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ABSTRACT With the advance of high-throughput sequencing technologies, a great amount of somatic
mutation data in cancer have been produced, allowing deep analyzing tumor pathogenesis. However,
the majority of these data are cross-sectional rather than temporal, and it is difficulty to infer the temporal
order of gene mutations from them. In this paper, we first show a probabilistic graphical model (PGM) to
infer the temporal order constrains and selectivity relation among the mutation of cancer driver genes which
are presented by a directed acyclic graph. We then apply an exponential function based on the mutation
probability of these driver genes to obtain their mutation waiting time which can be used to induce mutually
exclusive driver pathways. Finally, we evaluate the performance of the PGM both on simulated data and
real-cancer somatic mutation data. The experimental results and comparative analysis reveal that the PGM
can capture most of the selectivity relation of mutated driver genes which have been validated by previous
works. Furthermore, the PGM can provide new insights on simultaneously inferring driver pathways and the
temporal order of their mutations from cross-sectional data.

INDEX TERMS Probabilistic graphical model, somatic mutation, cancer progression, driver pathway,
waiting time.

I. INTRODUCTION
The systematic analysis of human cancer genomes in the
last decade has revealed that cancer is a complex disease
caused by the accumulation of somatic mutations. Common
methods of exploring carcinogenesis are to integrate a large
amount of data to mine the law about the accumulation of
somatic mutations. Due to the rapid development of high-
throughput sequencing technologies, unprecedented amount
of somatic mutation data such as the data in the Cancer
Genome Atlas (TCGA) are accumulated, which brings two
critical challenges to the analysis and interpretation of
them. The first challenge is how to distinguish driver muta-
tions from massive passenger mutations in cancer progres-
sion [1]–[4]. The second challenge is how to identify the
temporal order of these driver mutations occurred [5], [6].

Addressing of the two challenging problems is of benefit
to both therapeutic decisions and the basic understanding of
carcinogenesis. The first problem can be solved by compar-
ing the driver mutation observed frequencies across different

individuals, and furthermore by identifying mutually exclu-
sive driver genemutations, commonly referred to as pathways
which consist of multiple alterations performing the same
functional role in cancer progression [3], [4], [8]. Once one
of the members in a pathway is altered, cancer cells gain a
significant selective advantage. However, the second problem
is more difficult to address, because the temporal cancer-
related data from single individual at multiple time-points are
nearly impossible to be obtained [9]–[11].

There have been some computational approaches to infer
temporal progression of somatic mutation. Some early works
reconstruct the temporal order of cancer samples by exam-
ining mostly clinical and genetic data [12]–[14]. For exam-
ple, cancer progression is described as a linear model by
assuming existence of a unique and most likely temporal
driver gene mutation order. On the basis of the linear model,
many statistical approaches considering branch like trees and
graphs have been presented. These methods can be grouped
into four classes: (1) Oncogenetic trees, which represent the
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probabilities of accumulating further mutation along diver-
gent temporal sequences, under the assumption that each
event depends on a single parent [15]–[17]. (2) Bayesian
Networks, which avoid the limitation of tree-based model,
do not allow differently confluent progression paths, with the
cost of increased computations [18]–[21]. For instance, Con-
junctive Bayesian Networks (CBNs) are generative models
of cancer progression, in which allow for multiple parental
nodes, thereby modeling the synergistic effects of multiple
events in promoting subsequent mutations and describing the
accumulation of events that are constrained in the order of
their occurrence [22]. (3) Clustering and evolutionary fitting
algorithms. These approaches generate graphs, in which the
node denotes single gene and the edges represent the relation-
ship between nodes [23]–[25]. (4) Other approaches, such as
Progression Networks [26], RESIC [24], CAPRESE [9] and
CAPRI [27]. Progression Networks is similar to Conjunctive
Bayesian Networks. It employs mixed integer linear pro-
gramming to reduce the difficulty of learning the Bayesian.
RESIC is the evolutionary mathematical approach to explic-
itly consider the evolutionary dynamics of driver mutation
accumulation. CAPRESE and CAPRI use a framework of
probability causation to infer cancer progression at the gene
level. However, these methods infer progression at the indi-
vidual gene level which is hard to reflect the heterogeneity of
inter-patients. In recent years, several works begin to focus on
modeling cancer progression at the pathway level instead of
the individual gene level. For example, Vandin et al. formulate
the problem as an integer linear program (ILP) [10] and Hao
Wu et al. present a Network-basedmethod to infer cancer pro-
gression (NetInf) [28]. pathTiMEx [29] employs a stochastic
optimization procedure to jointly optimize the assignment
of genes to pathways and the evolutionary order constraints
among pathways. But these methods infer cancer progres-
sion by considering cancer progression as single linear path
at the pathway level and ignore the selectivity relationship
among driver genes, which restricts the representation of
carcinogenesis.

