IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON CYBER-THREATS AND COUNTERMEASURES IN THE HEALTHCARE SECTOR

Received February 19, 2018, accepted March 26, 2018, date of publication April 12, 2018, date of current version May 2, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2826225

Counter Measuring Conceivable Security
Threats on Smart Healthcare Devices

SYEDA MARIAM MUZAMMAL', MUNAM ALI SHAH'!, HASAN ALI KHATTAK ",
SOHAIL JABBAR“2, GHUFRAN AHMED “', SHEHZAD KHALID?,

SHAHID HUSSAIN', AND KIJUN HAN*

!Computer Science Department, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan

2Department of Computer Science, National Textile University, Faisalabad 37610, Pakistan
3Department of Computer Engineering, Bahria University, Islamabad 75260, Pakistan

“Department of Computer Engineering, Kyungpook National University, 37224 Daegu, South Korea

Corresponding author: Kijun Han (kjhan@knu.ac.kr)

This work was supported in part by the BK21 Plus Project (SW Human Resource Development Program for Supporting Smart Life)
through the Ministry of Education, School of Computer Science and Engineering, Kyungpook National University, South Korea, under

Grant 21A20131600005, in part by the Basic Science Research Program through the National Research Foundation of Korea, Ministry of
Education, under Grant 2016R1D1A1B03933566, and in part by the Institute for Information & communications Technology Promotion
through the Korea Government (MSIP) under Grant 2017-0-00770.

ABSTRACT Smart devices, the carriers of a huge amount of private, sensitive and confidential data
are pervasive in today’s world with innovative and enhanced functionalities. Smartphones have brought
tremendous change in people’s lives with the launch of a new platform of communication and an ease
of access to a wide range of applications. Due to the swift increase in the users of Android smartphones
and the increasing demands based on advanced ease and features, developers are working hard to achieve
the needful. Easy access to certain features and applications gave rise to the powerfulness and an efficacy
of various threats, risks and vulnerabilities that can victimize users’ private data residing in smartphone
paradigm. With the developments and enhancements in malware, for Android-based smartphones, attacks
continue to occur. In this paper, we investigate one of the possibly most destructive attacks for Android, that
is, screenshot attack. We have developed ““ScreenStealer” application and explored the vulnerabilities which
make Android more inclined to risks and threats. Furthermore, we evaluated capture ratio of screenshots,
resources consumption and execution time to determine effectiveness, efficiency and stealthiness of such a
malicious application.

INDEX TERMS Internet of Things, smart devices, mobile security, information processing, information

exchange, electronic healthcare.

I. INTRODUCTION
The use of smartphones has increased tremendously with the
enhancement of advanced and innovative features. The adap-
tation of this technology and innovative services provided by
network providers and manufacturers is also growing with the
same pace. In the same way, private data of users, which is
kept in smartphones to enjoy this mobile revolution, is under
great risks and threats. As a result of the developments
made by the Android application developers, about 2 mil-
lion applications have been uploaded to Android Market till
February 2016 with billions of reported downloads [1].
Android security mechanisms are overburdened by the
developments and downloads of millions of applications.
Every day, various malicious applications and security and

privacy risks are detected and removed by Google [2].
Additionally, the security experts are working on anti-viruses,
anti-malwares like Malwarebytes [3], and several other mech-
anisms to avoid impish happenings by malware developers
and mischievous hackers.

The number of attacks and attack vectors is growing expo-
nentially with an increase in the development of malicious
applications in smartphones. This quickly evolving era of
smartphones technology as an easy target for malware is still
unexplored inside out [4]. Hackers can use different tricks
and techniques to extract sensitive user data on smart devices.
One of the traditional techniques of cybercrimes is via email
phishing scams. A hacker may send a malware link to user via
SMS (Short Message Service), requesting to click the link to

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

20722

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-8198-9265
https://orcid.org/0000-0002-2127-1235
https://orcid.org/0000-0002-0077-9638

S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

IEEE Access

get voicemail and the user ends up in infecting his/her smart
device. For hackers and cyber criminals, injecting malware
into user’s smartphone in order to expose private data is not a
big deal with the use of advanced techniques, tools and tech-
nologies. Consequently, with concerns of major privacy and
security issues and to ensure data security in smartphones, the
techniques and patterns need to be explored effectively [5].
But due to innovative emergence of smart technologies, this
has become a challenging task for researchers.

