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ABSTRACT Many privacy protections in distributed setting are based on secure comparison, according to
which two distrusted users try to jointly determine whether a > b, a = b, or a < b. Performing ‘‘secure
comparison’’ is fundamental to achieve widespread acceptance of privacy protection for distributed setting
users. Surprisingly, however, no attention has been paid to secure comparison on fractions, to the best of our
knowledge. In this paper, we first present an efficient system for computing ((ka+ k1)/(kb+ k1)), which
implies the potential relationship (a > b, a = b, and a < b) between a and b, where k , k1, and b belong to
the party who doesn’t have the secret of the system. Based on this system, two distrusted users in distributed
setting can learn whether a > b, a = b, or a < b in one execution, without disclosing a and b to each
other. Then, we develop two efficient protocols for secure comparison on integers and secure comparison
on fractions, respectively. Our schemes, based on homomorphic encryption, are cryptographically secure.
We prove that these protocols are secure using simulation paradigm. Our approaches can be used in many
secure multi-party computation protocols that involve fractions, rational numbers, and integers. They can
also bemore convenient to solve some securemultiparty computational geometry problems that often involve
ratio evaluation.

INDEX TERMS Secure ratio computation, millionaires’ problem, homomorphic encryption, secure
computation.

I. INTRODUCTION
In applications of network communications and signal
processing, we (participants) are often interested in a partic-
ular scenario wherein a party Pc seeks the cooperation of
another party Ps to perform a secure comparison task (Secure
Two-Party Comparison, STPC).

STPC problem can be described as follows. Alice
and Bob want to jointly determine the potential relation-
ship (>, = or <) of their confidential numbers without
revealing this data to each other nor to anyone else.
However, they still want to learn the relationship of
their private data. It is the fundamental to secure multi-
party computation (SMC), and it plays an important role
in many applications, such as price negotiations in electronic
auction or bidding systems [1]–[9], [22], privacy-preserving
computational geometry [10]–[13], privacy preserving data

mining [14]–[19], and private set intersection [20], [21].
As a sub-protocol (to be called) of many SMC protocols,
the reuse of private information of the involved two parties
with no or negligible leakage is all-important. Since many
SMC protocols involve a large number of instances of secure
comparison, even a minor efficiency gain in secure compar-
ison will bring about significant performance improve-
ments [22].
RelatedWorks:The secure comparison problem starts from

the millionaires’ problem that was presented by Yao [23].
It is a cryptographic solution for determining ‘‘greater than’’
between two numbers. The complexity of this solution is
exponential in the number of bits of the involved numbers.
Before long, Cachin [24] put forward a protocol based on the
8-hiding assumption with constant-round communication
complexity, which needs a third party. Thereafter, many
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efficient comparison protocols without any third party have
been constructed [22], [25]–[29]. Ioannidis and Grama [26]
designed a protocol to solve the secure comparison problem
based on the 1-out-of-2 oblivious transfer, which takes
d-round communication (where d is the length of the private
inputs), and is restricted by the security parameter of the
oblivious transfer scheme. Fischlin [25] put forward a secure
comparison protocol with 2-round communication based
on the Goldwasser-Micali encryption scheme. Blake and
Kolesnikov [22] and Lin and Tzeng [27] constructed secure
comparison protocols with 2-round communication based
on the Paillier addition homomorphic cryptosystem and the
ElGamal multiplication homomorphic encryption scheme.
However, all these protocols with 2-round communication
can only solve the greater than secure comparison problem
and determine the relation of two integers. Luo et al. [28]
proposed a secure comparison protocol by geometric method,
which takes 24 log n + 8d + 4 modular multiplications.
However, this protocol can only detemine the relation of
two real numbers. Veugen et al. [29] gave a comprehen-
sive analysis only on the state-of-the-art integer comparison
protocols for a two party setting in the semi-honest security
protocol. However, all these analyzed protocols can only
compare the numbers less than blog n

3c. Li and Wang [30]
presented an efficient secure comparison protocol based on
homomorphic encryption and the Fundamental Theorem of
Arithmetic, which can only determine > or ≤ of two inte-
gers in one execution. Nakai et al. [31] developed several
efficient card-based cryptographic protocols for million-
aires’ problem utilizing private permutations, which solve
the ‘‘greater than’’ comparison problem (on integers) in a
new perspective. Hezaveh et al. [33] put forward an efficient
solution to the socialist millionaires’ problem, which can only
solve ‘‘equality’’ comparison problem (on integers) in an
efficient way. Grigoriev et al. [35] solved Yao’s millionaires’
problem (i.e. greater than comparison on integers) utilizing
public-key encryption without computational assumptions.
Liu et al. [32] proposed a solution to secure comparison
(on integers) based on Paillier homomorphic encryption
scheme. Li et al. [34] put forward an efficient solution for the
general millionaires’ problem based on Paillier homomorphic
encryption scheme, which can solve comparison problem
(on rational numbers).

All those above protocols have solved the secure compar-
ison problem well. However, no method can be found to
solve the millionaires’ problem precisely in the fraction field.
In this paper, we propose protocols to solve this problem.
Our protocols are highly efficient and can precisely figure out
the three possible relationships (>,=, <) between two
(integer, or rational, or fraction) numbers in one execution.
Contributions: It is quite common in practical applications

that the STPC problem is not confined to the integer field.
Indeed, private inputs that comprise rational numbers or frac-
tions are more common in general cases. Therefore, a more
generalized precise solution to the millionaires’ problem is
absolutely necessary for the broader field. It is noted that

rational numbers comprise integer numbers, and rational
numbers can be transformed into fractions but the reverse is
not true. Therefore, the solution to the millionaires’ problem
on fractions is more flexible and adaptable.