We develop probabilistic graphical model (PGM) based on
causal dependency theory to infer cancer progression, which
not only considers the cancer progression at the driver path-
way level but also at the individual gene level that provides a
better representation of carcinogenesis. First, the model uti-
lizes directed acyclic graph (DAG) to represent the selectivity
relations of driver genes, and the presence or absence of edges
inDAG is determined by conditional probability which can be
estimated from the cancer mutation data. When we construct
the DAG, an intersection degree (ID) that describes more
exact relationship between each driver gene pairs is used.
Then, the waiting time between a driver gene mutation and
the subsequent is estimated by a stochastic function of these
genes mutation probability to reflect that the waiting time is
random and independent of each other, and the impossibility
to infer the exact time of the occurrence of the gene mutation
from the observed data. And we use percentile to divide the
waiting time into several stages. Different individuals may

harbor driver mutation in different genes within a pathway,
and the genes in the same pathway are likely to in the same
progression stage (also called as in the same waiting time
stages) [10], [30], so it is reasonable that we assume that the
driver genes in the same pathway mutate at the same waiting
time stage. Finally, we mark the driver genes up which are
in the same pathway with the same color. From our results
at DAG, we list the detailed selectivity relations between
the driver genes and mark several driver pathways. So PGM
constructs the DAG of cancer progression not only at the
individual gene level but also at the driver pathway level, it is
of benefit to understand the high inter-patient heterogeneity
and carcinogenesis following different progression paths of
different individuals. PGM is evaluated both on the simu-
late data and real cross-sectional data from colorectal and
glioblastoma cancer, respectively. The experimental results
indicate that our progression model can reveal the intrinsic
properties of the progression of driver genemutations in these
cancer types. The workflow of our model is shown in Fig. 1a,
and a schematic diagram is shown in Fig. 1b.

II. METHOD
The PGM is an inferential method that deduces the causal
dependencies and the waiting time among the driver genes
from cross-sectional somatic mutation data. By means of the
waiting time, it can mark the driver genes that belong to the
same pathway. Given the binary mutation matrix M with m
rows (samples s1, s2, . . . , sm) and n columns (driver genes
g1, g2, . . . , gm), where the samples on the rows and driver
genes on the columns, whereMi,j = 1 if gj is mutated in sam-
ple si, andMi,j = 0 otherwise. PGM generates a probabilistic
graphDAGusing the putative causal dependencies theory that
is described by definition 1 [9], [27], in which nodes represent
driver genes and edges represent the selectivity relation of
them. An edge is determined by two points: (1) driver gene
marginal probability and conditional probability, and (2) the
intersection degree (ID) which is defined to measure relation-
ship between arbitrary two driver genes.
Definition 1 (Causal Dependency Theory): Given two

observable genes i and j, there is selectivity relation between
them if meet the two conditions: (1) if i is a prima facie cause
of j, (2) if i is the probability raising of j, that is i occurs more
frequently:

pj/i > pj/ī and pi > pj (1)

pi and pj are the marginal probability of the driver
genes i and j. Besides, pj/i is the conditional probability of the
driver gene j, which is one of the conditions to verify whether
each driver gene pair i and j connect or not. This definition is
part of Suppes causality theory [31], and several works have
proved its role in the definition of the reconstruction problem
and some of its limitations [32], [33]. It is only a necessary
but not sufficient condition and additional constraints need to
be imposed to filter spurious relations, e.g., it may be that for
some prima facie cause A of a gene B, there is a third event C
prior to both, C causes A and ultimately A causes B. C may
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FIGURE 1. Overview of PGM. (a) The workflow of the stepwise study, (b) in the first step, a cancer driver mutation dataset is
inputted in the form of a binary alteration matrix, with rows representing patients and columns representing driver mutations.
A black square encodes the presence of a driver mutation, and a white square encodes its absence. In the second step, construct
the initial directed acyclic graph, and edge is created if the pair of driver gene meet the definition 1 and ID > λ. In the third step,
process the initial DAG, filter the spurious edges and transitive reduction. In the fourth step, estimate the waiting time, divide
the driver genes with waiting time, and mark different stages up with different color.