With increase in the number of Android users to mil-
lions and their evolving demands, the Android application
developers are struggling to enhance and advance applica-
tions to further facilitate lives of people around the globe.
To accomplish the targets, developers are hunting to access
critical system resources which they are not allowed to obtain
directly by Android. One of the major protrusive direction is
using ADB (Android Debug Bridge) to escalate privileges.
To provide users with smart and avantgarde features in smart-
phones, a number of applications on Google Play Store are
utilizing ADB proxy. This paper analyses the ADB compe-
tences and how ADB and Internet Access combined together
permit applications to interpret delicate data of an Android
smartphone device by screens capturing of other applications
on smartphones. Moreover, a malicious Android applica-
tion, ‘ScreenStealer’, has been developed and its effects on
Android-based smartphones are studied [6].

A. ARCHITECTURE OF ANDROID

The architecture of Android is grounded on Linux Kernel.
The primary sections of Android include a working frame-
work, middleware and key applications. Adaptable working
framework of Android is depicted in the light of Linux bit.
The escalating fervor from the business arises from two
focused lookouts: firstly, the open source nature and secondly
the engineering model. Mainly, Android has been intended
for touch-screen devices like smartphones, ipads, tablets and
other alike devices. The open-source nature of Android has
invigorated developers and crusaders to make use of the open-
source code as the base of the up-to-the-minute applica-
tions and acquaint with forward-thinking features for Android
users and convince other operating system’s users to adapt
Android [7].

B. SECURITY IN ANDROID

With the rapidly expanding number of android devices, more
newfangled and creatively proceeded, subsequently tougher
to elude, attacks are being launched on smart devices. A major
part of such assaults is plausible because of the negligence of
the end-users and clients. Without opposing the consequences
of being under attack, the clients and end-users are struggling
more to make the best out of their smart devices.

Android applications run in a secluded sandbox of the
system, from which they are unable to attain any system
resources, except overtly request for exact permissions and
these authorizations must be approved by the user to the
application at installation time. On Google Play Store, appli-
cation developers declare the permissions that the specific

VOLUME 6, 2018

application needs to accomplish its work on Android devices.
For proper processing of installation, a list of permissions is
approved to be granted by consent of user, when an appli-
cation is clicked to be installed. If user grants the necessary
permissions, application is successfully installed, otherwise
installation process cannot be initiated if user disagrees.

Additionally, Android makes use of the signature mech-
anism for application. The distribution of Android files is
done in the form of apk. Moreover, both for uploading and
installation of an application, validation of the corresponding
public key is done as part of Play Store platform [9].

C. ADB - ANDROID DEBUG BRIDGE

ADB is an operative way for application developers to get
determined privileges for the Android smart device. It is a
multiuse command line tool [9] which is supported with the
Android Development Kit [10] and allows the developer to
link with the associated Android device. Android application
developers can access user data via ADB. It authorizes a
developer or a legal agent to communicate with and govern
an Android device through USB connection. This means
can be used for performing different tasks like application
installation and uninstallation, downloading and uploading a
file, running of development console, application executions
and debugging and many other.

Primarily, ADB client has been just considered to be an
application that can be used by developer to control emula-
tor or a device. Nevertheless, its components have now been
packaged into a library, that can allow its usage in a Java
application [11]. Therefore, a number of opportunities can be
attained by developer from ADB to control Android smart
devices. There are three key components of ADB: (i) client,
(i1) server, and (iii) daemon.

Android developers are emerging with new approaches to
work with new safety protections and privacy issues, regard-
less of the already firm and emerging security mechanisms of
Google Play Store and Android. The reason for this enhance-
ment is that Google’s API’s and services are not enough
to fulfil the demands and provide extraordinary capabilities
other than the routine and usual tasks like USB tethering
and backup etc. Rooting of the device is another approach
to accomplish the required tasks.

According to a survey, over, 27.44% users are rooting their
phones to take full control over their Android device [12].
But usually rooting is avoided by users and developers due
to expiration of warranty as well as rooting can permanently
damage the device functionalities.

A feasible and usual substitute to escalate privileges on
an Android device is via use of workaround based on ADB.
The android device has to be connected to the PC for
launching ADB and service instantiation, in order to apply
the technique of ‘no root’. In this way, the application is
able to attain system resources that are not provided in
normal scenarios. This resources accessibility is sustained
till disconnection of device and computer or the devices is
rebooted.

20723



IEEE Access

S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

There are a number of applications on Play Store that are
utilizing perilous resources and methods to achieve system
backup, USB tethering, system sync, and other utilities like
taking screenshots. Moreover, this mechanism of privilege
escalation is overall considered as legal and authenticated
way. Utilization of this technique by several applications over
Play Store demonstrates that the authorities are unaware of
the security and privacy implications of privileges escalation
through ADB workaround.

D. THE LOCAL SOCKET CHANNEL AND

ADB SCREENSHOTS

The useful functionality of taking screenshot and capturing
the on-screen content as a picture and storing it for later use is
demanding among users as part of smart devices. Till Android
4.0 was introduced, this screenshot feature was not introduced
in smart devices. For the successive Android versions, screen-
shots were easy to be taken by pressing Volume up/down and
power/menu button together, that is through hardware. Addi-
tionally, there was no provided technique or API to enable
taking on-the-go screenshots programmatically. The devel-
opers and users are making use of this ‘no root’ alternative,
the ADB workaround, rather than damaging their devices
with rooting mechanisms.