We study this problem utilizing the ‘‘ratio’’ approach,
which can avoid the wrong understanding that the encryption
of the difference between two numbers can be evaluated
via homomorphic operation of Paillier encryption scheme.
Refer to the analysis in paper [38], the encryption function
f (x, y) = (1 + kn)xyn mod n2 is bijective if and only if
(x ∈ Zn) ∧ (y ∈ Z∗n ). That is to say, Paillier encryption
scheme can not be used to encrypt negative numbers. In order
to solve the secure comparison with a correct utilization of
Paillier encryption scheme, we seek to figure out the rela-
tionship between two private numbers through evaluating
a relationship-ratio. Where, the problem of comparing two
fractions can be reduced to computing a relationship-ratio
that reflects the relationship between two integers.

Our main contributions are as follows.
(1)We provide a ‘‘ratio’’ method for solving general secure

comparison problem with a correct utilization of Paillier
encryption scheme;

(2) We solve the millionaires’ problem precisely for frac-
tions;

(3) Our protocols have high efficiency that it can figure out
the three potential relationships (<,=, >) between two
private numbers from two distrusted parties in one execution;

(4) To achieve a lower computational complexity, our
protocols entrust the time-consuming exponent calculation
‘‘rn mod n2’’ to cloud-server in data pretreatment phase.
We employ an equivalent but far more efficient way (rnx mod
n2 = R`1i · R

`2
j mod n2, where `1 + `2) instead of time-

consuming exponent calculation: rn mod n2.
The rest of this paper is organized as follows.

Section 2 introduces the building blocks. Section 3 describes
the secure relationship-ratio computing system and shows
its correctness and security. Section 4 gives the solution to
secure comparison with encrypted integers. Section 5 gives
the solution to secure comparison with encrypted fractions.
Section 6 compares the performance of different proto-
cols based on the cryptographic computational problem,
‘‘decisional composite residuosity’’. Section 7 gives our
conclusions.

II. BUILDING BLOCKS
In this section, we describe essential building blocks used
in secure comparison (SC) protocols: definitions about two-
party secure computation in Section 2.1, homomorphic
encryption (HM) in Section 2.2 and analogous decryption
in Section 2.3.

A. DEFINITIONS ABOUT TWO-PARTY SECURE
COMPUTATION
Through out this paper, we define security for two party
protocols in the presence of semi-honest adversaries.

VOLUME 6, 2018 25533



L. Gong et al.: Secure ‘‘Ratio’’ Computation and Efficient Protocol for General Secure Two-Party Comparison

The following definitions are formed according to [36]
and [37].
Definition 1 (Ideal Protocol): Assume that there exists a

completely Trusted Third Party (TTP). Assisted by TTP,
a secure two-party computation protocol can be performed
as follows. Alice and Bob transform their inputs x and y
to TTP. TTP evaluates f (x, y) independently, and sends the
output to Alice and Bob once he completes the evaluation.
Because there is no way for Alice and Bob to obtain addi-
tional information other than f (x, y). Such a simple protocol
is the highest private protocol of secure two-party evaluation,
and the privacy of any practical secure two-party evaluation
protocol cannot outperform this protocol.
Definition 2 (Semi-Honest Participant): According to [36],

a semi-honest participant follows the protocol trustily as
specified. However, it may try to learn more information
than allowed by looking at the transcript of messages that
it received and its internal state(s).
Definition 3 (Simulation-Based Security [36]): Let f =

(fA, fB) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-
party functionality that can be evaluated by Alice and Bob
in probabilistic polynomial time and let 5 be a two-party
protocol for computing f . Given the input of the protocol,
the view of Alice and Bob in an execution of 5 on inputs
(a, b) is

viewπd (a, b) = (a, rd ,md1,md2, · · · ,mdk ),

where d ∈ {A,B} and rd is the content of Alice’s or Bob’s
internal random tape, and mdi represents the i-th message
that she or he received. The output of the Alice in an execu-
tion of 5 on (a, b) is denoted by Output5A (a, b) and can be
computed from ViewπA (a, b). Similarly, the output of Bob in an
execution of5 on (a, b) is denoted by Output5B (a, b) and can
be computed from ViewπB (a, b).
Let f and 5 be as above. Protocol 5 is said to securely

compute f in the presence of semi-honest adversaries if there
exist probabilistic polynomial-time algorithms SA and SB
such that

{(SA(a, fA(a, b)), fB(a, b))}a,b
c
≡ {(viewπA (a, b), output

π
B (a, b))}a,b (1a)

{(fA(a, b),SB(a, fB(a, b)))}a,b
c
≡ {(outputπA (a, b), view

π
B (a, b))}a,b (1b)

where
c
≡ represents indistinguishability on computation.

B. HOMOMORPHIC PUBLIC ENCRYPTION (HPKE)
Intuitively, a public key encryption scheme is homo-
morphic if given two ciphertexts C1 = Epk (m1; r1)
and C2 = Epk (m2; r2), it is possible to efficiently compute
Epk (m1rp m2; r) by evaluatingC1rc C2, whererp andrc
are operations that carried out in plaintext space (M) and
cipher space (C), respectively. We abuse notation and use
Epk (m) to denote the random variable induced by Epk (m; r),
where r is chosen uniformly. We have the following formal
definition,

Definition 4 (Homomorphic Public Encryption (HPKE)):
A public encryption (G, E, D) is homomorphic if for all N
and all (pk, sk) output by key generating algorithm G(1N ),
and for every m1, m2 ∈M it holds that

{pk,C1 = Epk (m1),C2 = Epk (m2),C1 rc C2}

≡ {pk,C1 = Epk (m1),C2 = Epk (m2),Epk (m1 rp m2)}

(2)

where C1, C2 ∈ C.
The Paillier Cryptosystem: Paillier put forward three

encryption schemes [38], where Schemes 1 (see Figure 1) is
homomorphic.

