)g

−η0
(
Mh

xσ zxh
)g

jη0σ
g
xxe

]
[

Ex,g
−jEz,g

]
=

[
Ex,g
−jEz,g

]
(78)

In the above equation the superscript g denotes that all the
quantities are on the discretization lines on the graphene plate.
Equation (78) is rewritten in the following homogeneous
form:([

Zr,g11 Zr,g12
Zr,g21 Zr,g22

] [
jη0σ

g
xxh −η0

(
Me

xσ zxe
)g

−η0
(
Mh

xσ zxh
)g

jη0σ
g
xxe

]
−

[
Ix,g 0
0 Iz,g

])[
Ex,g
−jEz,g

]
= 0 (79)

Ix,g and Iz,g are unity matrices with their dimensions being
equal to the number of dashed and solid lines positioned on
the graphene plate, respectively. In order for (79) to have a
non-zero solution, the determinant of the coefficients matrix
must be zero, hence the characteristic equation is obtained as:

det
([

Zr,g11 Zr,g12
Zr,g21 Zr,g22

] [
jη0σ

g
xxh −η0M

eg
x σ

g
xxh

−η0M
hg
x σ

g
zxh jη0σ

g
xxe

]
−

[
Ix,g 0
0 Iz,g

])
= 0 (80)

For the microstrip line, εre is obtained from the above
equation.
An alternative way to get the characteristic equation is

using (67). In this way, we do not need to inverse the matrix(
Ȳ tk + Ȳ tl

)
. Equation (67) is written as:(

Ȳ tk + Ȳ tl
)
Ēm = J̄m (81)[

Th 0
0 T e

] [
Ȳ11 Ȳ12

Ȳ21 Ȳ22

] [
T th 0
0 T te

]
×

[
Ex,m
−jEz,m

]
=

[
jη0Jx,m
η0Jz,m

]
(82)[

Y11 Y12
Y21 Y22

] [
Ex,m
−jEz,m

]
=

[
jη0Jx,m
η0Jz,m

]
(83)
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Using (71), (83) is written as the following:
y11 y12 y13 y14 y15 y16
y21 y22 y23 y24 y25 y26
y31 y32 y33 y34 y35 y36
y41 y42 y43 y44 y45 y46
y51 y52 y53 y54 y55 y56
y61 y62 y63 y64 y65 y66




Ex,ls
Ex,g
Ex,rs
−jEz,ls
−jEz,g
−jEz,rs



= η0


0x,ls
jJx,g
0x,rs
0z,ls
Jz,g
0z,rs

 (84)

This equation can be decomposed into three
equations:

[
y11 y12 y13 y14 y15 y16
y41 y42 y43 y44 y45 y46

]


Ex,ls
Ex,g
Ex,rs
−jEz,ls
−jEz,g
−jEz,rs


=

[
0x,ls
0z,ls

]
(85)

[
y21 y22 y23 y24 y25 y26
y51 y52 y53 y44 y55 y56

]


Ex,ls
Ex,g
Ex,rs
−jEz,ls
−jEz,g
−jEz,rs


= η0

[
jJx,g
Jz,g

]
(86)

[
y31 y32 y33 y34 y35 y36
y61 y62 y63 y64 y65 y66

]


Ex,ls
Ex,g
Ex,rs
−jEz,ls
−jEz,g
−jEz,rs


=

[
0x,rs
0z,rs

]
(87)

These equations can be written in the following form in
which the current vectors on the graphene plate are written in
terms of the electric field.[

y11 y14
y41 y44

] [
Ex,ls
−jEz,ls

]
+

[
y12 y15
y42 y45

] [
Ex,g
−jEz,g

]
+

[
y13 y16
y43 y46

] [
Ex,rs
−jEz,rs

]
=

[
0x,ls
0z,ls

]
(88)[

y21 y24
y51 y54

] [
Ex,ls
−jEz,ls

]
+

[
y22 y25
y52 y55

] [
Ex,g
−jEz,g

]
+

[
y23 y26
y53 y56

] [
Ex,rs
−jEz,rs

]

FIGURE 5. Microstrip transmission line with the graphene sheet used as
the strip.