Since Inter-process communication (IPC) is not supported
by Android, between an app and the backend native server,
hence a local-socket-channel [13] is used between these two
parties to communicate with each other. Such a channel
has not been considered while developing Android security
design [14], hence opens new ways for malicious attacks and
security hazards. With the implementation of this technique,
any app with the Internet permission, can connect to the local
server in order to take screenshots, and all applications other
than screenshot apps, that work using ADB workaround,
can have the similar types of privacy exposures. Since this
approach is completely legitimate and easy to use, hence lack
of thorough understanding of the capabilities and continued
utilization of ADB workaround by developers may lead to
more harmful privacy and security attacks.

This research work is based on exploration of risks and
threats to users’ sensitive data on smartphones and how
some of the malicious applications such as screenshot attack
can affect system resources and users’ privacy. The study
involves the investigation of ADB (Android Debug Bridge)
capabilities and how Internet access and ADB together allow
applications to expose sensitive data of an Android smart-
phone device. Furthermore, a malicious Android applica-
tion, “ScreenStealer”, has been developed and its effects on
Android-based smartphones are studied. ScreenStealer has
been developed to understand the risks and threats of an
app that monitors the screen and front-end user activities,
then takes screenshots stealthily and sneakily and send to the
adversary.

The research contributions include the investigation of the
security risks of the ADB workaround and the local-socket
channel, new techniques for targeted, stealthy and real-time

20724

extraction of user data via screenshots, and implementa-
tion and evaluation of a malicious screenshot application.
Though there are a number of different attack vectors for
Android smartphones, the scope of this paper is primarily
based on screenshot attacks, with investigation of innovative
vulnerabilities which are caused due to the Android security
loopholes. This also includes the study of the results after a
successful launch of malicious application on Google Play
Store.

Il. RELATED WORK

The escalating development in smartphones has led to the
advancements in pioneering features offered by different ven-
dors depending on customization of operating systems. This
rapid pace has resulted in manufacturing and releasing of low-
cost smartphones that are now affordable for common users.
The functionalities in these low-cost vendors’ smartphones is
more or less the same but without a thorough and comparably
less secure customization of smartphone Operating System.
One such examples is of Android phones. There are a number
of Android vendors including Samsung, LG, Motorola, HTC,
Huawei and a growing list of companies that are deploying
Android on their devices.

Since, Android is an open-source operating system,
so there is more Android applications development as com-
pared to any other operating system, hence same is with the
applications download and applications piracy; this makes
Android, the most vulnerable operating system.

In today’s technological era, smart device of a user is
somewhat complete sensitive data carrier of an individual,
including messages, emails, contacts, important dates, call
logs, chats, social media activeness, pictures, documents,
whereabouts, bank accounts and other related information.
The availability of all this information in a handy smart device
invoke roguish hackers to proceed with conceivable attacks
on smartphones risking the sensitive, personal and financial
information of users.

A. ANDROID PERMISSION MECHANISMS AND
APPLICATIONS

Smartphone technologies advancements have provided users
with tools and techniques in order to customize and develop
innovative applications in alliance with evolving demands.
Majority of the smartphone users are not conscious of how
the downloaded applications are using private data legally
and with their consent. Users incline to ignore the permis-
sions granting and privacy policies at time of applications
downloading from App store risking the security and privacy
parameters [15], [16]. The downloaded applications can Such
applications deliberately or accidentally utilize and distribute
sensitive information including photos, location, contacts,
identity info etc. and can lead to various vulnerabilities
through stalking and theft. Studies have shown that up to 70%
of applications on Play Store request for permissions that are
irrelevant to the main functions of it [6], [17], resulting in
leakage of private information and resources consumption.

VOLUME 6, 2018



S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

IEEE Access

Malicious applications/ Threat types

v

| !

Grayware/Legitimate

Malware Spyware
1 applications
l |
Installs Information ) User
Trojans Worms Botnets Viruses software |—»|  stealing Marketing profiling
illegally

FIGURE 1. Categorization of threat types.

Security alert messages are also neglected by uses while
installing applications and granting permissions [18], [19].
The revelation of location data is a common case of such form
of data leakage, which is being used by various entertaining
social connectivity applications. Many of the social media
applications diffuse location data along with photos, videos,
messages and status uploads. Majority of the applications
allow users to control privacy settings for exposure of location
and other data, but a number of users remain unaware or con-
tinuously ignore the unintended revelation of whereabouts
and personal information.