FIGURE 1. Paillier’s encryption scheme 1.

This scheme is semantically secure, assuming hardness
of the decisional composite residuosity problem. Note that,
the Paillier Scheme 1 has two additively homomorphic prop-
erties

E(m1 + m2) = E(m1) · E(m2), (3a)

(E(m2))m1 = E(m1m2), (3b)

which plays an important role in secure computing and
computing on encrypted data.
Definition 5 (Decisional Composite Residuosity (DCR)

Problem): Set D be a distinguisher, and let the sets DRan
and DCr are two distributions:

DRan = {(n,R) = (n,R)|R R
← Zn2}

DCr = {(n,R) = (n, rn mod n2)|R← rn mod n2};

where τ is the secure parameter and AdvD(τ ) is the
advantage of a distinguisherD in distinguishing distributions
DRan and DCr . Given a distribution (n,R) ∈ {DRan, DCr },
the distinguishing result on (n,R) from a distinguisher D
is denoted as D(n,R) = DRan or D(n,R) = DCr . Then,
AdvD(τ ) can be expressed as

AdvD(τ ) = |Pr [D(n,R) = DRan]− Pr [D(n,R) = DCr ]| .

This is a well-known intractable problem. In other word,
for any probabilistic, polynomial-time algorithm D, there is
a negligible function δ(τ ) such that

AdvD(τ ) ≤ δ(τ ).
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C. PRE-COMPUTATION WITH THE AID OF CLOUD
In order to improve computation efficiency, we assume that
both Alice and Bob should develop pre-computation with
the aid of cloud prior to their undergoing secure comparison
protocols (see in Section 3 and Section 4) as follows.
Alice or Bob selects riA , riB ∈ Z∗n (riA , riB < n) respec-

tively, and both entrust Ri9 = rni9 mod n2 (9 ∈ {A,B}) to
cloud. After receiving all Ri9 , Alice or Bob permutes Ri9
and stores them in a collection which is denoted by R9 .
When encrypting a message using Paillier scheme, one can
employ an equivalent but far more efficient way to evaluate
rn mod n2 as follows. Firstly, one randomly selects several
members from R9 , for example, Ri,Rj ∈ R as the seeds, then
he or she computes rnx mod n2 = R`1i · R

`2
j mod n2, where

`1, `2 and `1 + `2 are small integers. This does not lead to
information leakage, which is guaranteed by the semantic
security of Paillier encryption scheme.

D. FIGURE OUT RELATIONSHIP BETWEEN TWO
NUMBERS BY EVALUATING RELATIONSHIP-RATIO
Note that the relationship between α, β (where α, β ∈

Z+n ) can be determined by computing Kα+K1
Kβ+K1

, that is α >

β if Kα+K1
Kβ+K1

> 1, α = β if Kα+K1
Kβ+K1

= 1, and α <

β if Kα+K1
Kβ+K1

< 1. We can define function

P(
α

β
) =



+1
Kα + K1

Kβ + K1
> 1

0
Kα + K1

Kβ + K1
= 1

−1
Kα + K1

Kβ + K1
< 1,

to figure out the relationship between α and β, where Kα+K1
Kβ+K1

is called relationship-ratio.

III. SECURE RELATIONSHIP-RATIO COMPUTING SYSTEM
A. DESCRIPTION OF SECURE RELATIONSHIP-RATIO
COMPUTING SYSTEM
Without loss of generality, assuming the communicating
parties, Alice and Bob have secrets related to a and b, respec-
tively. Alice and Bob try to jointly evaluate the relationship
of their private data by performing a secure relationship-ratio
computing system, but they do not want to disclose their
secrets to each other.

In what follows, we give the description of secure
relationship-ratio computing system, which is composed
of three random algorithms: Key-Generation, Encrypted
Relationship-Ratio Development and Relationship-Ratio
Computation. The system is denoted as 5(Key−Gen,
Enc− RRD,RR− Computation):

Key-Gen: Alice runs the key generation algorithm to
generate her public-key (n, 1 + n) and private key λ =
lcm(p− 1, q− 1).

Enc-RRD: (1) Alice randomly selects ra ∈ Z∗n and
encrypts her secret a into C(a,1+n) as follows.

C(a,1+n) = (1+ n)arna mod n2.

Then Alice sends it to Bob.
(2) After receiving C(a,1+n), Bob works as follows.
– Selects a random number rb ∈ Z∗n and encrypts his

private information b into C(b,1+n) as follows.

C(b,1+n) = (1+ n)b(rb)n mod n2.

– Selects K ∈ Z+n−1, K1,K2 ∈ Z+n , rb, rb1, rb2, rb3 ∈
Z∗n and evaluates:

C(K2,1+K1n)= (1+ K1 · n)K2rnb1 mod n2,

C(a,1+K1n)=C
K1
(a,1+n) mod n2

= ((1+ K1 · n)arK1n
a mod n2,

C(b,1+K1n)=C
K1
(b,1+n) mod n2

= ((1+ K1 · n)br
K1n
b mod n2,

C(Ka,1+K1n)=C
K
(a,1+K1n) mod n2

= ((1+ K1 · n)KarKK1n
a mod n2,

C(Kb,1+K1n)=C
K
(b,1+K1n) mod n2

= ((1+ K1 · n)Kbr
KK1n
b mod n2,

C(Ka+K2,1+K1n)

=C(Ka,1+K1n) ·C(K2,1+K1n) ·r
n
b2 mod n2

= ((1+K1 ·n)Ka+K2rKK1n
a rnb1r

n
b2modn2,

C(Kb+K2,1+K1n)

=C(Kb,1+K1n) · C(K2,1+K1n)

· rnb3 mod n2

= ((1+K1 ·n)Kb+K2rKK1n
b rnb1r

n
b3modn2.