cause both A and B independently, and the causation relation-
ship observed from A to B is merely spurious. In this paper,
standard maximum likelihood fit and Bayesian Information
Criterion (BIC) are used to filter spurious relations that are
intruduced at the following detailed steps.

To automatically extract the selectivity relation and reduce
the computational complexity, it is necessary to filter the
insignificant relations.We define ID between driver gene pair
gi and gj to measure their relation.
Definition 2 (Intersection Degree, ID):

ID
(
gi, gj

)
=
|0 (gi) ∩ 0

(
gj
)
|

|0 (gi) ∪ 0
(
gj
)
|
. (2)

0 (g) denotes the coverage of driver gene g, and it repre-
sents the set of patients in which the driver gene g mutated,
0 (g) = {i : Mi,g = 1}.

The two driver genes in (a), (b), (c) from Fig.2 all meet the
definition 1, but (a) has the biggest ID value, so we consider
that the driver gene pair in (a) has stronger selectivity relation
than driver gene pair in (b) and (c).

In the following sections we describe PGM that adopted
the notation from Szabo and Boucher [17].
• Let n be the number of driver genes.
• Let pi and pj respectively denote the marginal proba-
bility that the i-th and j-th driver gene mutation occur,
and i = 1, 2, . . . , n, j = 1, 2, . . . , n and i 6= j. Let pj∩i
denotes the probability that both the i-th and j-th driver
gene mutation occur simultaneously.

FIGURE 2. Analysis of the intersection degree. (a),(b),(c) in the
figure stand for the frequency of gi and gj in different case, they are
satisfied with definition 1, but the ID of the two genes in the three cases
is (a) ID(gj ,gk ) = 0.63 (b) ID(gj ,gk ) = 0.50 (c) ID(gj ,gk ) = 0.25.

• Let pj/i denotes the conditional probability that the j-th
driver gene mutation occurs given that the i-th driver
gene mutation has occurred. The definition of condi-
tional probability pj/i is

pj/i =
pj∩i
pi
, i, j = 1, 2, . . . , n; i 6= j. (3)

• Let pj/ī denotes the conditional probability that the j-th
driver gene mutation occurs given that the i-th driver
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gene mutation does not have occurred. The definition of
conditional probability pj/ī is

pj/ī =
pj−pj∩i
1− pi

, i, j = 1, 2, . . . , n; i 6= j. (4)

The detailed steps of PGM are described as follows.
Step 1: Calculate the marginal probability pi, pj, condi-

tional probability of mutation in each gene pair pj/i, pj/ī and
their ID of driver gene mutation from the data using the
above definition 2 (i, j = 1, 2, . . . , n; i 6= j). The marginal
probability of a driver gene mutation is calculated as the
frequency of the driver mutation in a dataset.
Step 2: Construct the initial DAG on the vertices

{v1, v2, . . . , vn} which represent driver genes, and an edge
is created between the two vertices if them meets defini-
tion 1 and ID > λ, otherwise, there is no edge between
the driver genes. λ is an experienced threshold, which
can be used to remove some insignificant edges from the
initial DAG.
Step 3: Update the obtained DAG. We filter the redun-

dant edges through transitive reduction and spurious edges
through likelihood fit. The edges a → b → c can be
described with a → b and b → c if the mutation of driver
gene a cause b, b cause c, but a does not cause c.

The transitive reduction algorithm [34] is adopted to elim-
inate the redundant edge in the initial DAG by traversing ver-
tices in inversely topological sorting order. All of the vertices
reachable from the vertex vmust be processed before process
v. For the vertex v, we preferentially process the vertex with
the bigger number in all of the vertices that are reachable from
v. If an edge is firstly computed, it is marked as reachable one.
If a vertex v is reachable from an edge e and the vertex v has
been marked as reachable one, the edge e is redundant and
should be deleted.