Likewise, attackers and unethical are developing malware
that can be detrimental in several ways, for example, fluctu-
ating or revealing user personal information on smartphone,
implementing any random code, exploit user by some pricey
jobs like sending SMS or MMS (Multimedia Messaging
Service) or perform an annoying call, connect to a network,
resources consumption and many more.

B. TYPES OF ATTACK VECTORS

People use their smart devices for communication, storing
personal files, images and videos, maintaining a record of
important events and dates to remember, browsing over the
Internet, entertainment like gaming and music, and many
use it for sensitive purposes like banking transactions and
online shopping through credit cards. In this way, mobile
devices store a lot of private and business information of
the users. Because of these and many other attractive uses
in routine activities, smartphones have a number of attack
vectors including the lost or theft, malware/malicious appli-
cations and cyber-crimes. Whereas, users keep using their
smart devices, neglecting the security and without realizing
the serious security impacts.

According to a survey [20], the data in mobile devices
specially in healthcare domain is vulnerable, firstly, due to
lost or theft and secondly, due to malicious applications
downloaded to the mobile devices whether they are stan-
dalone applications or accompany an attractive entertaining
app. A simple careless act of user, like downloading an
unnecessary app, replying to a malfunctioned SMS, open-
ing an email containing malware etc., can possibly and

VOLUME 6, 2018

effectively cause destruction to user’s data in smart devices.
Some researchers have categorized malicious applications
and/or threat types into three categories: Malware, Spyware,
and Grayware [21]. This categorization of threat types is
shown in Figure 1.

Spyware in Smartphones: Usually the spyware is previ-
ously installed in the smartphone or it sneaks in when down-
loading an application containing malicious phenomenon
from Play Store. It is not hard and fast that a spyware targets
the private information on smart device, it can also make
distribution of sensitive information over unsecure chan-
nels, possibly for advertisements or marketing. Spyware can
act as a threat to user’s personal information with inten-
tional or unintentional installation while stalking user’s activ-
ities. A research study [22] indicates that there are a number
of applications over Play Store that asks user for unnecessary
permissions to access private data on device. Such applica-
tions can use this personal data for several malicious purposes
to attack privacy or to annoy in ways like placing unwanted
calls or sending messages through mobile network or over the
internet, without users being aware of it.

Similarly, smartphones can be used as a tool for observ-
ing an individual’s behavior and activities by using certain
smart features like GPS, microphones, network connectivity,
front and back camera and accelerometer. Attacker can install
applications like this deliberately, with provision of access
to the user device for a short period of time. This can also
be done by fooling user for a fake application that is down-
loaded from an authenticated source, leading to help attacker
to monitor sensitive data about whereabouts, activities and
location. Some authentic applications and software can also
be stealthily constituted to an eavesdropping implementation.

C. SECURITY AT APPLICATION-LEVEL

The applications can be made secure by developers at
application-level. Smartphone integrity and confidentiality
can be ensured by application developers by adopting cryp-
tography [23]. This can be implemented either through appli-
cations or through APIs. In app-store, there are a number of
applications that use cryptographic technologies like Crypto,
Cipher tools, Encrypt Editor and other similar applications.

20725



IEEE Access

S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

Such applications provide data encryption for user confiden-
tial data. Some cryptographic applications also provide hash
functions for data integrity; thus, users can secure their smart-
phones using this type of applications. Application develop-
ers are also provided with APIs and libraries that provide
security features to be used in implementation of applications.

Similarly, access control has already been provided by
Google that enhance user authentication mechanism of
the smart devices and limits the access to processes and
resources [24].

Millions of users download several applications from
Google store every day. Most of the security attacks occur on
application layer. Although Android keeps checks on mali-
cious applications via malware scanner that blocks poten-
tially harmful applications. Also, Google Play Store claims
to provide security by reviewing the application before it is
published on Google Play [25]. Android also provides secure
application download by its App Verification feature, which
the user can turn on from settings of the device. But this
feature can be easily turned off by developers of malicious
applications, so this cannot be a reliable way for secure
app downloading.

The easiest way to make secure a smartphone is by
installing an anti-malware or anti-virus application that are
easily available on app store. With the increase in the malware
attacks, there is an enormous development of antiviruses,
antimalware and spam filter applications as well, for example,
Malwarebytes, Eset, Lookout, AVG, Wolfguard and many
more. Most of the antimalware applications have their own
certain limitations like in terms of cost, timely alerts, auto-
matic updates and lack of advanced and updated features,
that hinders the provision of satisfactory protection to users’
private stuff in smart devices [26].

D. SCREENMILKER AND ADB

Chia-Chi et al. combined the local-socket channel with ADB
workaround to develop Screenmilker that describes the possi-
bility of milking screen for secrets. [14]. With the popularity
of screenshot applications over Play Store, millions of such
applications are downloaded by users; and ADB proxy is
being used by these applications to do the needful. Other than
screenshot applications, system backup and sync as well as
USB tethering applications also use the ADB workaround to
accomplish the tasks.