=

[
jη0σ

g
xx,h −η0

(
Me

xσ zx,e
)g

−η0
(
Mh

xσ zx,h
)g

jη0σ
g
xx,e

] [
Ex,g
−jEz,g

]
(89)[

y31 y34
y61 y64

] [
Ex,ls
−jEz,ls

]
+

[
y32 y35
y62 y65

] [
Ex,g
−jEz,g

]
+

[
y33 y36
y63 y66

] [
Ex,rs
−jEz,rs

]
=

[
0x,rs
0z,rs

]
(90)

These equations are rewritten in a summary form as:

A [Els]+ B
[
Eg
]
+ C [Ers] = [0ls] (91)

D [Els]+ E
[
Eg
]
+ F [Ers] = σ

[
Eg
]

(92)

G [Els]+H
[
Eg
]
+ I [Ers] = [0rs] (93)

The vectors [Els] and [Ers] are obtained from (91) and (93)
as the following:

[Ers] =
[
−GA−1C+ I

]−1 [
GA−1B−H

] [
Eg
]

= M1
[
Eg
]

(94)

[Els] =
[
−A−1B+A−1C

[
−GA−1C+ I

]−1
×

[
−GA−1B+H

]] [
Eg
]
= M2

[
Eg
]

(95)

By substituting (94) and (95) into (92) we have:

[DM1 + E+ FM2]
[
Eg
]
= σ

[
Eg
]

(96)

Therefore, the characteristic equation takes the form:

det [DM1 + E+ FM2 − σ ] = 0 (97)

The solutions of the characteristic equations (80) and (97)
are the same. The propagation constant is as the following:

kz =
√
εeff = kzr − jkzi (98)

D. SPECTRAL DOMAIN METHOD FOR THE ANALYSIS
OF GRAPHENE-BASED MICROSTRIP LINE
Spectral Domain Method is one of the best methods for
the analysis of planar transmission lines. It uses Fourier
transformation of the fields to solve the integral equations.
Generalized formulations of this method for the analysis of
planar microstrip transmission lines are presented in [23].
Following the aforesaid formulations, we briefly describe the
way to analyze a microstrip transmission line structure with
a graphene slab (Fig. 5).

The fields are calculated as the superposition of the Fourier
form of TE-to-y and TM-to-y expressions derived from the
Fourier transformed scalar potentials ψ̃eand ψ̃h[23]. Solv-
ing the Fourier-transformed Helmholtz equation for both
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scalar potentials considering the boundary conditions of the
problem, the following solutions can be assumed for the
regions 1 and 2 specified in Fig. 5:

Region 1 (considering zero tangential fields at y = 0 ):

ψ̃e
= Be cosh(γ1y) (99)

ψ̃h
= Bh sinh(γ1y) (100)

Region 2 (considering zero fields at infinity):

ψ̃e
= Aee−γ2y (101)

ψ̃h
= Ahe−γ2y (102)

where Ae,Ah,Be,Bhare unknown coefficients and γi =√
α2 + β2 − k2i is the propagation constant in y direction.

Substitution of the assumed solutions into the TE-to-y and
TM-to-y Fourier form expressions, yields the generalized
form of the fields in the two regions including the unknown
coefficients [24, eqs. (18)–(28)]. It is well known that the
space domain boundary conditions at the graphene-contained
interfaces include the continuity of the tangential components
of electric field, and the jumping of the tangential components
of magnetic field by the corresponding unknown graphene
current density component. Using the space domain boundary
conditions at y = d, the unknown coefficients are determined,
and the following relations are obtained:[

Ẽz1
Ẽx1

]
=

[
Zzz Zzx
Zxz Zxx

] [
J̃z
J̃x

]
(103)

in which

Zxx =
1

α2 + β2

(
−α2Z e − β2Zh

)
(104)

Zzz =
1

α2 + β2

(
−β2Z e − α2Zh

)
(105)

Zxz = Zxz =
αβ

α2 + β2

(
−Z e + Zh

)
(106)

where

Z e =
γ1γ2

γ2ŷ1 coth(dγ1)+ γ1ŷ2
(107)

Zh =
ẑ1ẑ2

γ1ẑ2 coth(dγ1)+ γ2ẑ1
(108)

which contains four unknowns. Assume that the spectral
domain currents J̃x and J̃z are sums of N and M knows
basis functions J̃xm and J̃zm, respectively, with cm and dm
being the unknown coefficients. Then, an equation based on
a momentum matrix is formed [24]:[

K (1,1)
km K (1,2)

km
K (2,1)
lm K (2,2)

lm

][
cm
dm

]
=

[
em
fm

]
(109)

in which cm, dm, em and fm are the unknowns to be
determined.