For any selectivity structure of DAG, spurious edges can
obviously contribute to a reduction in the likelihood-fit with
respect to true edges. Thus, we adopt a standard maximum
likelihood fit and Bayesian Information Criterion (BIC) to
prune the DAG. The BIC score is measured by (5).

BIC = lnL̂(M )− ln (m) ∗ dim(M )/2. (5)

Here M is an input observed data, m denotes the number
of patients, and dim(M ) is the number of parameters in the
model, which depends on the number of parents of each node
has. L̂(M ) is the maximized value of the likelihood function.
We first process the obtained DAG through adding, deleting
and reversing single edge and obtain a set of new DAGs,
then, we compute the BIC score of the obtained DAG and
new DAGs using equation (5), that is compute the score of a
node and its parents given completely observed data. Finally,
we select the best score DAG.
Step 4: Compute the mutation probability of each driver

gene. Let p(i) denotes the probability of the i-th driver gene
mutation (i = 1, 2, . . . , n), which can be computed with
four cases. First, if the driver gene does not have in-degree,

the probability of this driver gene is equal to marginal prob-
ability p (i) = pi. Second, if the driver gene has one in-
degree and the number of its precursor is more than 1,
the probability of this driver gene can be computed by p (i) =∑u

k=1 pi/jk +
∏u

k=1 p(jk ), where u is the number of i′s pre-
cursor and u > 1, pi/jk is the conditional probability of its
precursor, the so-called precursors are the driver genes that
mutated before the target driver gene. In this case, themutated
probability of driver gene i is affected by any of a precursor
(it computed by

∑u
k=1 pi/jk ) or simultaneously affected by all

precursors (it computed by
∏u

k=1 p(jk )). Third, if the driver
gene has only one in-degree and the number of its precursor
is equal to 1, the mutation probability of this driver gene
only can be affected by a precursor driver gene, so it can
be computed by p (i) = pi/j1 . Last, if the driver gene has
several in-degrees, themutation probability of this driver gene

can be computed by p (i) =
w∑
t=1

p(t), where w denotes the

number of in-degrees, and p(t) is described in the same as
the second or third situation. The mutation probability of
driver genes represents the strength of the selectivity relation
between a mutated driver gene and its parents excluding the
driver genes without parents.
Step 5: Estimate the waiting time of driver gene mutation

as realization of an exponential process which is inversely
proportional to the driver gene mutation probability. For each
mutated driver gene pair that connection in the DAG draw a
realization 1t from an exponential distribution.

8 ∼ µ exp (−µ1t) , µ ≡ p(i). (6)

Here 1t is the waiting time of the driver gene j mutated.
The rate parameter µ is the mutation probability computed
by Step 4 of the mutated driver gene j. We produce a set of
random values (the number of random values equal to driver
gene numbers) which meets exponential distribution with the
rate parameter µ to represent the waiting time of the mutated
gene.
Step 6: Identify and mark driver pathways. We use per-

centile to divide the waiting time into k stages (we use the
value of k set by Raphael and Vandin [10]). Step 5 and Step 6
run n (n = 1000 used in this paper) times repeatedly to obtain
n pathway distribution cases, the pathway distribution cases
are then ranked according to the frequency of each pathway
distribution case. The statistical significance test is adopted
to evaluate the ranked pathway distribution case, and the
optimal pathway distribution case with minimum p-value is
selected. The final DAG is derived not only at the pathway
level but also at the gene level after marking the optimal
pathway distribution.

III. RESULTS
To assess the robustness of the proposed model, our exper-
iment analysis is conducted on the simulated datasets with
addition of different levels of noise and three real cancer
datasets.
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FIGURE 3. The schematic diagram for four cases computation of driver
gene mutation probability. The filled circles represent the target driver
genes for computation mutation probability and the hollow circles
represent the precursor mutated driver genes of the target driver genes.
(1) In the first case, there is no in-degree for the target gene, (2) in
the second case, there is one in-degree for the target driver and its
precursor is more than 1, means that several driver genes mutated before
the target driver gene and they depend on one path, (3) in the third case,
there is one in-degree for the target driver gene and its precursor is 1,
(4) in the fourth case, there are several in-degrees for the target driver
gene.

