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ABSTRACT The central limit theorem (CLT)-based Gaussian approximation facilitates the probability
analysis of cognitive radio (CR), but it incurs data rate loss due to the inaccurate configuration of the optimal
sensing duration (OSD). To estimate the data rate loss, an approach to obtain a tight upper bound of the
maximal achievable data rate over a Nakagami-m fading via-to-sense channel is proposed.Moreover, a direct
formula is more desirable than an iteration scheme for a highly mobile CR that has to calculate the OSDmore
quickly. To meet this need, a strategy to achieve the OSD based on exponential interpolation is proposed.
For Nakagami-Gamma shadowed fading via-to-sense channels, the proposed scheme is demonstrated to
have advantages over the popularly utilized Hermite spline, such as: 1) a more tractable derivation of
the probability density function (PDF) of the OSD and 2) a less complex calculation of the ergodic-
sensing capacity. These advantages are significantly favorable for a CR network to achieve low latency
communication and swiftly perform quality of service management to adapt to the high mobility.

INDEX TERMS Cognitive radio, CLT, Gaussian approximation, interpolation, PDF, spectrum sensing,
optimal sensing duration.

I. INTRODUCTION
One of the important tasks for cognitive radio (CR) is sens-
ing the environmental spectrum for opportunistic access. For
a CR system, the fraction of the period of a data frame
that is assigned to sensing will significantly impact its data
throughput [1]–[5]. This issue involves the probability anal-
ysis of the detected signal, for which the Gaussian approx-
imation based on the central limit theorem (CLT) enables
mathematical tractability. However, this analysis inevitably
leads to the inaccurate configuration of the optimal sens-
ing duration (OSD) and the loss of data rates to a certain
extent. Additionally, this issue involves a sensing-throughput
tradeoff, for which a time-consuming optimization operation
to achieve the OSD has to be performed [1]–[5]. Unfortu-
nately, to the best of our knowledge, neither a tight upper
bound of the maximal achievable data rate (MADR), which
is applicable to estimate such a data rate loss, nor a direct
formula replacing the conventional iteration scheme for the

simplification of the calculation of the OSD have been found
to date [1]–[5]. However, the two aforementioned needs have
become unprecedentedly desirable, as the CR ability [6],
tactile-latency [7] and high speed mobility [8] were raised
as the requirements of the 5th Generation (5G) wireless
network [6]–[8].

For a highly mobile CR system, its data frame and the
fraction therein for the sensing have to be compressed. Thus,
a question may arise as follows. Over a more limited size of
the detected samples due to higher mobility, how much data
rate will be lost due to applying the CLT? Moreover, higher
mobility requires higher calculation speeds for the OSD.
Next, another question may be raised as follows. Is a direct
forward formula of OSD that is capable of replacing the
traditional iteration scheme applicable?

Fortunately, for these two questions, our investigation
indicates that although a closed-form formula of the exact
MADR is not derivable due to a transcendental equation,
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an upper bound of it is achievable if some skills are applied.
Accordingly, the data rate loss due to the CLT can be esti-
mated. Moreover, an interpolation approach based on the
exponential interpolation (EI) to piecewisely fit the exact
OSD is applicable. This approach’s constraint equations are
based on the coincidence of the functions at the starting end
of each piece and that of their 1st order derivatives at both
ends. We handle this analysis in this way in order to achieve a
continuous probability density function (PDF) of the OSD as
a whole of all the pieces. Such a scheme has two advantages
over the conventional Hermite interpolation (HI) [9], [10],
which also keeps the continuity of the 1st order derivatives.
They are that: a) it renders the derivation of the PDF of the
OSD tractable due to ease of deriving the inverse function of
the OSD vs. the SNR, and b) it significantly decreases the
complexity of the computation of the ergodic capacity over
the via-to-sense fading channel. For the cross-layer QoSman-
agement of a wireless network, the resource allocation (RA),
the call admission control (CAC) [11], [12], and the frame
alignment [25] have to be performed in a timely manner.
Thus, the quick awareness of such information becomes
significantly favourable for the CRs at high mobility.

The remainder of this paper is organized as follows.
In section III, the addressed problem is formulated.
Section IV and V provide several related theoretical analyses
and derivations. Section VI presents the simulation verifi-
cations followed by Section VII, where all conclusions are
drawn.

II. KEY ABBREVIATIONS
For more convenient referencing, the key abbreviations are
listed in Tab. 1.

III. MATHEMATICAL FORMULATION
A. OPTIMAL SENSING DURATION AND MAXIMAL
ACHIEVABLE DATA RATE OF COGNITIVE RADIO
For the energy detection based spectrum sensing approach,
the statistical test result based on a set of detected samples
can be expressed as [1]

t (Y) =
1
K

K∑
k=1

|y (k)|2 (1)

where

Y = {y (k)|y (k) = s (k)+ z (k), k ∈ K}, (2)

Also, k and K represent the sample-index and the set includ-
ing those indices with cardinality ofK , respectively.K = fsτ ,
where fs and τ are the sampling rate and sensing duration,
respectively. y (k) is the kth sample for testing. s (k) and
z(k) are the nth items of the signal and noise sample-sets
that are mutually independent with variances of σ 2

s and σ 2
z ,

respectively. z (k) ∼ CN(0, σ 2
z ) (i.e., it follows a circular

symmetric complex Gaussian (CSCG) distribution withmean
of 0 and variance of σ 2

z ) [13], [14]. For a sensing operation
via a Nakagami-m fading channel, the conditional probability

TABLE 1. Key abbreviations in an alphabetical order.

density function (PDF) of the instantaneous signal to noise
ratio (SNR) is given as follows [14], [15]

fγ̇ (x|γ ) =
1

0 (m)

(
m
γ

)m
xm−1e

(
−
m
γ
x
)
, x ≥ 0, m ≥ 1/2

(3)

where m is the Nakagami fading parameter. A smaller
m results in more severe multipath fading. m = 1/2, m = 1,
m > 1 and m = ∞ represent the single-side Gaussian,
Rayleigh, Rician and line of sight (LOS) channels, respec-
tively [14], [15].0 (·) denotes the Gamma function [13], [23],
γ̇ is the instantaneous SNR, and γ is the mean of γ̇ defined
as γ = σ 2

s /σ
2
z . Formula (3) indicates that γ̇ ∼ Ga (m, γ /m),

where the sign ‘∼’ denotes ‘follow’ and Ga (k, θ) as a generic
sign represents the Gamma distribution with k and θ being its
shape and scale parameter, respectively [13], [23].

Obviously, γ is also a random variable (RV) in the sense of
longer term fading due to the path loss or shadowing [14]. For
the simplification of analysis, the path loss in this instance is
assumed to be constant during sensing. Thus, γ usually meets
a logarithm Gaussian distribution [13], [14]. For the ease of
mathematical handling, it is typical to employ the Gamma
distribution as its approximate alternative, the PDF of which
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is given by [16].

fγ (y|γ̄ ) =
yM−1

0 (M) γ̄M
exp

(
−
y
γ̄

)
, y ≥ 0, M ≥ 1/2 (4)

where M is a parameter inverse-proportionally reflecting the
severity of shadow fading and γ̄ is a parameter identical
to the mean of γ (i.e., the mean SNR of shadow fading).
An overall view of Eqs. (3) and (4) suggests that γ̇ experi-
ences a Nakagami-Gamma shadowed fading [16], the PDF
of which, if taking the form of fγ̇ (x | γ̄ ), will contain the
modified Bessel function of the second kind known as the
generalized-K model [22].

Let us focus on the context that the licensed (i.e., primary)
signal does not vary so fast that it is considered to be a
constant during sensing. It propagates via an aforementioned
fading channel to arrive at the detector of a cognitive (i.e., sec-
ondary) system. Therefore, the variation of s (k) depends only
on the channel. The temporal spacing of s (k), k = 1 · · ·K is
sufficient so that they can be viewed as uncorrelated. Either
z(k) or s (k), k = 1 · · ·K have an independent identical
distribution (i.i.d.).