As the graphene surface has a tensor conductivity, the rela-
tion between the current distributions and the tangential elec-
tric fields is:[

Ez
Ex

]
=

 σxxσ −
σzx

σσzx

σ

σxx

σ

[ Jz
Jx

]
(110)

where

σ = σ 2
xx + σ

2
zx (111)

Substitution of this relation into the equations which include
em and fm, results in a relation which expresses em and fm in
terms of cmand dm [24]:[

em
fm

]
=

[
P(1,1)km P(1,2)km
P(2,1)lm P(2,2)lm

][
cm
dm

]
(112)

As a result, the matrix equation (109) can be written as:[
K (1,1)
km − P(1,1)km K (1,2)

km − P(1,2)km
K (2,1)
lm − P(2,1)lm K (2,2)

lm − P(2,2)lm

][
cm
dm

]
=

[
0
0

]
(113)

where cm and dm are the unknowns, and the propagation
constant is obtained by equating the determinant of the matrix
in (113) to zero. Generally, any kind of basis function can be
utilized, however, in normal propagation modes symmetric
basis functions could result in more accurate results [24].
On the other hand, in plasmonic propagation modes, symmet-
ric functions cannot model the problem accurately. Hence the
basis functions are chosen as a combination of sine and cosine
functions.

III. SOFTWARE SIMULATION
In the previous sections, the analysis of graphene multilay-
ered structures using the method of lines was explained, and
also the analysis of graphene microstrip lines by the spectral
domain method was presented. In order to verify the results
obtained from these methods, the two aforesaid structures
are simulated using COMSOL software. This software solves
the electromagnetic waves using the finite element method
and computes the electric field usingMaxwell equations. The
magnetic field and other quantities related to the structure are
calculated from the electric field. The simulation of the three
structures, i.e., graphene microstrip line, graphene stripline,
and parallel-plate waveguide, is done using the COMSOL
software. The analysis mode of COMSOL software is used to
obtain the propagation constant of the structure. To analyze
2D structures, it is sufficient to analyze the cross section
of these structures which is a plate. Figs. (6), (7) and (8)
illustrate the graphene microstrip line, graphene stripline, and
graphene parallel-plate waveguide in COMSOL software,
respectively.

For further clarity, the zoomed state of the COMSOL is not
shown. At the boundaries adjacent to the free space, PML
plates are placed around the structure with an appropriate
distance which is not shown in the figures. To model the
graphene plate, it is considered as a material with a very low
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FIGURE 6. Graphene microstrip line structure in COMSOL environment
(the values are in meters and the bottom rectangle is dielectric).

FIGURE 7. Graphene stripline structure in COMSOL environment.

FIGURE 8. Graphene parallel-plate waveguide structure in COMSOL
environment.

thickness of t = 1µm with anisotropic permittivity as the
following [24]:

¯̄ε = 1+ ¯̄σ/jωtε0 (114)

where

¯̄σ =

 σzz 0 −σzz
0 0 0
σzx 0 σzz

 (115)

in which t is the thickness of the graphene plate. Substitution
of (115) in (114) gives the permittivity matrix as:

¯̄ε =

 εzz 0 −εzz
0 1 0
εzx 0 εzz

 (116)

where

¯̄ε = 1+ ¯̄σ/jωtε0 (117)

FIGURE 9. The normalized propagation constant of the microstrip line
plotted for three chemical potentials and magnetic bias B0 = 0.1 T :
a) real part, b) imaginary part, Solid line: SDM method, Dashed line:
MOL method, Circles: COMSOL Simulation.

IV. RESULTS
As examples of multilayered structures, three structures of
graphene-based microstrip line, graphene-based stripline,
and graphene-based parallel-plate waveguide are analyzed
using the proposedmethod in this paper (i.e. extendedmethod
of lines). Also, the microstrip line is analyzed using the spec-
tral domain method. All these structures are also simulated
using the COMSOL software. In this section, the results of
different methods are discussed and the COMSOL software
simulations are presented.

A. MICROSTRIP LINE
As the first example of graphene-contained multilayered
structures, the results from the analysis of the microstrip line
using the extended method of lines is presented. The structure
of the graphene microstrip line is illustrated in Fig. 5. The
width of the graphene strip is w = 1mm and the substrate
thickness is d = 1mm. The permittivity of the substrate and
the magnetic bias of graphene are considered as εr = 4
and B0 = 0.1T , respectively. The propagation constant of
the microstrip line with the above-mentioned characteristics
is computed using MOL and SDM methods, and is com-
pared with COMSOL simulations. Fig. 9 plots the real and
imaginary parts of the propagation constant with respect
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FIGURE 10. Electric field distribution for different frequencies:
a) µc = 0.1, b) µc = 0.8.