Then Bob sends the pair (C(Ka+K2,1+K1n),

C(Kb+K2,1+K1n)) to Alice.
RR-Computation: Set L(χ ) = χ − 1, where
χ ∈ Zn2 . Owing to Carmichael’s theorem, knowing with
(C(Ka+K2,1+K1n), C(Kb+K2,1+K1n)), Alice can obtain a
fraction 0 < Ka+K2

Kb+K2
< n2 by computing

L(Cλ(Ka+K2,1+K1n)
mod n2)

L(Cλ(Kb+K2,1+K1n)
mod n2)

=
L((((1+ K1 · n)Ka+K2rKK1n

a rnb1r
n
b2 mod n2)λmod n2)

L((((1+ K1 · n)Kb+K2rK1n
b rnb1r

n
b3 mod n2)λmod n2)

=
λ(Ka+ K2)K1

λ(Kb+ K2)K1

≡
Ka+ K2

Kb+ K2
.

Note that the process used to evaluate
L(Cλ(Ka+K2,1+K1n)

mod n2)

L(Cλ(Kb+K2,1+K1n)
mod n2)

is analogous to the decryption of Paillier, while the output of
this process is a real number 0 < R = Ka+K2

Kb+K2
< n2 rather

VOLUME 6, 2018 25535



L. Gong et al.: Secure ‘‘Ratio’’ Computation and Efficient Protocol for General Secure Two-Party Comparison

than an integer on Zn. We call it Relationship-Ratio
Computation in following sections.
Relationship out of relationship-ratio

computing.Obviously, one can figure out the relationship
of a and b through determining the relationship of Ka+K2

Kb+K2
and 1 as follows.

a
b
=
Ka
Kb


> 1

Ka+ K2

Kb+ K2
> 1

= 1
Ka+ K2

Kb+ K2
= 1

< 1
Ka+ K2

Kb+ K2
< 1.

Because of this, we define this process as relationship
out of relationship-ratio computing.

B. SECURITY ANALYSIS
Theorem 1: If the DCR problem is intractable, then system

5 has indistinguishable encryptions under adaptive chosen
plaintext attacks.

Proof: Recall that the DCR challenger works as follows:
it generates (p, q, n), and chooses a random number r ∈ Zn
and f uniformly from {0, 1}, sets R = rn mod n2 if f = 0
and R = R if f = 1, and finally gives (n, (n,R)) to the
attacker.

Let 5(Key−Generation, Homomorphicencryption,
Analogousdecryption) be our developed system. Let A
be a polynomial-time algorithm attacking 5(A could be
external or internal). We may construct an algorithm B to
solve the DCR problem as follows.

Algorithm B
1: Receives (n, (n,R)) from the DCR challenger;
2: Let pk = (n, n+ 1);
3: Sends 1n and pk to A;
4: Receives two messages m0 and m1 from A;
5: Chooses d ∈ {0, 1} uniformly;
6: Let C∗ = (n, n + 1, (1 + n)md ·R (mod n2)) and sends
C∗ to A;

7: Let d ′ denote the output of d guessed by A;
8: Outputs f ′ (If d = d ′ and then set f ′ = 0. If d 6= d ′, then

set f ′ = 1).

Algorithm B runs in polynomial time because A runs
in polynomial time. Consequently, the operations inG(1k ) can
be performed in polynomial time. By Bayes theorem, we can
evaluate the probability that B wins the DCR security game
as follows.

Pr[f = f ′]

= Pr[f =0]Pr[f = f ′|f = 0]+ Pr[f = 1]Pr[f = f ′|f = 1]

=
1
2
Pr[f ′ = 0|f = 0]+

1
2
Pr[f ′ = 1|f = 1]

=
1
2
Pr[d = d ′|f = 0]+

1
2
Pr[d 6= d ′|f = 1]. (4)

When f = 0, the DCR challenger sets R = rn mod n2,
and thus the view that B presents to A is identical to that

of the actual IND-CPA secure game against 5. Therefore,
the probability that d = d ′ given f = 0 is the same as the
probability that A wins the IND-CPA secure game against
5, i.e.,

Pr[d = d ′|f = 0] =
1
2
+ δ. (5)

When f = 1, the DRC challenger sets R = R. Since R
is uniformly selected from Zn2 . It follows that (1 + n)md ·
R (mod n2) is uniformly distributed on the group Z/n2Z .
Moreover, the randomvariablesm0,m1 and d are jointly inde-
pendent. Hence, pk and C∗ reveal no information about d ,
so the guess d ′ output by A must be independent of d . Since
d is either 0 or 1, each with a probability of 1

2 , it follows that

Pr[d = d ′|f = 1] =
1
2
. (6)

From (4), (5) and (6), it follows that

Pr[f = f ′] =
1
2
(
1
2
+ δ)+

1
2
×

1
2
=

1
2
+

1
2
δ. (7)

Thus, B wins the DCR security game with advantage:∣∣∣∣Pr[f = f ′]−
1
2

∣∣∣∣
=

∣∣∣∣(12 + 1
2
δ)−

1
2

∣∣∣∣
=
δ

2
. (8)

By Definition 5, algorithm B might win the DCR secu-
rity game with only a negligible advantage, so δ

2 must be
negligible, which implies that δ is also negligible. There-
fore, algorithm A has only a negligible advantage δ in the
IND-CPA game against 5. �
Theorem 2: If the system5 has indistinguishable encryp-

tions under adaptive chosen plaintext attacks, then Alice and
Bob can securely figure out the relationship between a and b
through system 5.