A. SIMULATED DATA
We perform a large number of experiments using simulated
data with different levels of noise. Mutation datasets are
produced according to the progression model. In particular,
we consider two kinds of progression models with k = 5
stages and n = 25 genes, as well as k = 4 stages and
n = 16 genes, respectively. We generate 100 simulation
datasets with the form of the binary alteration matrix of m
samples for each of the two progression models, in which
1 represents the presence of a mutation, 0 represents its
absence. Without loss of generality, we randomly generate
these datasets that allow the mutation frequency in one gene
between 0.1 % and 60 %. Noises are added by flipping
some entry of the corresponding mutation data with differ-
ent probability q. We consider values of m = 100, 200,
400, 600, 800, 1000 and q = 0.001, 0.01, 0.05.

FIGURE 4. Correct ratio for different number of samples and different
probabilities of noise addition. Axis x represents the number of samples,
and axis y represents correct ratio, and the mutation matrix M comes
from a progression model with k stages, and include n genes. Noise is
added to the each matrix M with a probability q. We don’t fix the number
of genes in each stages. (a) Result for k = 5, M containing 25 genes and
different values of q and different number of samples. (b) Result for
k = 4, M containing 16 genes and different values of q and different
number of samples.

For each combination of m and q, we record correct
times that the genes belong to the corresponding stages.
In these experiments we only consider the final results on
the relationship between pathways. Experimental results are
shown in Fig. 4. It is clear that the correct rate increases

when the value of q decreases, and the correct rate increases
when the number of samples increases. For q ≤ 0.01, when
100 samples are analyzed the correct progression model is
reported in most cases. When 800 samples are analyzed the
correct model is reported in every case. When q = 0.05,
the correct rate is no more than 80% with 600 samples are
analyzed, and the 100% correct rate can be obtained when
800 samples are considered. These results indicate that while
data from reasonably sized can be used to infer the correct
progression model. If the noise level is high, a larger number
of data may be required to identify the correct progression
model. To better understand how the number of stages and
genes impact the complexity of PGM, we compare the model
with k = 5 (including 25 genes) in dataset and the one with
k = 4 (including 16 genes) in dataset (shown in Fig. 4). For
the same m and q combination, the correct rate of the latter
is always greater or equal to the former. For example, when
q = 0.01 and m = 400 samples are considered, the latter
is greater than 80% and the former is lower than 80%. The
simulated experiments demonstrate that correct progression
model can be obtained with low noise levels. Note that the
assignment of genes number to pathway is not fixed, with the
sole restriction that each pathway contains at least one gene.

In the experiments on simulated data, when noise proba-
bility q is set to be 0.001 and λ is set to the 65th percentile
of all ID values, we obtain exact results from 99 runs out of
100, when noise probability q is set to 0.01 and λ is set to
60th percentile of all ID values, we obtain exact results from
90 runs out of 100. When q is set to 0.05 and λ is set to
the 55th percentile of all ID values, we obtain exact results
from 85 runs out of 100. When noise probability q is set to
0.001 and λ is set to the 55th percentile of all ID values,
we obtain exact results from 99 runs out of 100. The results
show when λ is set to the 65th we obtain ideal results only if
the datasets have low noise. As λ is set to the 55th, we can
obtain ideal results even if noise probability q is relatively
high. We compute ID in the gene pair, and set an adjustable
percentile value of 55th≤ λ ≤ 65th, which should yield good
results in conducting the experiments.

Model performance is compared with other models using
Hamming distance (HD). HD measures the structural simi-
larity among the progression stage distribution inferred from
the dataset with noise and the progression stage distribution
inferred from dataset without noise, in terms of theminimum-
cost sequence of gene edit operations that transforms the
former progression stage distribution into the latter. This
measure is bounded above by nwhen all genes have incorrect
distribution. In Fig 5, we show the performance comparison
of PGM and other models (including ILP [10], NetInf [28],
and pathTiMEx [29]) that are all recent models to infer cancer
progression at the pathway level, in terms of Hamming dis-
tance, on simulation datasets with two progression models.
Particularly, we show the performance at different values of
the sample size m with a fixed noise probability. As is shown
in Fig. 5, PGM outperforms all the competing models with
respect to all the possible combinations of noise probability
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FIGURE 5. The performance of PGM and other models is compared using
Hamming distance. The first row is the comparison results of the
progression model with k = 5 stages and n = 25 genes with different
noise probability, and the second row is the comparison results of the
progression model with k = 4 stages and n = 16 genes with different
noise probability. We obtain the average Hamming distance (HD) with
1000 runs between the progression stage distribution of noise dataset
and no noise dataset with m = 100,200,400,600,800,1000. The lower
the HD, the smaller is the total rate of false inference progression stages
among genes.

and sample size. In other words, we prove on the basis of
extensive simulation tests that PGM needs a much lower
number of samples than other models to converge to the
correct progression stage distribution and also that it is much
more robust even in the presence of significant amount of
noise in the dataset, irrespective of the underlying topology.