Under hypothesis H0 (i.e., s (k) = 0, k = 1 · · ·K ), t (Y)
of (1) can be rewritten as

t (Y|H0) = t ({z (k), k ∈ K}) =
1
K

K∑
k=1

|z (k)|2 (5)

which follows the Chi-square distribution with a degree of
freedom of 2K if σ 2

z = 1 [13], a special case of Gamma
distribution. Here, we still regard it as Gamma distributed,
represented as [13]

t (Y|H0) ∼ Ga
(
K , σ 2

z /K
)
. (6)

In the other case of hypothesis, H1 (i.e., s (k) 6= 0,
k = 1 · · ·K ) t (Y) of (1) can be rewritten as

t (Y|H1) = t ({y (k), k ∈ K}) =
1
K

K∑
k=1

|s (k)+ z (k)|2 (7)

which is also observed to be Gamma distributed. Therefore,
a proposition needs to be proposed as follows.
Proposition 1: The probability of t (Y|H1) of (7) is

Gamma distributed, represented as

t (Y|H1) ∼ Ga (κ, θ) (8)

where κ and θ are given by

κ = Kξ (m, γ ), (9.a)

θ =
σ 2
z (1+ γ )
Kξ (m, γ )

(9.b)

and ξ (m, γ ) is given by

ξ (m, γ ) =
(1+ γ )2

γ 2/m+ 2γ + 1
. (9.c)

Proof: See Appendix A.
The mean and variance of t (Y |H1) of (7) (denoted µH1

and σ 2
H1

, respectively) are also derivable (see Appendix A)

based the corresponding formulae of Gamma distribu-
tion [13], given by

µH1 = κθ = (1+ γ ) σ
2
z , (10.a)

σ 2
H1
= κθ2 =

(1+ γ )2 σ 4
z

Kξ (m, γ )
. (10.b)

Similarly, for t (Y |H0), its mean and variance are given by

µH0 = σ
2
z , (11.a)

σ 2
H0
= σ 4

z /K . (11.b)

Substituting m = 1 and m → ∞ into (10.b) yields
σ 2
H1
= σ 4

z (γ + 1)2/K and σ 2
H1
= σ 4

z (2γ +1)/K , coinciding
with the 3rd and 1st cases of (8) of [1], respectively. Thus,
formula (10) provides a more general form than [1].

Let pd denote the detection probability that the CR system
detects the presence of a licensed signal while it is indeed
active, and pf is the false alarm probability such that the
CR system falsely declares the presence of the licensed signal
in its absence. In [1], it focuses on a context in which the
signal is complex PSK-modulated and is propagated along a
LOS path while the noise is CSCG distributed. This paper
is focused on a new context in which the licensed system’s
transmitted signal does not vary significantly within the cog-
nitive system’s sensing duration so that it can be considered
invariant. Nevertheless, it goes through a Nakagami-Gamma
shadowed fading channel prior to its arrival. In such a new
context, let us re-derive pd and pf as follows.

Based on proposition 1, the PDF of t (Y |H1) is given by

ft(Y|H1) (x) =
xκ−1

0 (κ) θκ
exp

(
−
x
θ

)
, x ≥ 0. (12)

Accordingly, pd is derivable to be

pd (m, γ, ε)

=

∫
∞

ε

ft(Y |H1) (x) dx

=
1

0 (κ)

∫
∞

ε/θ

( x
θ

)κ−1
exp

(
−
x
θ

)
d
x
θ
=
0 (κ, ε/θ)

0 (κ)

= 00 (κ, ε/θ) = 00

(
Kξ (m, γ ),

εKξ (m, γ )
σ 2
z (1+ γ )

)
(13)

where 0 (·, ·) denotes the upper incomplete Gamma function,
00 (·, ·) is its regularized form [13], [23], and ε is the decision
threshold for the detection of the result. Formula (13) indi-
cates that pd depends on the three parameters of m, γ and ε.

To limit the CR’s interference in the licensed system under
a specified level, it is usually required that pd ≥ pd0, where
pd0 is termed as the minimal detection probability. The sub-
stitution of eq. (13) into pd ≥ pd0 leads to

ε ≤ ε0 (γ,m, pd0)

= θ0−10 (κ, pd0)=
σ 2
z (1+γ )
Kξ (m, γ )

0−10 (Kξ (m, γ ), pd0) (14)

where ε0 is the upper limit of ε and 0−10 (·, ·) denotes the
inverse function of 00(·, ·). The above formula indicates the
dependence of ε0 on the parameters of γ , m and pd0.
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As a result of (6), the PDF of t (Y |H0) is derived to be

ft(Y |H0) (x) =
xK−1KK

0 (K )
(
σ 2
z
)K exp

(
−
Kx
σ 2
z

)
, x ≥ 0. (15)

Therefore, the pf over ε0 becomes derivable, given by

pf
(
τ, σ 2

z , ε0

)
=

∫
∞

ε0

ft(Y|H0) (x) dx

=
1

0 (K )

∫
∞

Kε0/σ 2z

(
x

σ 2
z /K

)K−1
exp

(
−

x
σ 2
z /K

)
d

x
σ 2
z /K

=
0
(
K ,Kε0/σ 2

z
)

0 (K )
= 00

(
K (τ ),

K (τ ) ε0 (γ,m, pd0)
σ 2
z

)
.

(16)

Since K = fsτ , formula (16) implies that the four param-
eters of pd0, τ , γ and m will impact the pf along with fs
and σ 2

z that are usually configured or considered to be fixed.
The former two (pd0 and τ ) are usually programmable, while
the latter two (γ and m) are determined merely by the radio
circumstance. Thus, in order to clarify such dependencies, let
us rewrite (16) using a more dependence-shown formula as
follows.

pf (pd0, τ, γ,m) = 00

(
K (τ ),

K (τ ) ε0 (γ,m, pd0)
σ 2
z

)
(17)

Based on the well-known central limit theorem (CLT) [13],
it can be stated that

t (Y |H0) ∼̇ N
(
µH0 , σ

2
H0

)
, (18)

t (Y |H1) ∼̇ N
(
µH1 , σ

2
H1

)
, (19)

where the symbol ∼̇ denotes ‘approximately follows’, and
N
(
µ, σ 2

)
as a generic symbol denotes the normal (i.e., Gaus-

sian) distribution with µ and σ 2 being its mean and variance,
respectively.

The PDF formula of the normal distribution is well-
known. Accordingly, an approximate decision threshold
for t (Y |H1) to meet the pd0 is easily derived, given
by

ε̂0 = µH1 + σH1Q
−1 (pd0) (20)

where Q−1 (·) denotes the inverse of the Q function given by

Q(x) =
(
1/
√
2π
) ∫
∞

x e−
t2
2 dt [13].

Consequently, the second type of false alarm probability
(in a sense other than that of pf of (17)) is obtained using
ε̂0 and N

(
µH0 , σ

2
H0

)
as two approximate alternatives. It is

given by

p̂f = Q
(
ε̂0 − µH0

σH0

)
. (21)

By replacing ε̂0 with (20) [thereinµH1 and σH1 are further
replaced with (10.a) and (10.b), respectively], µH0 and σH0

with (11.a) and (11.b), respectively, it turns into

p̂f (pd0, τ, γ,m)

= Q
(
Q−1 (pd0)

√
γ 2/m+ 2γ + 1+ γ

√
K (τ )

)
. (22)

It is still worthy to remind you that from a strict point
of view, t (Y |H0) of (5) fluctuates on the law of Gamma
distribution as (6) indicates rather than the normal distribution
as (18) does. Thus, the p̂f of (21) does not reflect the exact
false alarm probability that actually occurs in the physical
layer. Therefore, it is still necessary to present such a false
alarm probability in a sense distinct from the two that were
discussed, which is obtained based on (20) and (6).We denote
it by p̃f and represent it as

p̃f =
1

0 (K )

∫
∞

K ε̂0/σ 2z

ζK−1e−ζdζ. (23)

To clarify the major dependent variables of p̃f, we derive it
into the form of

p̃f (pd0, τ, γ,m)

= 00

(
K (τ ),

K (τ ) ε̂0
(
µH1 (γ,m), σH1 (γ,m), pd0

)
σ 2
z

)
.