Proof: For Alice, knowing λ and K1, she can figure out
the relationship between a and b using relation out
of fuzzy computing, but cannot obtain any additional
information about K , b,K2 and K1.
For Bob, due to the sematic security of the system 5,

C(a,1+n) = (1 + n)arna mod n2 is computationally indistin-
guishable from rn mod n2 (r is a randomness from Z∗n ).
Hence, Alice and Bob can securely figure out the relation-

ship between a and b through system 5. �

IV. SECURE COMPARISON WITH ENCRYPTED
INTEGER INPUTS
In this section, utilizing the secure relationship-ratio
computing system, we first propose a new protocol (denoted
as SCEII) for securely comparing two integers. Then,
we analyze its security, correctness and efficiency in the
standard model (simulation-based security).
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A. DESCRIPTION OF PROTOCOL SCEII
Based on pre-computation, homomorphic operation and with
the aid of cloud, we design an efficient protocol for securely
comparing integers in semi-honest setting. To securely
compare their integer numbers (Alice with X and Bob
with Y ), Alice and Bob proceed the protocol SCEII as
follows.

Step 1. Alice runs the key generation algorithm to
generate her keys, and then she publishes the public-
key (n, 1+ n) but keeps λ as her private key.
Step 2.Alice firstly selects a randomnumberR1A ∈ RA,
and then encrypts her private X by her own public-key
as follows.

cX = (1+ X · n) · R1A mod n2. (9)

Then Alice sends cX to Bob.
Parallel operation. Before receiving cX , Bob works as
follows.
• Selects rY ∈ Z+n−1, rXY ∈ Z+n , R1B ,R2B ∈ RB
randomly and evaluates

crXY = R1B (1+ rXY · n) mod n2. (10a)

cY+rXY = R2B (1+ n(rY · Y + rXY )) mod n2.

(10b)

• Selects γ1, γ2, . . . , γ2`1−2 ∈ Z+n (`1 ≥ 2) such
that half of the numbers γ1

γ2
,
γ3
γ4
, . . . ,

γ2`1−3
γ2`1−2

are
greater than 1 but the remaining half are less than 1.

• For 1 ≤ i ≤ `1 − 1, randomly chooses ki ∈ Zn
and R(2i+1)B ,R(2i+2)B ∈ RB, and evaluates cipher-
text pairs as follows.

cγ2i+1 = (1+ki ·γ2i+1 ·n mod n2) · R(2i+1)Bmod n2.

(11a)

cγ2i+2 = (1+ki ·γ2i+2 ·nmod n2) · R(2i+2)B mod n2.

(11b)

Step 3. After receiving cX , Bob works as follows.
¬ Selects a random number RY ∈ R, and computes

cX+rXY using the homomorphism of Paillier cryp-
tosystem as follows.

cX+rXY = (cX )rY · crXY · RY (mod n2). (12)

 Implements an permutation on these above
`1 ciphertext pairs ((cX+rXY , cY+rXY ), (cγ1 , cγ2 ),
(cγ3 , cγ4 ), . . . , (cγ2`−3 , cγ2`−2 )), and denotes this
permutation as (c1, c2), (c3, c4), . . . , (c2`1−1,
c2`1 ), then sends them to Alice.

Step 4. After receiving (c1, c2), (c3, c4), . . . , (c2`1−1,
c2`1 ), Alice evaluates

Sign=
`1∏
i=1

P(
L(cλi )
L(cλi+1)

), where P(X )=


+1 X >1
0 X =1
−1 X <1.

(13)

and sends Sign to Bob.

Step 5. After receiving Sign, by

R`1e =


X > Y Sign = +1

X = Y Sign = 0

X < Y Sign = −1

(where
`1

2
is even or `1 = 1)

Or

R`1o =


X < Y Sign = +1

X = Y Sign = 0

X > Y Sign = −1

(where
`1

2
is odd)

Bob could figure out the relationship of X and Y .

B. ANALYSIS OF CORRECTNESS
Theorem 3: Given the function

P(4) =


+1 4 > 1

0 4 = 1

−1 4 < 1

and `1 ciphertext pairs which is developed by Bob as
Protocol 3.1, Alice can educe the relationship of X and Y
(X > Y ,X < Y or X = Y ) through analogous decryption
and the following equation

Sign =
`1∏
i=1

P(
L(cλi )
L(cλi+1)

). (14)

Proof: First, we list two mathematical facts support this
theorem as follows.
Fact 1: Given X ,Y , rXY , rY ∈ Z+n , if

X
Y is used to detemine

the relationship of X and Y , rYXrY Y
and rYX+rXY

rY Y+rXY
would keep the

relationship of X and Y .
Fact 2: Since the function

P(4) =


+1 4 > 1

0 4 = 1

−1 4 < 1

is shared between Alice and Bob, if Bob interfuses a frac-
tion FN with ω random fractions (χ1, χ2, . . . , χω) selected
randomly beforehand such that half of them are greater
than 1, and then sends these ω + 1 fraction to Alice; Alice
can figure out that FN > 1, FN < 1 or FN = 1, but cannot
figure out which one is FN .