TABLE 1. Overview of the datasets used in this study and basic
information about these datasets.

B. REAL CANCER DATA
To assess the performance of PGM on real somatic mutation
data, we test PGM on three public available cancer datasets
including colorectal cancer dataset (CRC1) [1], colorectal
mutation dataset (CRC2) [2] and giloblastoma multiforme
dataset (GBM) [7]. Table 1 summarizes the information of
the three datasets, including number of samples, number of
driver genes. For the convenience of describing the results,
we show the results in two forms: linear diagram and DAG.
In the DAG, themutated driver genes may appear two or more
times to facilitate the expression of the relationship among
them. We adopt the permutation test to assess the statis-
tical significance of our results, estimating the probability
of obtaining a set of DAGs in which the sum of mutation
probability less or equal to the sum of mutation probability
of the DAG in our result when the mutations are placed

independently in the samples preserving the mutation fre-
quency of the driver genes. Furthermore, to measure the
stability of the assignment of a particular driver gene to a
stage in the progression, we compute the correct rate of driver
genes that appear in a particular stage of the progression using
bootstrap re-sampling [35].

The experimental datasets we tested are also used in
ILP [10], NetInf [28], and pathTiMEx [29], which inferred
cancer progression at the pathway level. The results of linear
diagram in PGM are highly consistent with the three previous
models on the three datasets. Most of all, our model reflect
cancer progression not only at the pathway level but also at the
individual gene level. The selectivity relation between each
driver gene pair that is shown in ourDAGs is highly consistent
with the existing biomedical literature. Here we take ILP as
an example to compare with PGM.

FIGURE 6. Progression model built with the use of colorectal cancer data
that showed by linear form. (a) The result obtained by applying the
proposed PGM; (b) the result obtained by ILP.

1) COLORECTAL CANCER DATA
PGM is firstly evaluated on the CRC1 dataset, which consists
of mutations from 95 samples, including eight driver genes
withmutation frequency above 5%. The eight driver genes are
TP53, KRAS, EVC2, APC, TCF7L2, PIK3CA, FBXW7 and
EPHA3. The pathway-based evolutionary progression of col-
orectal cancer obtained by PGM is shown in Fig. 6a. It is very
similar to the progression model inferred by the integer linear
program (ILP) model shown in Fig. 6b. The threshold λ of
the intersection degree is set to the 55th percentile of all ID
values. For all genes, the average correct rate they appear in
the same stage out of 100 bootstrap datasets is 82%.

The reconstruction of progression model reaffirms the
current knowledge on colorectal cancer. For example, APC
mutation is an early event, followed by those in KRAS and
TP53 [29]. However, the only difference between the two
progression models is that KRAS mutation occurs earlier
than TP53, inferred by PGM, while TP53 mutation occurs
earlier than KRAS, inferred by ILP. Actually, some litera-
tures [18], [36], [37] show that the temporal order of the
TP53 and KRAS mutations are not clear yet.

Our model can derive not only the linear temporal order
diagram but also the DAG of cancer progression. The DAG
of CRC1 (p − value < 0.01) obtained by PGM is shown in
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FIGURE 7. Progression model is showed by DAG. Red circles represent
the first stage, green circles represent the second stage, yellow circles
represent the third stage, and blue circle represents the fourth stage.

Fig. 7, in which we mark the different pathway with different
color and there is no edge between two driver genes belonging
to the same pathway. The dashed lines indicate different
progression stages. The KRAS and PIK3CA mutations occur
after APC, and they are independent with each other [18].
TCF7L2 is earlier than EVC2, which is consistent with the
current knowledge on colorectal tumorigenesis [36], [37].
We derive the selectivity relation (temporal order) between
mutations in KRAS and FBXW7 shown in Fig. 7, and it
has been proved by Gerstung et al. [18]. Among these genes
EPHA3 is an independent node, which indicates that it has no
relation with other nodes. Therefore, our model derives not
only the relationship among driver genes but also between
driver pathways.