The purpose of screenmilker is to excerpt data by taking
the screenshots from the device instead of just saving the
images. It emphasizes on extraction of login and passwords
via observation of the keystrokes when password is entered
in the target app. A screenshot when taken is processed,
guessing and extraction of password is performed on the
Android device locally. The capturing of screenshot, image
storage and processing can make the user conscious about
some suspicious activities since it has been taking screenshots
continuously and extracting passwords using resources con-
suming process of OCR (Optical Character Recognition).

20726

Sync and Backup

\\ 1 \\
- -

Android Users

& Developers

USB Tethering

R

G

Screen Capturing

FIGURE 2. Users and developers for apps based on ADB capabilities.

E. GENERALITY OF PROBLEM

As already discussed that Android operating system is open
source, giving access to all the enthusiastic developers,
multiple opportunities to propel in smartphone application
development. The greatest channel for Android applications
distribution, Google Play Store, however, has very limited
control over the applications being published for users [27].
Hence, there is always possibility of low-quality or malicious
applications to go online and penetrate to user device.

In this research work, primarily the focus is on screen-
shot applications. However, the core of such apps, ADB
proxy, a feasible and usual substitute to escalate privi-
leges on an Android device is via use of workaround
based on ADB (described in section 1.3). ADB proxy and
the local-socket channel, are more generic foundations for
various privilege-escalated applications. Android security
design does not provide applications direct access to system
resources, reading or writing other than its own directory and
installing or uninstalling other applications; whereas develop-
ers as well as users demand for such applications. There are
a number of applications on Google Play Store, like backup
and sync applications and USB tethering (Figure 2) expose
the ADB capabilities to unauthorized third-party applications
that can cause exposure of sensitive user data, also bypassing
the firewall protection. The issues regarding this need to be
further investigated in detail. The backup applications send
request to the ADB proxy using local-socket channel that
enables the phone data backup to local storage, SD Card or
Google drive. In the similar way, ADB proxy can be leveraged
by an unauthorized application with the Internet permission
to store and then access user data sneakily. The USB tethering
applications work by utilizing an ADB proxy to forward
TCP (Transmission Control Protocol) packets to the Internet.
This may risk user data for a malicious app to sneak out,
without being inspected by firewall applications like No Root
Firewall [28] or DroidWall [29]. This indicates that regulation
of the use of ADB based workaround and the local socket
channel needs to be done in a thoughtful way in order to
minimize risks to private and sensitive user data in future.

F. ANDROID PROTECTION MECHANISM
To prevent malicious applications to damage smart-
phone or misuse user data, Android implements two types of

VOLUME 6, 2018



S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

IEEE Access

mechanisms, one is sandboxing and other is permissions [30].
Sandboxing is based on the isolation of the application, that
is, each application executes in its own specific instance of
DVM (Dalvik Virtual Machine) and each DVM is taken as
a unique UNIX userID by the Linux Kernel. This restricts
individual applications from interference with each other.
Permission mechanism is based on the protection and
control access of the system resources and operations by
unauthorized applications. At the time of installation, user
is presented with the set of permissions that the installing
applications will seek. It is user’s choice to accept the permis-
sions or deny. This approach acquired too much criticism [31]
as it totally relies on user knowledge and expertise [18]. The
main problem with this mechanism is that the user has to
accept all the permissions offered by the application in order
to proceed installation, there is nothing like accepting a subset
of permissions. Furthermore, due to the presence of a large
number of permissions, normally users do not understand all
the permissions and end up accepting all of them to gain new
and advanced features, without considering about the critical
permissions granted and potential security threats.

Ill. OVERVIEW AND IMPLEMENTATION

A. OVERVIEW

The development and deployment of a malicious application,
for purpose of stealing user sensitive data sneakily, is a very
difficult task practically, even with the use of ADB privilege
escalation proficiencies. There will always be some bound-
aries and restrictions owned by such applications. There can
be a number of possibilities for the utilization of Android
resources to develop and design an application thoughtfully
that can maliciously work with sensitive information over
smart device imperceptibly.

“ScreenStealer”” has been developed to demonstrate the
development phases of malicious applications conceptually,
along with the hypotheses that it is possible to deceive user
via authentic application requiring ordinary permissions from
user. Once permissions are granted by user and the appli-
cation is installed, ScreenStealer can monitor user activities,
capture screenshots and send to the owner/server, in the same
way that it is instructed to do. Eventually, the focus of devel-
oping ScreenStealer is to create awareness among the users
and developers to consider the application permissions and
grant cautiously while usage and development.