This is because that half of χ1, χ2, . . . , χω are greater
than 1 but the remaining half are less than 1, so we have

R′mem =
ω∏
i=1

P(χi) =


+1

ω

2
is even

−1
ω

2
is odd.
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If we add one more fraction to these ω fractions, then we
obtain

R′mem × P(χω+1) =
ω∏
i=1

P(χi)× P(χω+1)

=


+1 χω+1 > 1

0 χω+1 = 1

−1 χω+1 < 1

(
ω

2
is even)

R′mem × P(χω+1) =
ω∏
i=1

P(χi)× P(χω+1)

=


+1 χω+1 < 1

0 χω+1 = 1

−1 χω+1 > 1

(
ω

2
is odd)

Based on Fact 1, through equations (5b), (7) and (8)
in Section 3 and analogous decryption, we obtain

P(
L(cλrYX+rXY )
L(cλrY Y+rXY )

) = P(
L(cλrYX )
L(cλrY Y )

) = P(
L(cλX )
L(cλY )

) (15)

Based on Fact 1 and Fact 2, through equation (8) and
analogous decryption, Alice can determine the relationship
of X and Y . After receiving Sign, Bob can also know the
relationship of X and Y by function P(4). However, he can
not evaluate any other information about Alice by function
P(4). So the protocol SCEII is correct. �

C. ANALYSIS OF SECURITY
Theorem 4: Protocol SCEII can be used to compare X

and Y securely.
Proof: Protocol SCEII is developed to make Alice and

Bob figure out the relationship of X and Y (X > Y , X =
Y or X < Y ) while keeping the privacy of X and Y . The only
insecure factor in this comparison protocol is whether it has
additional information leakage of the inputs or not. Next,
we prove that there is no additional information leakage in the
process of comparison.

For Alice’s privacy, we construct a simulator SB which
simulates the protocol by selecting a random X ′ as the input
of Alice, and letting Y as the input of Bob. The view generated
by SB is (Y , cX ′ ) and the view in the real execution is (Y , cX ).
cX ′ and cX are indistinguishable, which is guaranteed by the
fact that Alice’s private data transferred to Bob is encrypted
by her own public-key (n, 1+n) and the sematic security of the
system 5. Thus SB(cX ′ ,Y ) and the real view View5B (cX ,Y )
are indistinguishable.

For Bob’s privacy, we construct a simulator SA to simulate
the view of Alice without the private input of Bob. We need
the view generated by SA being indistinguishable from the
view of Alice in the real execution. SA simulates as follows.

The input of SA are the comparison result Sign ∈

{−1, 0, 1} and Alice’s private input X . SA encrypts X into
a ciphertext cX for the first step. For the second step, Bob

evaluates cX+rXY as equation (8) and uses it to develop `1
ordered ciphertext pairs (c1, c2), (c3, c4), . . . , (c2`1−1, c2`1 )
corresponding to 2`1 random numbers. The view generated
by SA is (X , (c1, c2), (c3, c4), . . . , (c2`1−1, c2`1 ),Sign).
Becuase cX+rXY is the encryption of the addition of X

and rXY , which is evaluated using homomorphic operation on
the ciphertext cX , and cX+rXY is one of c1, c2, . . . , c2`1 , so the
distribution is identical to that of the real execution. �

D. ANALYSIS OF EFFICIENCY
Theorem 5 (Efficiency): Protocol SCEII is three-round

and takes at most 2`1 log n + 2d + 4`1 modular multiplica-
tions.

Proof: Alice sends messages to Bob in Step 2 and
Step 4, and Bob sends messages to Alice in Step 3. Thus,
protocol SCEII is three-round. We neglect the cost of gener-
ating the public key in Step 1 since this can be done in the
setup stage. The cost of pre-evaluationwith the aid of cloud(s)
prior to protocol SCEII are also neglected. In Step 2, Alice
conducts one encryption: cX = (1 + X · n) · R1A mod n2,
which takes 2 modular multiplications; At the same time,
Bob conducts 2`1 − 2 encryptions, which takes 4`1 − 4
modular multiplications. In Step 4, Bob needs to conduct
one modular exponentiations. In Step 4, Alice does `1 anal-
ogous decryptions, which takes 2`1 log n modular multipli-
cations. To compare fairly, we convert all operations to the
number of modular multiplications [27]. So to privately and
cooperatively figure out the relationship of X and Y by
protocol SCEII, in total, 2 log n + 4`1 + 4 modular multi-
plications and one modular exponentiations should be taken.
Computing cX+rXY = (cX )rY · crXY · RY (mod n2) takes at
most 2d + 2 modular multiplications [28]. Overall, protocol
SCEII needs 2`1 log n + d + 4`1 modular multiplications
(see as Table 1). �

TABLE 1. The overload of protocol SCEII.

V. SECURE COMPARISON ON FRACTIONS
In this section, based on the secure relationship-ratio
computing system, we first present a new cloud-assisted
protocol(denoted as SCOF) for securely comparing fractions.
Then, we conduct analysises on its security, correctness and
efficiency. To securely and efficiently compare their fractions
(Alice with a

b and Bob with c
d ), Alice and Bob proceed the

protocol SCEII as follows.
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A. DESCRIPTION OF PROTOCOL SCOF
Step ¶. Alice runs the key generation algorithm to
generate her keys, then publishes the public-key (n, 1+
n) but keeps λ as her private key.
Step ·. Alice first expresses her private fraction a

b
as (a, b), then randomly chooses RAa,RAb ∈ RA and
encrypts a, b as follows.

Ca = (1+ a · n) · RAa mod n2 (16a)

Cb = (1+ b · n) · RAb mod n2 (16b)

And sends (Ca,Cb) to Bob.
Before receiving (Ca,Cb), Bob needs to do as follows
• Randomly chooses r1 ∈ Z+n , RB1 ∈ RBand
computes

Cr1 = (1+ r1 · n) ·RB1 (mod n2). (17)

• Chooses ϒ1, ϒ2, . . . , ϒ2`−2 ∈ Z+n (`2 ≥ 1) such
that half of the numbers ϒ1

ϒ2
,
ϒ3
ϒ4
, . . . ,

ϒ2`2−3
ϒ2`2−2

are
greater than 1 but the remaining half are less than 1.