(24)

Therefore, for a CR system, there exist three types of data
rates corresponding to (17), (22) and (24), respectively, as
follows.

a) The Exact Data Rate (EDR), which is based on an exact
decision threshold and an exact PDF of t (Y |H0), is given
by

B (τ, γ ) =
(
1−

τ

T

)
(1− pf) (25)

where B denotes the data rate normalized to that of the non-
CR case, T is the period of a data frame, and (1− τ/T )
denotes the other part of T than τ for the transmission of the
CR’s own data provided that the detection results indicate the
absence of the licensed signal [1].

b) The CLT-resultant Physically occurring Date Rate
(CPDR), which treats ε̂0 as an approximate alternative of ε0,
is given by

B̃ (τ, γ ) =
(
1−

τ

T

)
(1− p̃f). (26)

c) The CLT-resultant imaginary date rate (CIDR) is also
based on ε̂0 to detect t (Y |H0), the distribution of which is
actually Gamma but is regarded by CR as Normal. In other
words, CIDR is a type of data rate that never occurs in the
physical layer. Let this data rate be expressed as

B̂ (τ, γ ) =
(
1−

τ

T

) (
1− p̂f

)
. (27)

Based on the data rates in different senses as above, there
may be two types of OSDs as follows.

a) TheExact OSD (EOSD), which depends on (25), is given
by

τ0(γ ) = argmax
0≤τ≤T

B (τ, γ ). (28)
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b) The CLT-resultant imaginary OSD (CIOSD), which is
based on (27), is represented as

τ̂0(γ ) = argmax
0≤τ≤T

B̂ (τ, γ ). (29)

Correspondingly, further based on the types of OSDs
defined as above, two MADR-related concepts are defined
as follows.

a) The Exact MADR (EMADR), which is determined
by (28) and (17), is given by

B0 (γ ) =
(
1−

τ0(γ )
T

)
(1− pf). (30)

b) The CLT-resultant MADR (CMADR), which is deter-
mined by (29) and (24), is given by

B̃0 (γ ) =
(
1−

τ̂0(γ )
T

)
(1− p̃f). (31)

Therefore, the CLT-resultant Data Rate Loss (CDRL) that
can be defined as 1B0 (γ ) = B0 (γ ) − B̃0 (γ ). It is further
expanded to be

1B0(γ )=
(
1−

τ0(γ )
T

)
(1−pf)−

(
1−

τ̂0(γ )
T

)
(1−p̃f) (32)

B. RAISE OF QUESTIONS
Facing formula (32), three interesting questions are raised as
follows.
The 1st question: Under the context of high mobility, how

significant the magnitude of CDRL of (32) will be?
Under the context of high mobility, the CR data frame

has to be compressed for two reasons as follows. First,
the licensed signal’s rapid alternation between emergence
and vanishment becomes very likely, thereby compelling the
detection of its availability to be performed more frequently.
To adapt to such a scenario, the data frame has to be shorter.
This phenomenon will become more severe if the user’s
devices shuttle rapidly through buildings. Second, the chan-
nel estimation for the CR system’s own communication also
needs to occur more frequently due to the faster variation of
the channel.

As a result, the sensing time slot within a data frame will
be squeezed, leading to a more limited size of samples for
detection. This means a larger error of optimization for the
MADR due to applying the CLT. Therefore, the 1st question
arises as above.
The 2nd question: For the solution of (28), is a direct

formula that can replace the conventional iteration scheme
applicable? If so, such a formula will be more suitable to the
high mobility since its related operation saves more time.

In an effort to solve such a problem as (28) gives, one usu-
ally resorts to the iteration-based numerical approach. This
is indeed a feasible scheme under a stationary or quasi-
stationary context. Nevertheless, for high mobility, the
availability of spectrum holes varies so rapidly that the
iteration-based calculation may be incapable of keeping up

with such a rapid variation. Under this scenario, raising the
2nd question becomes valuable.
The 3rd question: In the context of high mobility, is the sta-

tistical information of theOSD andMADRquickly acquirable
by the CR that is detecting the licensed signal through an
ergodically fading channel?

In such a case, the quick acquisition of such information
becomes significantly important, since those cross-layer QoS
managements (e.g., the resource allocation (RA), the call
admission control (CAC) [11], [12], and the frame align-
ment [25]) are required to be finished within a demanding
latency [7]. Thus, the 3rd question is highlighted.

For the 1st question, fortunately, our investigation in the
next section will show that although a closed-form formula
representing (28) is never derivable, an upper bound of it is
achievable if some skill is applied. On this basis, the data
rate loss due to the CLT resultant error can be estimated.
The verifying simulation test in section VI indicates that such
a date rate loss is still acceptable, provided that the related
parameters are configured within the range regulated by
IEEE 802.16e [19].

Regarding the 2nd question, our works in subsection V.B
and section VI indicate that a forthright and convenient for-
mula, based on the exponential interpolation to approximate
the exact OSD will become an effective tool.

Facing the 3rd question, subsections V.C and VI will
demonstrate that in an approximation sense, the probability
density functions (PDF) of the OSD and MADR are achiev-
able if applying some skills.

IV. DATE RATE LOSS DUE TO CLT-BASED
APPROXIMATION
Reference [1] has proved that B̂ (τ, γ ) of (27) is concave
with respect to (w. r. t.) τ if p̂f ≤ 0.5, and the following
proposition 4 will indicate that B (τ, γ ) of (25) w. r. t. τ is also
concave if pf ≤ 0.5. Thus, the closed-form formula express-
ing (28) inevitably involves solving the equations such that
∂B (τ, γ ) /∂τ = 0. The solution of such an equation involves
transcendental functions that disables (28) to be expressed
in a closed form [17]. Similarly, the closed formed formula
expressing (30) is also unachievable, and neither is (32).

However, a tight upper bound of (30) (although it still needs
tiny recursion operations) is attainable. Such a bound can be
supported by a proposition as follows.
Proposition 2: For the EMADR given by (30), an upper

bound denoted B0 is achievable (i.e., B0 (γ ) ≤ B0 (γ )).
B0 is given by (33.a), as shown at the top of the next page,
whereB (τ, γ ) is given by (25).Meanwhile,B′τ (τ, γ ) is given
by

B′τ (τ, γ ) = −
1− pf
T
−

(
1−

τ

T

) ∂pf (τ, γ )
∂τ

(33.b)

in which

∂pf
∂τ
=
0′τ
(
K ,Kε0/σ 2

z
)
0 (K )− 0

(
K ,Kε0/σ 2

z
)
0′τ (K )

02 (K )
(33.c)
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B0 (γ ) =
B′τ
(
τ́ , γ

)
B
(
τ̀ , γ

)
− B′τ

(
τ̀ , γ

)
B
(
τ́ , γ

)
+ B′τ

(
τ́ , γ

)
B′τ
(
τ̀ , γ

) (
τ́ − τ̀

)
B′τ
(
τ́ , γ

)
− B′τ

(
τ̀ , γ

) (33.a)

τ̇ (i) =
B
(
τ̀ (i−1), γ

)
− B

(
τ́ (i−1), γ

)
+ τ́ (i−1)B′τ

(
τ́ (i−1), γ

)
− τ̀ (i−1)B′τ

(
τ̀ (i−1), γ

)
B′τ
(
τ́ (i−1), γ

)
− B′τ

(
τ̀ (i−1), γ

) (34.f)

where 0′τ
(
K ,Kε0/σ 2

z
)
and 0′τ (K ) are given by (B.3.1) and

(B.2) in Appendix B, respectively.
Meanwhile, τ́ = τ́ (i), τ̀ = τ̀ (i) where τ́ (i) and τ̀ (i) are the

results of a set of recursive formulae1 as follows{
τ́ (i) = τ̇ (i)

τ̀ (i) = τ̀ (i−1)
if B′τ

(
τ̇ (i), γ

)
> 0 (34.a){

τ́ (i) = τ́ (i−1)

τ̀ (i) = τ̇ (i)
if B′τ

(
τ̇ (i), γ

)
< 0 (34.b)

τ́ (i) = τ̀ (i) = τ̇ (i) if B′τ
(
τ̇ (i), γ

)
= 0 (34.c)

τ́ (0) = τmin (34.d)

τ̀ (0) = T (34.e)

where, τ̇ (i) is given by (34,f), as shown at the top of the this
page, and i is the index of recursion time. τmin is given by

τmin =

(
Q−1 (pd0)

)2
fs

(
1
m
+

2
γ
+

1
γ 2

)
. (34.g)

Proof: See Appendix B.
Therefore, the data rate loss1B0 (γ ) can be upper bounded

by B0 (γ )− B̃0 (γ ) and expressed as

1B0 (γ ) ≤ B0 (γ )− B̃0 (γ ). (35)

It is stated by the CLT, the distribution of the sum of any
non-Gaussian distributed RVs can arbitrarily approach the
Gaussian distribution, provided that the sizes of the samples
are sufficiently large [13]. Accordingly, a proposition is as
follows.
Proposition 3: The CDRL given by (32) will be arbitrarily

small provided that the number of samples for detection is
sufficiently large.

Proof: See Appendix C.
However, for the practical applications, the number of

samples for detection will be finite. Therefore, formula (35)
shows its applicability in estimating such a data rate loss of
the CDRL.