FIGURE 11. Analyzed graphene-based stripline.

to the frequency for the chemical potentials µc = 0.1ev,
0.4ev, 0.8ev.

Electric field distribution of graphenemicrostrip line at dif-
ferent frequencies for different chemical potentials is shown
in Fig. 10.

B. STRIPLINE
As the second example of graphene-contained multilayered
structures, the analysis of the graphene stripline using the
extended method of lines is presented. The structure of the
graphene stripline is illustrated in Fig. 11.

The width of the graphene strip is w = 1mm and the
distance between the two PEC plates is d = 0.6mm. Dielec-
tric permittivity under the graphene plate is εr= 4 and the
magnetic bias of graphene is B0 = 0.1T . The propagation
constant of the graphene stripline with the above-mentioned
characteristics is computed using the extended method of
lines, and is compared with the results of COMSOL software.
Fig. 12 plots the real and imaginary parts of the propagation
constant with respect to the frequency for three chemical
potentials µc = 0.1ev, 0.4ev, 0.8ev.

Electric field distribution of graphene stripline structure
at different frequencies for different chemical potentials is
shown in Fig. 13.

FIGURE 12. The normalized propagation constant of stripline plotted for
three chemical potentials and magnetic bias B0 = 0.1 T : a) real part,
b) imaginary part, Solid line: MOL method, Circles: COMSOL Simulation.

FIGURE 13. Electric field distribution at different frequencies: a)
µc = 0.1, b) µc = 0.8.

C. PARALLEL-PLATE WAVEGUIDE (PPWG)
As the third example of graphene-contained multilayered
structures, the results of the analysis of the graphene
parallel-plate waveguide using the extended method of lines
are presented. The structure of the graphene parallel-plate
waveguide is shown in Fig. 14.

The widths of the graphene strips are w = 1mm. The
analysis of this structure is performed for two values of
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FIGURE 14. Analyzed graphene-based parallel-plate waveguide.

FIGURE 15. The normalized propagation constant for the parallel-plate
waveguide plotted for two different permittivities. The magnetic bias is
B0 = 0.1T . a) real part, b) imaginary part, Solid line: MOL method, Circles:
COMSOL Simulation.

the substrate dielectric permittivity εr = 4 and εr = 10.
The distance between the two graphene strips, and also
the graphene magnetic bias are considered d= 0.2mm and
B0 = 0.1T , respectively. The propagation constant of the
parallel-plate waveguide with the above-mentioned charac-
teristics is obtained usingMOLmethod and is compared with
COMSOL software simulations. Fig. 15 plots the real and
imaginary parts of the propagation constant with respect to
the frequency for the chemical potential µc = 0.8ev and for
two different values of the substrate dielectric permittivity.

The distributions of the electric field in the graphene
parallel-plate waveguide structure at different frequen-
cies for two different dielectric permittivities are shown
in Fig. 16.

FIGURE 16. Electric field distribution for different frequencies:
a) εr = 4, b) εr = 10.

V. CONCLUSIONS
In this paper, the analysis of the graphene-containedmultilay-
ered two-dimensional structures using the extended method
of lines is proposed. Multilayered planar waveguides and
two-dimensional waveguides in different coordinate systems
are examples of such structures which can all be analyzed
using the proposed method. In this paper, a generic two-
dimensional multilayered structure is considered for the anal-
ysis purposes. The graphene plate placed between the layers
may cover the interface of the two layers totally or partially,
both of which can be analyzed using the proposed method.
In the analysis, the graphene conductivity is considered as
a tensor. Impedance and admittance transformation formulas
at the interface between each two graphene-contained layers
are presented. In order to calculate the propagation constant
of the structure, the characteristic equation of the graphene-
contained multilayered structure is obtained by matching
the fields at the interfaces. Using the proposed method, all
graphene-containedmultilayered structures includingwaveg-
uide structures, absorbers, and radiators can be analyzed.
In the present paper, three waveguide structure test cases
including graphene microstrip line, graphene stripline, and
graphene parallel-plate waveguide are analyzed using the
extended method of lines. To verify of the results, all the
aforesaid structures are simulated using COMSOL software.
Furthermore, the graphene microstrip line is analyzed using
the SDMmethod. The results are in good agreement. By vary-
ing the graphene parameters such as chemical potential,
the controllable characteristics of the multilayered structure
(here the propagation constant of the analyzed transmission
lines) are investigated. The controllability of graphene sheet
has many applications in tunable microwave devices. The
proposed method can be used and implemented in various
kinds of multilayered structures.
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