• Randomly chooses kj ∈ Zn (where1 ≤ j ≤ `2 −

1) and RB2j+1 ,RB2j+2 ∈ RB, and evaluates `2 − 1
ciphertext pairs as follows.

Cϒ2j+1 = (1+κi ·ϒ2j+1 ·n mod n2) ·RB2j+1 mod n2

(18a)

Cϒ2j+2 = (1+κi ·ϒ2j+2 ·n mod n2) ·RB2j+2 mod n2

(18b)

Step ¸. After receiving (Ca,Cb), Bob works as
follows.
¬ First expresses his private fraction c

d as (c, d) and
evaluates

C ′a = (Ca)d mod n2 (19a)

C ′b = (Cb)c mod n2 (19b)

 Randomly chooses R1,R2 ∈ RB and computes
Cad+r1 ,Cbc+r1 as follows.

Cad+r1 = C ′a · Cr1 ·R1 (mod n)2 (20a)

Cbc+r1 = C ′b · Cr1 ·R2 (mod n)2 (20b)

® Implements a permutation on these cipher-
text pairs (Cad+r4 , Cbc+r4 ), (Cϒ3 , Cϒ4 ), . . . ,
(Cϒ2`2−1

, Cϒ2`2
), and denotes this permutation as

(C1,C2), (C3,C4), . . . , (C2`2−1,C2`2 ), and sends
them to Alice.

Step ¹. After receiving (Cj,Cj+1), Alice evaluates
Sign as follows.

Sign=
`2∏
j=1

P(
L(Cλj )
L(Cλj+1)

), where P(y)=


+1 y>1
0 y=1
−1 y<1.

(21)

And sends it to Bob.

TABLE 2. The overload of protocol SCOF.

Step º. After receiving Sign, Bob can figure out the
relationship of a

b (belonged to Alice) and c
d (belonged

to Bob) by

R`2e =



a
b
>

c
d

Sign = +1
a
b
=

c
d

Sign = 0
a
b
<

c
d

Sign = −1

(where
`2

2
is even or `2 = 1)

Or

R`2o =



a
b
<

c
d

Sign = +1
a
b
=

c
d

Sign = 0
a
b
>

c
d

Sign = −1

(where
`2

2
is odd).

B. ANALYSIS OF CORRECTNESS
Fact 3: Given X1

Y1
and X2

Y2
(X1,Y1,X2,Y2 ∈ Z+n ),

X1Y2
X2Y1

could be used to determine the relationship of X1
Y1

and X2
Y2
,

and X1Y2+rF
X2Y1+rF

(rF ∈ Z+n ) would keep the relationship of
X1
Y1

and X2
Y2
.

Based on Fact 3, through equations (14a), (14b),
(15a) and (15b) in Section 5.1 and analogous decryption
L(Cλad+r4 )

L(Cλbc+r4 )
(or

L(Cλbc+r4 )

L(Cλad+r4 )
), we can draw a conclusion that

P(
L(Cλad+r4 )

L(Cλbc+r4 )
) = P(

L(Cλad )
L(Cλbc)

). (22)

Based on Fact 1 and Fact 3, through equation (16) and
analogous decryption, Alice could know the relationship
of a

b and c
d , but she cannot compute any additional infor-

mation about Bob. This is because Alice can only obtain
`2 random fractions through analogous decryption. After
receiving Sign, Bob can also figure out the relationship
of a

b and c
d by R`2e or R`2o. However, he cannot evaluate

any additional information about Alice by this work. So the
correctness is completed.
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TABLE 3. Performance comparison.

C. ANALYSIS OF SECURITY
Theorem 6: Protocol SCOF can be used to compare a

b
and c

d securely.
Proof: Protocol SCOF is designed to make Alice and Bob

know a
b >

c
d ,

a
b =

c
d or a

b <
c
d while keeping the privacy

of a
b and d

c . The only insecure factor in this comparison
protocol is whether it has additional information leakage of
the inputs or not. Next we show that there is no additional
information leakage in the process of comparison.

Assuming 5 is the protocol SCOF that we developed to
compute function F = (F1,F2) : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ on inputs (a, b), (c, d). The view of
Alice is denoted as View5A ((a, b), (c, d)) and her output
is denoted as Output5A ((a, b), (c, d)). Similarly, the view
and output of Bob are denoted by View5B ((a, b), (c, d))
and Output5B ((a, b), (c, d)), respectively.
For Alice’s privacy, we construct a simulator SB which

simulates the protocol by selecting a randomness a′
b′ as the

input of Alice, and letting c
d as the input of Bob. The view

generated by SB is ((Cc,Cd ), (Ca′ ,Cb′ )) and the view in the
real execution is ((Cc,Cd ), (Ca,Cb)). (Ca′ ,Cb′ ) and (Ca,Cb)
are indistinguishable, which is guaranteed by the fact that
Alice’s private data transferred to Bob is encrypted by his
own public-key (n, 1 + n) and the sematic security of
the system 5. Therefore, SB((Ca′ ,Cb′ ), (Cc,Cd )) and the
real view View5B ((Ca,Cb), (Cc,Cd )) are indistinguishable.
Namely, the simulator SB constructed as above makes

{F1((a′, b′), (c, d)),SB((c, d),F2((a′, b′), (c, d)))}(a,b),(c,d)
c
≡ {Output5A ((a, b), (c, d)),View5B ((a, b), (c, d))}(a,b),(c,d)