V. APPROXIMATE DIRECT FORMULA OF OSD
A. THEORETICAL BASIS
Reference [1] has proved that B (τ, γ ) of (25) (where
pf (τ, γ ) = Q

(√
2γ + 1Q−1 (pd0)+ γ

√
fsτ
)
) is concave w.

r. t. τ . For the pf of this paper in the new forms as (17), (22)

1The numeric calculation indicates that usually (B0 (γ )− B0 (γ )) /
B0 (γ ) ≤ 10% if i ≥ 2. Thus, it does not need as many iterations to achieve
a tight upper bound of B0 (γ ), i.e. B0 (γ ).

and (24) give, does the concavity of the respective corre-
sponding (25), (26) and (27) w. r. t. τ , still hold? We find it
true. Therefore, another proposition is presented as follows.
Proposition 4: Let it be a condition that the signal of the

licensed transmitter remains invariant while being sensed and
propagates along a Nakagami-m fading channel prior to its
arrival at the detector, where a CSCG distributed noise is
added. Under such a condition, theorem 1, proposition 5
and 6 of [1] still hold for (25), (26) and (27).

Proof: See Appendix D.
It was mentioned that no solutions of τ0(γ ) of (28) and

τ̂0(γ ) of (29) w. r. t. γ exist in explicit closed forms. How-
ever, an implicit function mapping γ to τ0 does exist [17].
Motivated by this, we consider piecewise fitting to be a
good strategy for achieving an approximate direct formula of
the OSD.

B. APPROXIMATE FORMULA BASED ON EXPONETIAL
INTERPOLATION
For the sake of achieving the OSD via a direct formula
instead of pure iteration, we propose a scheme that employs
the exponential functions to piecewise approximate the exact
OSD of (28). This direct formula is expressed in the form
given by

τ̃ i0 (γ ) = µi + αie
εi(γ−βi) (36)

where i is the index of the ith piece, and µi, αi, εi and βi are
the input parameters that can be calculated by solving a set
of equations. See Appendix E for the acquisition of the above
input parameters.

In Appendix E, you will observe that tiny iterations are
still needed due to the need for the numerical calcula-
tions of τ0(γ ) at the starting points of all pieces. Let the
γ values (as the horizontal axis of fig. 3 denotes) of
the ends of all pieces be denoted by {ri | i ∈ I }, where I is
the set of indices of all pieces. Thus, {µi, αi, εi, βi} will be
determined by

{
ri, τ0 (ri), dτ̃ i0 (ri) /dγ, ri+1, dτ̃ i0 (ri+1) /dγ

}
.

In this sense, the scheme based on (36) falls under the cat-
egory of interpolation. However, it is quite different from
the popularly employed interpolation based on the Hermite
spline [9], since our scheme requires the coincidences of the
functions’ values merely on the starting end of all pieces
(i.e., τ̃ i0 (ri) = τ0 (ri),∀i ∈ I ). Faced by the derivation of
an approximate PDF of τ0(γ ) based on τ̃ i0 (γ ), the continuity
of the PDF should be kept. In other words, the continuity
of its 1st derivative dτ̃ i0 (γ ) /dγ for all pieces as a whole
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must be guaranteed. This requirement is due to a fact that
prior to getting the PDF of a function of a random vari-
able, the 1st derivative of its inverse function has to be
derived [13]. If the complexity or tractability of achieving
such a PDF were not taken into account, undoubtedly the
approaches based on polynomial interpolation (e.g., Hermite,
B and rational splines) would be the better choices due to
their fine performance [9]. Particularly, the cubic Hermite
spline is particularly welcome since it features low order2

polynomials meanwhile guarantees the curve’s smoothness.
Nevertheless, unfortunately all polynomial-based interpola-
tion schemes are not applicable here for the four reasons as
follows:

a) The complexity or intractability of the inverse function
of τ̃ i0 (γ ) if it is expressed by a polynomial,
b) The complexity of the 1st derivative of the inverse

function of τ̃ i0 (γ ) even if it is tractable,
c) The complexity or intractability of further derivations of

other formulae of statistic characteristics (e.g., mathematical
expectation and variance), and

d) The inevitability of operations of numeric itera-
tions or matrix’s inversions, which have superlinearly ris-
ing complexities with the increase of the number of
pieces.

Consequently, the polynomial-based interpolants are not
applicable to the context we are focusing on, since a
highly mobile CR will surely be computational delay
sensitive.

Therefore, as it is handled in Appendix E, it keeps the
continuity of dτ̃ i0 (γ ) /dγ at ∀γ ∈ {ri | i ∈ I } but it permits the
slight discontinuity of τ̃ i0 (γ ) thereon, as fig. 3 shows. In other
words, if less continuity of τ̃ i0 (γ ) can be swapped for more
continuity of dτ̃ i0 (γ ) /dγ , ∀i ∈ I , it is worth being done. The
reasons lie in a fact that the PDF of OSD (as (39) will show) is
more sensitive to the latter than to the former, and our works
for fig. 5 have experienced the same.

C. PDF OF OSD OVER A FADING VIA-TO-SENSE CHANNEL
As aforementioned, due to employing exponential splines{
τ̃ i0(γ ) | i ∈ I

}
rather than polynomial-based ones, the inverse

function of τ̃ i0(γ ) becomes smoothly derived. Therefore,
based on (36), we derive it as

γ̃i (τ0) = βi +
1
εi
ln
(
τ0 − µi

αi

)
. (37)

Moreover, the logarithm function therein enables the extraor-
dinarily easy derivation of its 1st derivative. The numerical
result indicates that the curve of τ0(γ ) of (28) is concave-
shaped as fig. 3 shows. Thus, the PDF of τ̃ i0 can be derived

2Interpolation using polynomials of degrees higher than 3 is very likely
to suffer from Runge’s phenomenon (i.e. oscillation at the edges of inter-
val). Thus, the cubic type is usually considered to be the most effective
polynomial-based interpolant [9].Moreover, Galois proved that a polynomial
with its order higher than 4 is not ensured to get the real root [18], and thus
its inverse function may also be unachievable.

via the process as follows

fτ̃ i0
(τ )

=

dFτ̃ i0 (
τ )

dτ
=

d
dτ

τ∫
−∞

fτ̃ i0
(t) dt

=
d
dτ

γ̃l (τ )∫
−∞

fγ̃l (γ ) dγ +
d
dτ

∞∫
γ̃u(τ )

fγ̃u (γ ) dγ

=
dFγ̃l (γ )

dγ
dγ̃l
dτ
−
dFγ̃u (γ )

dγ
dγ̃u
dτ
=

fγl (γ )
εl (τ−µl)

−
fγu (γ )

εu (τ−µu)

(38)

where FX (·) denotes the cumulative distribution function
(CDF) of an RV X . εl & µl and εu & µu, denote
εi & µi of (36), for which γ ∈ {γ |0 ≤ γ ≤ γ p
and γ ∈ {γ |γp ≤ γ ≤ ∞, respectively, where γp =

argmax0≤γ≤∞τ0(γ ).
As (4) shows, fγl (γ ) and fγu (γ ) within (38) follow a

gamma distribution. Replacing them with (4) leads to an
approximate PDF of the OSD over a Nakagami-Gamma
shadowed fading via-to-sense channel. Notice that (38) is
conditioned on M and γ̄ . On this account, we reformulate
it into a conditional PDF as

fτ̃0 (τ |M , γ̄ )

=
(γ̃l (τ ))

M−1 e
−γ̃ l (τ )/γ̄

0 (M) γ̄Mεl (τ − µl)
−
(γ̃u (τ ))

M−1 e
−γ̃ u(τ )/γ̄

0 (M) γ̄Mεu (τ − µu)

=

[
βl +

1
εl
ln
(
τ−µl
αl

)]M−1 [
exp

(
βl
γ̄

)
+

(
τ−µl
αl

)(1/γ̄ εl )]
0 (M) γ̄Mεl (τ − µl)

−

[
βu+

1
εu
ln
(
τ−µu
αu

)]M−1 [
exp

(
βu
γ̄

)
+

(
τ−µu
αu

)(1/γ̄ εu)]
0 (M) γ̄Mεu (τ − µu)

(39.a)

where τ determines which two pieces among all cover it, as
fig. 3 shows. Let the smaller and larger i-valued pieces be
indexed by l and u, respectively, they are given by{

l = min
{
i | τ̃ i0 = τ, i ∈ I

}
u = max

{
i | τ̃ i0 = τ, i ∈ I

}
.