FIGURE 8. Progression model built with the use of colorectal cancer data
that showed by linear form. (a) the result obtained by applying the
proposed PGM method; (b) the result obtained by ILP method.

2) TCGA COLORECTAL CANCER
We further analyze the colorectal mutation data including
223 samples (CRC2) from TCGA. The 14 driver genes iden-
tified as recurrent mutation in previous work are analyzed.
The linear result of our model is shown by Fig. 8a and the
progressionmodel inferred by ILP is shown in Fig. 8b. The ID
threshold λ is set to the 65th percentile of all ID values. For all
driver genes, the average correct rate they appear in the same
stage out of 100 bootstrap datasets is 89%. It is obvious that
our result of linear form is the same with the result obtained

FIGURE 9. Progression model is showed by DAG. Red circles represent
the first stage, green circles represent the second stage, yellow circles
represent the third stage, blue circles represent the fourth stage, and
black circle represents the fifth stage.

by ILP in CRC2, the difference is that we list the relationship
of among driver genes, ILP do not list.

Interestingly, the progression model restricted to the driver
genes APC, PIK3CA is the same as the one that we identify
from the smaller dataset CRC1. KRAS and TP53 have the
different stage from the smaller dataset. We consider that
this dataset add some driver genes like BRAF and NRAS
which influence the result, because BRAF, NRAS, KRAS are
considered in the same pathway [28] and they are part of the
Ras-Raf pathway. Moreover, the bootstrap analysis reveals
that TP53 and NRAS have the most stable assignments to the
different stages of the progression.

The most likely DAG (p−value < 0.01) obtained by PGM
is shown in Fig. 8. Actually, it is highly accordance with our
findings on the CRC1 dataset, and also highly consistent with
the current knowledge on colorectal tumorigenesis [36], [37].
Specifically, APC mutation is the earliest event, followed by
mutations in KRAS, TP53 and PIK3CA [38]. SMAD4 and
SMAD2 mutations are followed by those in KRAS and
NRAS, respectively [39]. FBXW7mutations correlated posi-
tively with BRAFmutations and PIK3CA correlate positively
with NRAS. FAM123B involves in the Wnt signaling path-
way, and it is positively influence SMAD2 [40]. For the pair
of NRAS and ELF3 (p− value < 0.01), pNRAS > pELF3 and
pELF3/NRAS > pELF3/NRAS , moreover, their ID is 0.21, it is
greater than 65th percentile of all ID values. For the pairs of
ACVR2A and SOX9 (p − value < 0.01), pACVR2A > pSOX9
and pSOX9/ACVR2A > pSOX9/ACVR2A, moreover, their ID is
0.19. It is greater than the 65th percentile of all ID values.
So, the pair of NRAS and ELF3 and the pair of ACVR2A
and SOX9 very likely have selectivity relation. In conclusion,
PGM provides a reasonable linear model of colorectal cancer
and offers a better explanation of colorectal tumorigenesis
than the existing models [10], [18].

3) TCGA GLIOBLASTOMA MULTIFORME
We download GBM dataset from UCSC cancer browser, and
restrict our analysis to the driver genes reported in previous
work [41]. We filter the samples and genes with all zeros
in the dataset, and derive the data consisted by 25 driver
genes and 232 samples. The pathway-based evolutionary
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FIGURE 10. Progression model built with the use of TCGA Glioblastoma
Multiforme that showed by linear form.