(23)

For Bob’s privacy, we construct a simulator SA to simulate
the view of Alice without the private input of Bob. We need
the view generated by SA being indistinguishable from the
view of Alice in the real execution. SA simulates as follows.
The input of SA are the comparing result Sign ∈ {−1, 0, 1}

and Alice’s private input ab . SA expresses a
b as an ordered pair

(a, b) for the first step; and then it encrypts a and b into cipher-
texts Ca and Cb. In the third step, Bob evaluates Cad ′+r4′
and Cbc′+r4′ as Step ¸ in Section 4.1 and ciphertext pairs
(Cϒ3 , Cϒ4 ), . . . , (Cϒ2`2−1

, Cϒ2`2
) corresponding to 2`2 − 2

random numbers as Step · in Section 4.1. The view gener-
ated bySA is ((a, b), (C ′1,C

′

2), (C
′

3,C
′

4), . . . , (C
′

2`2−1
,C ′2`2 ),

Sign).
Becuase Cad ′+r4′ and Cbc′+r4′ are evaluated by homomor-

phic operation, where Alice only know a, b and some dubious
information that the ciphertext pair (Cad ′+r4′ ,Cbc′+r4′ ) is one
of (C ′1,C

′

2), (C
′

3,C
′

4), . . . , (C
′

2`2−1
,C ′2`2 ), so the distribution

is identical to that in the real execution. Namely, the simulator
SA constructed as above makes

{SA((a, b),F1((a, b), (c′, d ′))),F2((a, b), (c′, d ′))}(a,b),(c,d)
c
≡ {View5A ((a, b), (c, d)),Output

5
B ((a, b), (c, d))}(a,b),(c,d)

(24)

�
D. ANALYSIS OF EFFICIENCY
Theorem 7 (Efficiency): Protocol SCOF is three-round

and takes at most 2`2 log n + 4d + 2 modular
multiplications.

Proof: Alice transfers messages to Bob in Step · and
Step ¹, and Bob transfers message to Alice in Step ¸.
Thus, protocol SCOF is three-round. We neglect the cost of
generating a public key in Step ¶ since this can be done
in the setup stage. The cost of pre-evaluation with the aid of
cloud(s) prior to protocol SCOF are also neglected. In Step
·, Alice conducts two encryptions Ca = (1 + a · n) ·
RAa mod n2, Cb = (1 + b · n) · RAb mod n2; At the same
time, Bob needs to develop 2`1 − 2 encryptions. In Step
¸, Bob conducts two modular exponentiations. In Step ¹,
Alice conducts `2 analogous decryptions. To compare fairly,
we convert all operations to the number of modular multi-
plications [27]. Hence, to compare a

b and c
d by protocol

SCOF, in total, 2`2 encryption and `2 analogous decryp-
tions and two modular exponentiations should be taken. For
our homomorphic-encryption-analogous-decryption system,
each encryption requires 2 modular multiplications, and
each decryption also requires 2 log nmodular multiplications.
Computing Cad+r1 = C ′a · Cr1 ·R1 (mod n)2 or Cbc+r1 =
C ′b ·Cr1 ·R2 (mod n)2 takes at most 2d+2 modular multipli-
cations [28]. Overall, protocol SCOF needs 2`2 log n+ 4d +
4`2 + 2 modular multiplications (see as Table 2). �
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VI. PERFORMANCE ANALYSES
Except protocols [28], [32], [34], the existing solutions to the
millionaires’ problem are all for integers, thus they cannot
be compared with our protocols in an objective manner.
However, for a wrong utilization that using Paillier encryp-
tion scheme to directly encrypt an negative number, proto-
cols [28], [29], [32], [34] have failed to solve what as they
claimed.

We compare the protocols [27]–[30], [32], [34] based on
the same cryptographic computational problem, DCR, as our
protocols. To compare fairly, we convert all operations of
these protocols (based on DCR) to the number of modular
multiplications, respectively. In comparison with previous
methods [27], [30], although protocol SCEII is 3-round,
it reduces the number of modular computation significantly.
Moreover, protocol SCEII can determine whether x > y, x <
y or x = y (where x, y are integers less than n − 1)in one
execution, and protocol SCOF can figure out whether x >
y, x < y or x = y (whre x, y are fractions less than n − 1)
in one execution, while previous Li’s method [30] can only
solve the greater than problem. In comparison with Li [30],
our method cannot only be used to securely compare two
integers but also two fractions. On the efficiency, in compar-
ison with previous methods [27], [30], SCEII and SCOF
have considerable advantages on total computing cost when
`1, `2 ∈ {0, 2}. The detailed comparisons with previous
methods are listed as Table 3.

VII. CONCLUSION
Comparing information privately is the fundamental to secure
multiparty computation and plays an important role in devel-
oping practical SMC protocols. Although there are several
protocols claimed that the millionaires’ problem for rational
numbers had been solved, these solutions are supported by
a wrong understanding that Paillier encryption scheme could
encrypt a negative number (However, the encryption function
f (x, y) = (1 + kn)xyn mod n2 is bijective if and only if
(x ∈ Zn) ∧ (y ∈ Z∗n ) by reference to the detailed anal-
ysis in paper [38], namely, Paillier encryption scheme can
not be directly used to encrypt negative numbers). In fact,
the existing solutions are all designed for integers and they
fail to meet the needs of many practical applications. In this
study, we extend the millionaires’ problem for fractions,
where we skilfully combine ‘‘ratio’’ method and propose
efficient protocols to obtain solutions. We have shown the
security of these protocols. In future research, we aim to
extend the solution to the millionaires’ problem further to
solve more practical SMC problems that involve ratio compu-
tation.
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