(39.b)

Formula (39) is just the targeted PDF of the OSD, which
may be significantly interesting to those who study the
CR system’s cross-layer problems. Let us give an example.
The frame alignment delay is a key contributor to the user-
plane latency budget, which additionally includes the queu-
ing, transmission and processing delays [25], [26]. Such a
frame alignment can be illustrated by fig. 1. Therein, T is the
frame period that is usually configured to be identical to
the transmission time interval (TTI) [26]. τ0 and T − τ 0 are
the sensing and data transmission durations, respectively. ak
and a’k are the upper-layer data’s two possible arrival instants,
while ek and ek+1 are its entrance instant in the kth frame and
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FIGURE 1. Constituent Time Slots of a Frame Period and the Frame
Alignment Mechanism of the CR system. Therein, T is the frame period,
τ0 and T − τ0 are for sensing and data transmission, respectively; ak and
a’k are the upper-layer data’s two possible arrival instants while ek and
ek+1 are its entrance instant in the kth frame and its next frame,
respectively. There are two cases for the current data to enter the radio
frame. In the first case, it arrives at ak , and enters the current frame
at ek ; In the second case, it arrives at the instant of a’k , then no chance
for it to enter the current frame, so it has to wait till the ek+1 arrives.

the next frame, respectively. Two random events will possibly
occur for the arriving data’s entrance to the radio frame. In the
first case, the data packet will arrive at the buffer output in
the instant of ak with a time span of t(k)a , 0 ≤ t(k)a ≤ τ0 to the
starting instant of the frame. It will wait for a shorter duration
to come into the current radio frame at ek . In the second case,
the data packet arrives in the instant of a’k with t(k)a ranging
within τ0 ≤ t(k)a ≤ T . Then, it has no chance within the
current frame for its entrance, and it has to wait for a longer
duration until the next frame’s entrance ek+1 arrives.

The t(k)a of fig. 1 is usually uniformly distributed within the
frame period [25]. Without the loss of generality, let ta as a
RV represent t(k)a ,∀k . Thus, the PDF of ta is given by

fta = 1/T , 0 ≤ ta ≤ T (40.a)

Let the frame alignment delay of the CR system be denoted
as dfa and just be the 1t or 1t ′ in fig. 1. Obviously, we have
dfa = τ0 − ta with the probability of τ0/T , and dfa =
T − ta + τ0 with probability of (T − τ0) /T , respectively.
Therefore, the PDF of the frame alignment delay of a CR sys-
tem denoted as fdfa is derivable based on the law of PDF of
sum of RVs [13]. It is given by

fdfa (x) =
(
fτ̃0 ⊗ f(−ta)

) τ0
T
+
(
fτ̃0 ⊗ f(T−ta)

) T − τ0
T

(40.b)

where fτ̃0 , f(−ta) and f(T−ta) are given by (39) and (40.a),
respectively, while the sign ⊗ is a convolution operator.

Accordingly, furthermore, the mean delay of the frame
alignment of a CR system denoted by d̄fa is also achievable.
It is given by

d̄fa =
∫ T

0
xfdfa (x) dx (40.c)

Formulas (40.c) and (40.b) indicate that such a PDF of the
OSD of (39) is of significant importance to a CR system’s
frame alignment and other cross-layer operations.

Moreover, notice that formula (39) depends on M and γ̄
and still keeps an exponential form, which enables the par-
ticularly troubleless integral operation of its product with
an exponential-formed function (e.g., (4)). Consequently, we

made little effort to derive an approximate formula of mean
OSD as

t0 (M , γ̄ ) ∼=
N∑
i=1

∫ ri+1

ri
τ̃ i0 (y) fγ (y|γ̄ ) dy

=

N∑
i=1

[
Tiτ (ri+1)− Tiτ (ri)

]
(41.a)

where fγ (y|γ̄ ) is given by (4) and ri is the value of γ at
the starting end of the ith piece. Tiτ (γ ) is the result of∫
τ̃ i0 (y) fγ (y|γ̄ ) dy and is given by

Tiτ (γ ) = −
(γ /γ̄ )M

0 (M)

(
αie−βiεi0 (M , γ /γ̄ − εiγ )

(γ /γ̄ − εiγ )
M

+
µi0 (M , γ /γ̄ )

(γ /γ̄ )M

)
(41.b)

In (41.b), γ̄ andM (which was explained for (4)) explicitly
reflect the status of shadow fading, while µi, αi, εi and
βi defined for (36) implicitly reflect the status of
Nakagami-m fading as fig. 3 demonstrates. Such implicity is
due to the unachievability of an explicit formula mapping τ0
to m.

D. ERGODIC-SENSING CHANNEL CAPACITY
Similar to using (36) to fit (28), B0(γ ) of (30) can also be
approximated by piecewise exponential functions. The latter
is found more easily handled, with three pieces to do it well.
It is

B̃j0 (γ ) = uj + vjekj(γ−wj), j = 1, 2, 3. (42)

Along the same way as Appendix E addresses (36), all input
parameters of (42) are acquirable.

Since formula (42) is still of an exponential form,
the inverse functions of B̃j0 (γ ), j = 1, 2, 3 are also quite
easily derived as

γ̃j (B0) = wj +
1
kj
ln
(
B0 − uj
νj

)
. (43)

We find that B̃j0 (γ ) increases monotonically with the
increase of γ . Therefore, by directly invoking the related
formula of the PDF of a function of a random variable [13],
the PDF of B0(γ )can be smoothly derived still in a piecewise
exponential form given by

fB̃j0
(B |M , γ̄ ) =

(
γ̃j (B)

)M−1
γ̄M0 (M) |ki (B− ui)|

e−
γ̃j(B)
γ̄ (44)

where γ̃j (B0) is given by (43).
In some cases, the data rate performance of a CR system

over a longer term must be evaluated, rendering such a defi-
nition quite necessary as follows.
Definition 1: The Normalized Ergodic Sensing Capacity

(NESC) is defined as the statistically averagedMADR of (30)
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for a CR system whose via-to-sense channel experiences a
long term fading. It is given by

B0 (M , γ̄ ) =
∫
∞

0
B0 (y) fγ (y|γ̄ ) dy (45)

where fγ (y|γ̄ ) denotes the PDF of γ conditioned on γ̄ , which
is given by (4). The replacement of the integrand with the
product of (42) and (4) yields

B0 (M , γ̄ ) ∼=
∑

j

[
T
j
B

(
rj+1

)
− T

j
B

(
rj
)]

(46)

where T
j
B (γ ), j = 1, 2, 3 is the indefinite integral of

B0 (γ ) fγ (y|γ̄ ) along the jth piece. It is given by

T
j
B (γ )

=−
ui0 (M , γ /γ̄ − kiγ )

0 (M)
−
γMvie−kiwi0 (M , γ /γ̄ − kiγ )

γ̄M0 (M)(γ /γ̄ − kiγ )M
.

(47)

So far, a set of formulae for approximately evaluating some
sensing-related statistic information (i.e., the PDFs of the
OSD and MADR and their statistic mean values), has been
achieved. Then, one may raise such a question as follows.
Under the context of a CR or its sensed objects at high

mobility, why is it so desirable to quickly acquire the OSD,
the MADR, and their related statistic information? The rea-
sons are as follows.

It can been seen from (30) and the related (17), the B0 of
MADR depends on γ and the other three parameters of T , fs
and pd0. Obviously, the OSD depends on γ . At high mobility,
in addition to the rapid fluctuation of γ , the latter three are
also quite likely to vary quickly. Hence, they need to be timely
updated to follow the rapid variation of the radio environment
described as follows.

a) Since a wireless device usually moves at a varying
velocity, surely its channel coherence time will vary corre-
spondingly. Consequently, the temporal interval of channel
estimation should be timely updated to adapt to the variation
of its movement velocity. Therefore, T (the period of a data
frame) should also be swiftly adjusted for a higher efficiency
of QoS management to be achieved (e.g., the maximal traf-
fic [11], or the triple trade-off of TTI, queuing delay and
spectrum efficiency [25]).

b) The bandwidth being sensed may also vary frequently
since the variant licensed signals that may carry different
services are ready for the CR to detect them. For example,
the video service usually needs a much wider bandwidth
than the audio one. Therefore, following Nyquist’s sampling
theorem, fs should also be flexible rather than fixed in order
to timely adapt to the variations of sensed bandwidths.

c) Different licensed services require different QoS, mak-
ing their requirements on the symbol error rate (SER) quite
different [11]. For example, the audio service usually requires
less SER than a text file. Therefore, as a licensed service,
it requires much less pd0 of the CRs that intend to access in.
Thus, to adapt to the variant licensed system with different

sensitivities to the interference, pd0 should also be timely
reconfigured to minimize the network latency.