When a screenshot is captured, the most important aspect
to consider is the size of the image, that will be stored in
the SD card. While conspiring image size, quality and res-
olution of image is also adjusted to reduce the consumption
of device memory, and also the image is send directly to
the server. User’s suspiciousness to the screenshot taking
scenario is reduced by setting the time interval and image
size of this malicious application rather than randomly tak-
ing images. Additionally, ScreenStealer stores the image
in encrypted form inside a hidden folder on user’s device
for a certain time-slot. When the screenshot is successfully

VOLUME 6, 2018

Rivalry mode|  Android device

Runtime Situation
Detection

Activity
Manager

Android Native
Executable for
Screenshots/ ADB
Shell Commands

Screen Capturing

Encryption and
Temporary Storage
on Device

Internet

FIGURE 3. The architecture of ScreenStealer.

uploaded to the server, a new screenshot is taken to replace
the previous one immediately. Therefore, to minimize user’s
consciousness, only one image is stored over device at a time.
For optimization, a quite justifiable interval of 20 seconds is
kept for taking screenshots for tracking user’s information.
This interval can be changed by the adversary in accordance
with the requirements.

B. ARCHITECTURE
The architectural aspects of ScreenStealer application are
shown in Figure 3. Application mainly consists three com-
ponents i.e application monitoring with situation discern-
ment, taking screenshot of important user data for real time
data collection and the encryption, saving and sending it to
server. Moreover, this application is aimed to be used in two
different ways, one is for rooted and non-rooted devices while
other only works for rooted devices. The developed version
is way more authentic and strong than the one which also
covers non-rooted android devices, because it doesn’t need
PC connection for the activation of related android services.
The minimum use of resources, like memory, network,
and CPU has been kept in mind to cater stealthiness and
develop ScreenStealer intentionally for stealing user’s sensi-
tive data from various specified applications. ‘Runtime Situa-
tion Detection’ refers to that the ScreenStealer keeps stalking
front-end of user activities and keeps an eye for a number
of sensitive application together with the banking, native and
social media applications. The screenshot is taken when one
of the specified applications is opened on device’s screen.
This surveillance is carried out by the situation at runtime and
application recognition module of the ScreenStealer.

C. WORKFLOW

ScreenStealer has been embedded in an adversary model
(described in next section), and uploaded on Play Store,
which can easily fool a user to download and install the
malicious application. Once the application is installed and
run for the first time on the device, it starts monitoring the

20727



IEEE Access

S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

Download & Install

Source

Monitor on-
screen activity

¥

>

Target
application )
detected?

~._No

—

'Yes

Capture
Screenshot

Y

Encrypt image
file

Y

Previous
screenshot
found?

No

Lves
Replace
previous

file

Save new
file

WiFi/Mobile Send file to
Data — adversary's
available? server

FIGURE 4. Workflow of ScreenStealer.

device screens and front-end activity of user with 5 seconds
interval. While it monitors the screen, if a target application is
identified at the front-end, it processes the screenshot captur-
ing process. After taking the screenshot firstly, ScreenStealer
looks whether any of the screenshots previously taken is
already saved in memory, if it is so, it overwrites the previous
screen image file; if not, it saves the new screenshot. It then
checks whether the Wi-Fi or mobile data is available and
connected with the device. If yes, then ScreenStealer transfers
the already saved image (the latest screenshot taken) to the
attacker via WiFi or mobile data connectivity with the device.
In case, there is no network found, then it goes back again to
app- monitoring module. If no target app is active at front-
end, it keeps going back to the app-monitoring phase, hence
keep running at back-end and continue its working cycle. The
workflow of ScreenStealer is shown in Figure 4.

D. RIVALRY MODEL

A rivalry model in form of ‘Tic-tac-toe’ game has been
developed to demonstrate the success of screenshot attacks
and speculation for how malicious applications work via
legitimate resources. Tic-tac-toe game is developed for this
research work, to facade ScreenStealer by delude users to

20728

o %‘% TicTacToe

whatatech  Puzzle

2|

FIGURE 5. ScreenStealer on play store uploaded as ‘Tic-Tac-Toe".

install it as authentic real entertaining application that ask
for basic and normal approbations of Internet and storage for
installation in devices. Approval for internet is not doubtful,
that is, most of the applications on play store ask for internet
for various purposes like advertisements and upgradations.
Believing it that device will always be connected to inter-
net or mobile data, with user nit paying much attention to the
usage of resources and does not use any softwares to obtain
any information regarding certain application consistently.

To measure the effectiveness of ScreenStealer application
in real-time, it has been uploaded to the Google Play Store
(Figure 5) [32]. This malicious application is working as
malware under the concealment of a Tic-Tac-Toe game. Fur-
thermore, it was discovered that, the verification and security
mechanism of Google Play Store does not cater the validity
of data access permissions required by an application already
uploaded or updated. This inability to resist unnecessary
permissions allocated to an application leads to the freedom
of application to run malicious code in cover of a rivalry.