FIGURE 11. Progression model is showed by DAG. Red circles represent
the first stage, green circles represent the second stage, yellow circles
represent the third stage, blue circles represent the fourth stage, and
black circle represents the fifth stage.

progression of giloblastoma multiforme obtained by PGM
is shown in Fig. 10 and the DAG (p − value < 0.01) is
shown in Fig. 11. The ID threshold λ is set to the 65th
percentile of all ID values. For all driver genes, the average
correct rate is 80% in 100 bootstrap datasets. EGFR and
NF1 are the core members of the MAPK signaling path-
way, EGFR expression is associated with the development of
the Schwann cell-derived tumors characteristic of NF1 [42].
PIK3CA, PTEN and PIK3R1 are the core members of the
RTK/RAS/PI(3)K signaling pathway which is prominently
altered in glioblastoma. RB1 and CDKN2A are from the
Rb1 pathway, PIK3R2, PIK3CB and PIK3CG are in the PI3K
pathway; MDM4 and MDM2 are the core members of the
p53 signaling pathway. The results shown in Fig. 11 are con-
sistent with the model proposed by Misra et al. [43], which
indicates that TP53, PTEN, EGFR, NF1 and PIK3R1 muta-
tions are the initiating event in secondary glioblastomas.
RB1 follows most commonly TP53 and PTEN mutations,
IDH1 follows TP53 [43], ATRX mutation occurs behind
TP53 mutation [44]. Somatic mutation of PIK3R1 provides
tumors with an additional mechanism to deregulate PI3K sig-
naling and promote tumor progression [45], so PIK3R1 has
positive influence on PIK3CG and PIK3C2A. GBM with
NF1mutations might make benefit for a RAF inhibitor as part
of a combination, as shown for BRAF mutant cancers [46].
And EGFR is positive to MDM2 [47]. In conclusion,
the above analyses suggest that the PGM can identify driver

pathways and can provide the most major selectivity relation
among driver genes from GBM.

IV. CONCLUSION AND DISCUSSION
Inference of temporal order on driver gene mutations is a
valuable research in exploring cancer pathogenesis, clinical
diagnosis and therapy, as well as pharmaceutical research
and development. In this paper, we propose PGM to infer
the cancer progression not only at the individual gene level
but also at the pathways level, and can infer the selectivity
relation in each driver gene pairs from different pathways.
The experimental analysis suggests that the temporal order of
driver gene mutation obtained by the proposed method may
reflect the essential properties of cancer progression includ-
ing branches, confluences and independent progressions.

In summary, PGM can deduce the causal dependencies
among driver gene mutation, and reflect the dynamics of the
driver mutation accumulation process during cancer progres-
sion more closely. In PGM, the intersection degree between
arbitrary two genes is defined to filter some insignificant
relation. Marginal probability and conditional probability can
be estimated directly from the data, and the mutation waiting
time of the driver genes can be estimated by stochastic func-
tion of their probability.

Our model is beneficial in the following four aspects. First,
PGM use causal dependency theory to generate a DAG to
better representation of tumorigenesis. Second, our model
constructs DAG with the intersection degree which is used
to prune the redundant edges to discover more significance
selectivity relation. Third, our model use the assumption to
derive driver pathway that driver genes at the same pathway
is at same waiting time stage. Fourth, our model not only can
captures the selectivity relation among genes but also derive
driver pathway, it can also be said that our model consider the
cancer progression not only at the individual gene level but
also at the pathway level. In general, PGM can recapitulates
current knowledge, also offering new insights on the order
constrains among pathways in cancer progression.

Compared with the existing methods and models, our
model considers the selectivity relation among driver genes,
so it can discover more temporal orders among driver genes.
For example, in Fig. 11, the mutation of RB1 is the earlier
event than PIK3CB, ATRX, PIK3C2G, FGFR2 and PIK3CG,
and RB1 is divided into Stage 2, the mutation of PIK3CB,
ATRX, PIK3C2G, and PIK3CG are divided into Stage 3,
the mutation of FGFR2 is divided into Stage 4 with the
correct rate greater than 85% by using bootstrap re-sampling.
However, to our best knowledge there is not relevant medical
report to verify some of our novel hypotheses which allow
researchers to be interrogated and tested with clinical and
biochemical trials. Such as we discover that exist likely selec-
tivity relation of mutation on the pair of NRAS and ELF3 and
the pair of ACVR2A and SOX9 in colorectal cancer.

The presented work has demonstrated that it is feasible
using cross-sectional mutation data to study cancer pro-
gression, but there are some potential unresolved problems.
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Our future work will focus on incorporating currently avail-
able molecular data (e.g., mRNA, microRNA, copy number,
methylation, clinical data and gene expression data) to con-
struct more complex and precise cancer progression DAG.
Furthermore, the number of progression stages in our model
need to be predefined, however, usually it is difficult to
determine the value, automatically identifying them will also
be a logical expansion.
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