Overall, we are facing the wireless environment as follows.
All aforementioned parameters are varying rapidly while
multiple licensed bands (e.g., the subchannels of an Orthogo-
nal Frequency Division Multiple Access (OFDMA) system)
are alternating quickly between business and idleness. Under
such a context, it is of significant importance for a CR sys-
tem to quickly learn the probability distribution of the OSD
and the MADR of each band that certain devices intend to
access. Only with awareness of the aforementioned statistical
information are the relevant QoS managements (e.g., the
call admission control (CAC) [11] and frame alignment [25]
illustrated by fig. 1) capable of being performed more
efficiently [11], [26].

E. COMPLEXITY ANALYSIS OF EI vs. HI
For high mobility, lower complexity should be preferred to
higher accuracy for an algorithm. Therefore, peer-to-peer
comparisons will be done on the complexities of the above
formulae, which are based on EI or HI that is supposed to be
applied as EI’s alternative.

1) FORMULA OF THE OSD OF (36) AND THE MADR OF (42)
Formulae (36) and (42) in their current forms involve the
simplest operations such as addition, subtraction and multi-
plication. Meanwhile, the exponential functions therein can
be easily transformed into the above operations by series
expansion.

Nevertheless, if HI is applied here, a set of linear
equations have to be solved, which fall into more difficult
operations such as matrix inversions or numerical iterations.
As a result, the incurred operations will considerably exceed
those needed by the EI scheme, just as Appendix E reveals.

As fig. 3 shows, it does not need so many pieces to achieve
an acceptable precision if the interpolating points are prop-
erly located. The reason that we analyse may lie in a fact
that the objective curves of eq. (28) and (30) are inherently
exponential-alike.

2) FORMULA OF OSD PDF OF (39) AND THAT
OF MADR PDF OF (44)
The form of the OSDPDF of (39) and theMADRPDF of (44)
would become significantly different if HI were applied as an
alternative. Suppose that HI (say a cubic Hermite spline) is
applied to their corresponding derivation procedures. It will
incur two troublesome problems as follows. i) Although
deriving the inverse function of a polynomial of degree 3 (i.e.,
cubic) is possible if employing the Cardano formula [21],
it is still not a simple form. ii) Even if the derivation of the
inverse function is tractable, the resultant formulae will still
be of much higher complexity than (37) and (43), which
are simply logarithm forms. More beneficially, the loga-
rithm form (as is well-known) has a considerably simpler
form of its 1st derivative that can be achieved with little
effort.
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3) FORMULA OF THE OSD’S MATHEMATICAL EXPECTATION
OF (41.a) AND THAT OF THE MADR’S OF (46)
Due to high mobility, it is quite likely that we encounter
a demanding case where operation speed is almost always
preferred to precision. In such a context, if the HI scheme is
chosen instead of the EI scheme, the polynomial of degree 2
has to be employed based on the consideration that it has
the lowest complexity as a spline function. Even if it was
done in this way, the formula (41.b) (which is the essence
of formula (41.a)) would turn to

Tiτ (γ ) =
1

0 (M)

∑2

n=0
pi,nγ̄ n0

(
M + n,

γ

γ̄

)
(48)

where pi,n denotes the coefficient of the nth power term of
the polynomial fitting the ith piece. It shows that even if it
is purposely done in such a way to make HI as operation-
reduced as possible, the number of terms of (48) still reach 3
with a 50% increase over that of (41.b) resulting from EI.

For formula (46) (namely, NESC), its complexity analysis
will be in the same way if done.

So far, overall, it can be concluded that the EI scheme is
a more operations-saving approach than the HI scheme to
achieve the above information, the awareness of which will
lead a CR network to have more efficient traffic.

VI. SIMULATION RESULTS
With the aim to verify the theoretical results in the preceding
sections, we place them in a scenario that a CR system at
high mobility is sensing a licensed frequency band via a
Nakagami-Gamma shadowed fading channel. The Nakagami
fading parameter m is configured to be 1/2, 1 and 3, which
represent three typical fadings (i.e., the single-side Gaus-
sian, Rayleigh and Rician fading), respectively. The shape
parameterM of the Gamma distribution that characterizes the
shadow fading will be configured to be the same as m. All
licensed bands are of the OFDMA system, which occupies
a bandwidth of 10 MHz denoted BW and is equally divided
into 100 subchannels. Therefore, each subchannel bandwidth
denoted bw equals 100KHz. The licensed system’s maximal
tolerable interference requires pd0 to be 0.90 or 0.99.
To testify the applicability of the CLT to the context

described as above, we compare the exact MADR (30) and its
CLT-resultant counterpart (31). Suppose that all subchannels
experience the independently identically distributed (i.i.d.)
fadings, and, without the loss of generality, we select one of
them to be analysed. Here, the T (the duration of a data frame)
is configured to be as small as 2 ms, which implies that high
mobility exists.

Fig. 2 shows that the exact (ideal) and CLT-resultant (non-
ideal and approximate) MADRs (as defined by (30) and (31),
respectively) are quite close under the parameters specified
below the figure. It is shown that even if T is configured to
be as small as 2 ms, the data rate losses are expected to be
no more than 0.05, 0.03 and 0.02 for m = 1/2, 1 and 3,
respectively. It should be noted that this value of 2 ms has
reached the lower bound of the data frame period specified by

FIGURE 2. Normalized maximal achievable data rate vs. the mean SNR of
Nakagami-m fading with various fading parameters m. [pd0 = 0.99,
bw = 100KHz, T = 2 ms, and i of (34) configured to be 3].

FIGURE 3. Optimal sensing duration vs. the mean SNR of Nakagami-m
fading with various fading parameters m. (pd0 = 0.99, bw=100KHz,
and T = 2 ms).

IEEE 802.16e [19]. This justifies the applicability of the CLT
under the specified mobility context. Moreover, it shows that
the upper bound of the data rate (as (33) presents) can achieve
satisfactory tightness so long as i of (34) is configured to be
no less than 3. Thus, we can argue that this analysis provides
us a tool to quickly estimate the MADR and the resultant data
rate loss due to CLT.

For a precision evaluation of formula (36) (as Fig. 3 shows),
we compare the OSD results by directly invoking (36) with
those of (28), which are obtained via numerical iteration
and are regarded as the exact ones. The numerical iteration
approach is based on themethod of Golden Section (GS) [20].
It shows that it is not a bad fit for the two results’ alignment
within the whole range of each piece, except for in the vicinity
of the boundaries of adjacent pieces where a slight error
still occurs. Such an error is due to (as it is explained in
subsection V.B) the absence of the constraint of the function
values’ coincidence on both ending points of each piece.

For an algorithm applicable to mobility, the operation
complexity usually becomes an equally or even more impor-
tant performance. Therefore, we conduct an evaluation of
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FIGURE 4. Average times of iteration for calculating OSD under variant γ̄ ,
i.e., the mean SNRs of shadow fading (M = 1, m = 1, pd0 = 0.99,
bw=100KHz, T = 2 ms, and 100 samples of γ for each γ̄ ).

complexity of the EI-based formula (36) by comparing its
computational effort with that of an iteration scheme based
onGolden Section.We generate 10 sets of Gamma distributed
samples of γ with unified sizes of 100 but different mean val-
ues (i.e., γ̄ for each set). As mentioned, they are regarded as
the 10 sets of alternatives of logarithm-Gaussian distributed
SNRs reflecting different shadow fadings. As Appendix E
shows, a small number of iterations is still needed by exe-
cuting (28) to achieve (36) since the exact OSD values at the
boundaries of adjacent pieces (as fig. 3 shows) have to be
calculated prior. Therefore, we let the number of iterations
resulting from formula (36) be a contrast with that resulting
from applying the GS to (28) based on the one-by-one sample
of γ . Such a way for comparison is based on the consideration
that each set of γ samples are regarded as a provider of a task
that calculates all OSDs either by invoking formula (36) or by
purely applying the iteration approach (e.g., based on GS).
Thus, fig. 4 shows the average number of iterations needed by
per γ sample’s handling (i.e., per sensing operation) for the
ten sets of samples. It indicates that invoking formula (36) to
solve problem (28) over a Rayleigh-Gamma shadowed fading
channel will save approximately 90% of the iterations needed
by the GS-based approach.