E. SCREENSHOT CAPABILITY OF ADB, DETECTION OF
INFORMATION EXPOSURE AND SCREEN CAPTURING
Various strategies are used by ScreenStealer to detect the
accessibility of ADB-based screenshot capability. It is quite
easy to remodel things at OS level for rooted devices, that
is why ScreenStealer uses ADB shell commands for cap-
turing screenshots programmatically. That creates a method
using root prerogatives of the device. ScreenStealer has been
made possible on non-rooted devices as well by using ASL
(Android Screenshot Library), an open source library pro-
vided on Google code blog [6], [33]. Taking screenshots
programmatically on Android devices without any root pre-
rogatives is been made possible by ASL. It takes ADB to run
a backend android related service, that works till the device
is rebooted. The privileges provided by rooting the device are
not necessary for ASL to capture screenshots programmati-
cally by utilizing the native services running at backend of
Android. This Android native service starts by ADB always
when the device is rebooted.

F. IMPLEMENTATION
An access control mechanism for android is via specific
permissions that applications request. The permissions need

VOLUME 6, 2018



S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

IEEE Access

TABLE 1. List of permissions employed by ScreenStealer.

Permission Purpose
INTERNET Send screenshots to adversary
WRITE_EXTERNAL_ST Temporary save the screenshots
ORAGE
GET_TASKS Get the tasks running on phone
GET_TOP_ACTIVITY_I  Get the activity, active in the
NFO foreground
RECEIVE_BOOT_COM  To auto-start ScreenStealer on
PLETED boot

to be defined deliberately in AndroidManifest.xml file in
order to access specific resources. AndroidManifest.xml file
is necessary for every Android project as part of source
files, and declare essential information about application
for build tools, OS and Play Store. In this file, the user is
asked to allow access to resources via permissions, before
installation of application. Table 1 summarizes the list of
permissions that ScreenStealer seeks to obtain. ScreenStealer
makes use of DeviceAdminReceiver and BroadcastReceiver
to attain the essential privileges and permissions to empow-
ering screenshot capture and ScreenStealer to work profi-
ciently. The malware has also been made incapable of ‘Force
Stop’ed or ‘Uninstall’ed by the user. To check whether any
of the specified application is running in the background,
a backend service has been used to keep stalking for the
activities at front-end. Likewise, the screenshots are captured
via similar backend service, which are sent to the attacker’s
server through a web service.

G. REAL-TIME DATA STEALING

With the help of specific services and API’s provided by
Android, ScreenStealer determines the application currently
running at front-end. APl gerActivePackages is used to
detect the current application at foreground, making use of
the target application declaration beforehand. ScreenStealer
screen capturing module is initiated immediately after the
target application is detected, and starts capturing screen-
shots after defined intervals till the life of target application
on foreground. The detection module for target application
keeps its work going on at backend for stalking user activ-
ities. ScreenStealer has been hard-coded with list of social
media and banking applications to spot and capture required
screenshots.

When ScreenStealer successfully captures a screenshot,
it stores it in encrypted form at SD Card or device storage
temporarily. The image is not only stored in a hardly locatable
manner as well as it is incapable of being opened and viewed.
The image that is stored for the time being makes use of
web service and Internet and sent to the owner’s server. A
view of the screenshots on our server from Android devices
is captured in Figure 6 below.

H. MALICIOUS ENHANCEMENT OF ScreenStealer
Other than the already implemented and above explained
scenario of the ScreenStealer attack, this application can be

VOLUME 6, 2018

- e
-
2
L 1|
2
-
i
-

FIGURE 6. Screenshots uploaded on adversary’s server.

enhanced maliciously in a number of possible ways, with
minor changes and using only a few resources. Along with
the screenshots that are being sent to screenshots, the current
location data of the device and hence the user in the form
of coordinates can be sent to the adversary with a bit devel-
opment work. In addition to this, phone and device identity
can be extracted by this malicious application for the adverse
effects like phone blocking or damaging.

In order to reduce the Wi-Fi/3G/4G data usage, attacker
can work on the taken screenshots, extract the required data
and send some characters or letters over to the server, instead
of the whole screenshot image. For this, passwords can
be extracted using a local mechanism of characters extrac-
tion like what is done by Screenmilker, but it needs to be
make more efficient in terms of performance overhead and
resources consumption. This can result in sensitive accounts
hacking like banking and several social media applications.