Fig. 3 and fig. 4 jointly justify formula (36) to be an
effective tool to achieve the OSD for those CR systems that
are highly sensitive to computation delay due to their high
mobility.

It has been stated that the PDF of the OSD can be approxi-
mately expressed by (39), where it depends implicitly (via α,
β,µ and ε) onm and explicitly onM . Therefore, the PDFs for
a fixed m under different pd0 andM that reflect some typical
shadow fadings are illustrated in fig. 5. It can be seen that the
results based on formula (39), the numerical iteration scheme
based on the GS approach (i.e., resulting from numeric solu-
tion of τ0 (γ ), as fig. 3 shows) and Monte Carlo simulation
coincide well. Fig. 5 also reveals that a higher pd0 leads to
a wider OSD range. Such a phenomenon confirms a fact
that the increase of pd0 will statistically need more time for

FIGURE 5. PDF of the OSD over a Nakagami-Gamma shadowed fading
via-to-sense channel with different M and pd0. (a.1) τ0 (M = 1/2,
pd0 = 0.90). (a.2) τ0 (M = 1/2, pd0 = 0.99). (b.1) τ0 (M = 1, pd0 = 0.90).
(b.2) τ0 (M = 1, pd0 = 0.99). (c.1) τ0 (M = 3, pd0 = 0.90). (c.2) τ0 (M = 3,
pd0 = 0.99).

FIGURE 6. Normalized ergodic-sensing capacity vs. mean SNR of shadow
fading under different Pd0 and fading parameters (BW = 10MHz, T = 2
ms, and 100 samples of γ for each γ̄ ). (a) γ̄ (dB) (pd0 = 0.90). (b) γ̄ (dB)
(pd0 = 0.99).

sensing to keep a higher pd0. It is also shown that the rise ofM
statistically increases theOSD. The reason of this dependence
may be hidden behind the fact that the rise of M renders γ
more Rician or statistically more concentrated around γ̄ of
0.5, which occurs to approach the γ value corresponding to
the peak of τ0(γ ), as fig. 3 shows.
Fig. 6 shows the normalized ergodic-sensing capacity as

defined by (45) for a wider bandwidth having 10 i.i.d. sub-
channels as fig. 3 demonstrated. It varies with different mean
SNR γ̄ under different m, M and pd0. It reveals that this
kind of channel capacity decreases with the increase of pd0,
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FIGURE 7. Illustration of the bound of the data rate loss due to the CLT.
[Therein τ1 and τ2 are τ́ and τ̀ of (33.a), respectively].

and a lower γ̄ results in a more significant decrease. This
confirms the fact that the protection of the licensed system’s
communication damages the cognitive one to a certain extent.
Fig. 6 also shows that the increase ofM may increase capac-
ity, and this rise becomes highlighted within a certain range
centred at approximately 5 dB. The cause of the occurrence is
that the corresponding range of γ̄ occurs to fall in the sharply
rising region of the CDF of theGamma distribution. However,
the increase of m can only slightly raise the channel capacity.
The higher that the pd0 is configured, the more significant
such an increase gets. The former phenomenon is due to the
fact thatM is more dominant thanm for a Nakagami-Gamma
fading channel, while the latter is due to0−10 (Kξ (m, γ ), pd0)
within ε0 of (14), since 0−10 (a, z) as a generic form falls
sharply as z→ 1 if a� 1 [23].

VII. CONCLUSIONS
For a CR network, the optimal sensing duration (OSD)
enables the maximization of data throughput. In that effort,
the CLT is widely applied, which can significantly simplify
the related analyses and operations but results in the side
effect of the loss of data rate. For the sake of estimating
such a loss, an approach to achieve a tight upper bound of
the maximal achievable data rate (MADR) over Nakagami-m
fading via-to-sense channel is proposed. Moreover, for a
CR system in a mobile environment, a direct formula of the
OSD will be considerably desired since such a formula is
more capable than an iteration scheme of keeping up with
the rapid variation of channel and the availability of spectrum
holes. To meet such a need, an approach based on exponential
interpolation is proposed. Such an approach is confirmed to
be quite beneficial when dealing with the Nakagami-Gamma
shadowed fading via-to-sense channel, since it renders the
subsequent derivations of the PDF of the OSD, the ergodic-
sensing capacity and other related statistical informations
significantly tractable. Of course, quick awareness of those
informations via such an approach can help the CR sys-
tems to more efficiently perform their QoS management.
Furthermore, this study indicates that the exponential-formed
function will likely be a better choice than any other forms if
one intends to approximate a function concerning a certain
type of fading based on Gamma families (e.g., Nakagami-m
including Rayleigh, Rician, etc.).

APPENDIX A
THE PROOF OF PROPOSITION 1
Proof: Under hypothesis H1, based on (2), we have

|y (k) |2 = (s (k)+ z (k))
(
s∗ (k)+ z∗ (k)

)
(A.1)

Due to the independence between s (k) and z (k),
the expansion of (A.1) yields

µH1 = E
(
|s (k)+ z (k) |2

)
= σ 2

z + σ
2
s = (1+ γ )σ 2

z

(A.2)

It is indicated in (3) that γ ∼ Ga(m, γ /m) means that
|s (k) |2 ∼ Ga(m, σ 2

S /m) since σ
2
z is assumed to be a constant

here. Therefore, the mean and variance of |s (k) |2 are derived
based on a related formulae for the Gamma distribution [13]
given by

E
(
|s (k) |2

)
= m

σ 2
S

m
= σ 2

S (A.3)

D(|s (k) |2) = m(
σ 2
S

m
)
2

=
σ 4
S

m
(A.4)

respectively. Thus, based on a property of variance [13], the
E
(
|s (n) |4

)
is accordingly derived to be

E
(
|s (k) |4

)
= D(|s (k) |2)+ E2

(
|s (k)|2

)
= (1+

1
m
)σ 4
S

(A.5)

For anyCSCGdistributed noise sample z (k), E
(
|z (k) |4

)
=

2σ 4
z [1]. Its and (A.5)’s substitution into (8) of [1] yields

σ 2
H1
=

1
K
[E
(
|s (k)|4

)
+ E

(
|z (k)|4

)
−

(
σ 2
S − σ

2
z

)2
]

=
σ 4
z

K

[
1
m
γ 2
+ 2γ + 1

]
(A.6)

Since y (k) of (2) is the sum of two RVs, s (k) and z (k)
are both CSCG distributed with CN

(
0, σ 2

s
)
and CN

(
0, σ 2

z
)
,

respectively. Therefore, y ∼ CN
(
0, σ 2

S + σ
2
z
)
. Accordingly,

T (y|H1) of (7) can be treated as the sum of multiple squared
amplitudes of CSCG-distributed RVs. Therefore, T (y|H1) of
(7) is Gamma distributed and denoted as Ga(κ, θ), where
κ and θ are derivable based on the property of the Gamma
distribution [13] as

θ =
σ 2
H1

µH1

=
σ 2
z

K
·
γ 2/m+ 2γ + 1

1+ γ
(A.7)

κ =
µH1

θ
=

K (1+ γ )2

γ 2/m+ 2γ + 1
(A.8)

APPENDIX B
THE PROOF OF PROPOSITION 2
Proof: First, let us prove the (33.c) to be true as follows.
The 1st derivative of pf of (16) w.r.t. τ is given by

p′f (τ ) =
0′τ
(
K ,Kε0/σ 2

z
)
0 (K )− 0

(
K ,Kε0/σ 2

z
)
0′τ (K )

02 (K )
(B.1)
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where

0′τ (K )

= 0′KK
′
τ = fs

∫
∞

0
ln (ζ ) ζK−1e−ζdζ ; (B.2)

0′τ

(
K ,Kε0/σ 2

z

)
= 0′K

(
K ,Kε0 (K ) /σ 2

z

)
K ′τ · · ·

= fs

(
∂0

(
K ,Kε0/σ 2

z
)

∂K
+
∂0

(
K ,Kε0/σ 2

z
)

∂
(
Kε0/σ 2

z
) d

(
Kε0/σ 2

z
)

dK

)
.

(B.3.1)

Eq. (14) leads to Kε0/σ 2
z = ((1+ γ ) /ξ) 0

−1
0 (ξK , pd0), so

d
(
Kε0/σ 2

z
)

dK
= (1+ γ )

d
(
0−10 (ξK , pd0)

)
d (ξK )

; (B.3.2)

Based on the formula of the derivative of inverse regu-
larized incomplete Gamma function w.r.t. the shape param-
eter [23], we have

d
(
0−10 (ξK ,pd0)

)
/d (ξK ) = · · ·

eww1−ξK [wξK02 (ξK ) · · ·

·2F̃2 (ξK , ξK ; ξK + 1, ξK + 1;−w) · · ·

+ (pd0 − 1) 0 (ξK ) log (w) · · ·

+ (0 (ξK )−0 (ξK ,w)) ψ (ξK )] (B.3.3)

where w = 0−10 (ξK , pd0), and 2F̃2 (; ; ) is the hypergeomet-
ric function [24]. Based on the formula of the derivative of the
incomplete Gamma function w.r.t. its shape parameter [23],
we have

∂0
(
K ,Kε0/σ 2

z
)

∂K
= · · ·

02 (K )
(
Kε0/σ 2

z

)K
· · ·

·2F̃2
(
K ,K ;K + 1,K + 1;−Kε0/σ 2

z

)
· · ·

−0

(
K , 0,

Kε0
σ 2
z

)
log

(
Kε0
σ 2
z

)
+ 0 (K ) ψ (K ) (B.3.4)

where ψ (·) is the Psi function [24]. Based on that, w.r.t its
lower limit of integral [23], we have

∂0
(
K ,Kε0/σ 2

z
)

∂
(
Kε0/σ 2

z
) = −

(
Kε0
σ 2
z

)K−1
e
−
Kε0
σ2z (B.3.5)

The substitutions of (B.3.2) [thereof a corresponding part
replaced with (B.3.3)], (B.3.4) and (B.3.5) into (B.3.1) render
it solvable. Then, the substitutions of (B.2) and (B.3.1) into
(B.1) lead to a solvable p′f (τ ) in an explicit form, just as (33.c)
shows.

Second, we prove that B0 (γ ) ≤ B0 (γ ) and B0 (γ ) →

B0 (γ ) with i→∞ where i is that within (34), as follows.
Based on proposition 4, just as the context specified by [1],

the B (τ, γ ) of (25) is also concave if pf (τ ) ≤ 0.5 and it has
a unique maximum w. r. t. τ . Since pf ≤ p̂f, p̂f (τ ) = 0

yields a solution of τmin that also satisfies pf (τmin) ≤ 0.5,
and τmin is just (34.g). As shown in fig. 7, the intersection
of the two tangent lines refer to B0 (γ ) of (33.a), and the
solid, dash and dash-dot curves refer to the B (τ, γ ) of (25),
the B̃ (τ, γ ) of (26) and the B̂ (τ, γ ) of (27) respectively.
Consequently, the height of the intersection of the two tangent
lines that contact the solid curve at τ1 and τ2 respectively is
surely greater than the peak of this curve. Thus, B0 (γ ) of
(33.a) is justified to be an upper bound of B0 (γ ) of (30).
Thus, the projection of the maximum of B̂ (τ, γ ) on B̃ (τ, γ )
just represents the B̃0 (γ ) of (31). Consequently, we have
that B′τ

(
τ́ (i−1), γ

)
≤ B′τ

(
τ̇ (i), γ

)
≤ B′τ

(
τ̀ (i−1), γ

)
and

B′τ
(
τ́ (i), γ

)
→ 0−, B′τ

(
τ̀ (i), γ

)
→ 0+ if i→∞ is identical

to B′τ
(
τ̇ (i), γ

)
→ 0 or B0 (γ ) = B

(
τ̇ (i), γ

)
→ B0 (γ ) if

i→∞. Therefore, it is concluded.

APPENDIX C
THE PROOF OF PROPOSITION 3
Proof: According to the CLT,

(
t (Y|H1)− µH1

)
/σH1

will arbitrarily approach the distribution ofN (0, 1) provided
that the cardinality of Y is sufficiently large. In other words,

yH1=
(
t(Y|H1)−µH1

)
/σH1 E∼N (0, 1) if K →∞ (C.1)

where µH1and σH1 are given by (A.2) and (A.6), respec-
tively, while the sign ‘ E∼’ denotes ‘approaches the distribution
of’. The ‘∼̄’ still holds if integral operations are applied to the
PDFs of both sides of (C.1), and it also holds if applied to the
t (Y|H1) provided so that the integral variant takes a proper
transformation. Therefore, we conduct these operations to the
PDF of t (Y|H1) just as (13) does and to that ofN (0, 1). This
results in

00 (κ, ε0/θ)→ Q
((
ε̂0 − µH1

)
/σH1

)
if K →∞ (C.2)

where ε̂0 and ε0have been explained for (20) and (14), respec-
tively, and Q (·) denotes the Q function.
Since both Q(·) and 00 (·, ·) are monotonic and continuous

functions [13], [23], the ‘→’ still holds if the inverse opera-
tions are applied to both sides of (C.2). This means that for a
specified pd0, we have

[Q−1 (pd0) σH1 + µH1 ] = ε̂0→ ε0 = θ0
−1
0 (κ, pd0)

if K →∞ (C.3)

Based on (C.3), (24) and (17), we have

p̃f→ pf, if K →∞ (C.4)

Similarly, under H0, still based on the CLT, we have

yH0 =
(
t (Y|H0)− µH0

)
/σH0 E∼N (0, 1) (C.5)

where µH0 and σ
2
H0

can employ the related formulae of the
Gamma distribution [13], [23] to be derived, given byµH0 =

σ 2
z , σ

2
H0
= σ 4

z /K .
Along the same way in which (C.2) is derived, conditioned

on (C.3), we have

Q
((
ε̂0 − µH0

)
/σH0

)
→ 00

(
K ,Kε0/σ 2

z

)
if K →∞

(C.6)
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Based on (C.6), (21) and (17), we have

p̂f→ pf if K →∞ (C.7)

Consequently, based on (C.4), (C.7), (30) and (31), this
proposition holds.

APPENDIX D
THE PROOF OF PROPOSITION 4
Proof: Let the condition applicable to [1] labelled A

describing that the received signal of the complex PSK
experiences a path of line of sight (LOS) and is con-
taminated by CSCG distributed noise. Under condition A,
[1, Formula (13)] defines its false alarm probability to be
pf = Q

(
α + γ

√
fsτ
)
where α = Q−1 (pd0)

√
2γ + 1 as

defined for (23). Let the condition of proposition 4 of this
paper be labelled B. The change from condition A to B is
equivalent to the replacement of pf of [1, eq. (13)] by (22),
(17) or (24) of this paper, which have distinct connotations as
previously explained.

For (22), its proof is evident. Let us rewrite α =

Q−1 (pd0)
√
γ 2/m+ 2γ + 1 and substitute it into

[1, eq. (13)]. All procedures of the relevant proofs will still go
along in the same way as [1] does. For (17) or (24), it is not
so obvious as (22)’s proof. However, the essences remain the
same. Their main distinctions from (13) of [1] lie merely on
the outermost operator of 00 (·) instead of Q(·), and the inter-
nal parameter α being θ0−10 (κ, pd0)

√
γ 2/m+ 2γ + 1 other

than Q−1 (pd0)
√
2γ + 1. Despite these two differences, all

corresponding proofs can still be conducted through the same
approaches as [1] does.

APPENDIX E
APPROACH OF ACQUIRING THE PARAMETERS OF (36)
First, the value of formula (36) should equal to that of (28) at
the starting end of the ith piece. Thus, this equation should be
met. It is given by

τ̃ i0 (ri) = τ0 (ri). (E.1)

Second, to ensure the continuity of the PDF at the bound-
aries of adjacent pieces, the 1st derivatives w. r. t. γ should
be equal. The set of equations that should be satisfied are

dτ̃ i0 (γ )

dγ
|γ=ri =

dτ0(γ )
dγ
|γ=ri; (E.2)

dτ̃ i0 (γ )

dγ
|γ=ri+1 =

dτ0 (γ )
dγ
|γ=ri+1 . (E.3)

An explicit form expression of dτ0 (γ ) /dγ is unachiev-
able based on (28), but it can be approximated by
(τ0(ri +1γ )− τ0(ri)) /1γ provided that 1γ is set to be
sufficiently small.

Consequently, solving such a set of equations yields the
values of parameters of (36) that are given by

βi = ri; (E.4)

εi = log
dτ0(γ )
dγ |γ=ri+1
dτ0(γ )
dγ |γ=ri

/(ri+1 − ri); (E.5)

αi =
(ri+1 − ri)

dτ0(γ )
dγ |γ=ri+1

εieεi
; (E.6)

µi = −αi + τ0 (ri). (E.7)
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