IV. RESULTS AND EVALUATION

This section encompasses the results and evaluation of
ScreenStealer and its effectiveness in stealing sensitive data
from user’s Android devices. The efficiency and sneaking
of the developed malware has been evaluated on the basis
of various parameters, like, capture ratio, performance over-
head, and consumption of resources, like CPU, memory,
network. The evaluation parameters have been selected based
on ScreenStealer application features and in accordance with
the conceivable consequences it can originate on user device
while it is under surveillance.

The experiments and tests are performed on Samsung
GT-S7262 Android 4.1.2, Motorola Moto X Android 4.4.2,
and Rivo Rhythm RX70 Android 4.4.2. For the purpose
of evaluation, PowerTutor, App-TuneUp-Kit, Trepn Profiler,
and Android Studio features have been employed to analyze
values of parameters. Samsung GT-S7262 has been used for
evaluation results that are later explained in this section.

20729



IEEE Access

S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

A. EFFECTIVENESS AND EFFICIENCY

This sub-section presents the understanding of effectiveness
and efficiency of the developed malware in collecting sen-
sitive user data. The selected parameters to determine the
efficiency and effectiveness of ScreenStealer are, display
detection, capturing ratio, and data extraction. These factors
are very important to be considered regarding the malicious
functionality of ScreenStealer, because the malware develop-
ment has been focused towards capturing a screen of any of
the target applications with meaningful information and at a
perfect time.

App Monitoring and Display Detection: At first, it was
observed whether ScreenStealer can impeccably determine
when the target application is active at the foreground.
To accomplish this, a number of applications’ package names
were coded in ScreenStealer to detect, and examinations for
all of the target applications were successful. The Screen-
Stealer’s background service runs a loop for checking any
of the target applications with an interval of 5 seconds, once
it notices any, it rings the module dedicated for capturing
screens. The target applications that were hard-coded for
ScreenStealer are composed of Messaging, Gmail, Hang-
out, Facebook, Messenger, WhatsApp, Instagram, Snap Chat,
Contacts, Call logs, Viber, Breeze Pakistan, Twitter and
Skype. Additionally, ScreenStealer can be programmed to
capture data of many other applications specified for screen
capturing.

Capturing Ratio: The number of screenshots being taken
in a specified time interval while the target application is
running at the frontend is determined by Capture ratio ADB
workaround and consumption of network limits the rate at
which screens are captured by ScreenStealer and sent to the
server through web service. When the target application is
discovered by ScreenStealer at the front-end, the screen cap-
turing module is alerted at once and with 20 seconds interval
screenshots are captured and uploaded to the server, as long
as the target application is running at foreground. (Figure 7).

B. STEALTHINESS
In order to evade being sensed by the user, ScreenStealer
is developed and designed to reduce the consumption of
resources and minimize the use of CPU, memory and net-
work. The stealthiness of the application has been measured
in anumber of ways, which include the performance overhead
in terms of response time, assessment of CPU consumption of
the ScreenStealer when it is active and when only spying from
the backend, memory usage and the network consumption.
Resources Consumption: A chain of experiments has been
performed in order to analyze whether checking the system
resources consumption can reveal the presence of malware
in the system. According to a study, most of the energy of
a smart device is consumed by screen and CPU [34]. The
energy consumed by on screen and its brightness is not rele-
vant to our study, but we explicitly examined the CPU usage
of ScreenStealer as compared to other applications running

20730

Time (s)

40 -=-=-=-=1 - L

30 === _________ ........ .........

T

20 Fr=rmemem P

10 omemem= L R L | L !

Number of Screenshots

FIGURE 7. Capture ratio of ScreenStealer.

TABLE 2. Average execution time of each of the ScreenStealer’'s main
functions.

ScreenStealer’s function Time (ms)
App-detection 1.52 (1% CPU

overhead)
Screen capturing 160.12
Encryption and storage 0.23
Network detection (server upload) 2.43

on the device. As described earlier, the app detection module
operates once every 5 seconds in order to detect the running
target applications. Each time this module is invoked, it took
about 1.52ms to complete its job, which cause less than 1%
of CPU overhead, which is very much likely to be ignored.

1) OVERALL EXECUTION TIME

When the objected application is identified, screenshot tak-
ing module becomes operational. On the average, the mod-
ule takes 160.12ms to take screenshot and stored it for the
time in encoded form in device storage. Encoding takes less
than 0.23ms on average. Also, when the network connection
establishes, ScreenStealer takes almost 2.43ms to send the
screenshot to the server through web service. Moreover, as the
screenshot is transmitted by network, so the time depends
on the internet connection. Such level of resource utilization
does not cost markable performance distress. Breakdown is
presented in Table 2.

2) MEMORY USAGE
Furthermore, evaluation of ScreenStealer is done on the basis
of memory usage as compared to other authenticated appli-
cations, such as, Skype, Calculator, Calendar, Google Play
Music, Gallery, Facebook, WhatsApp, Google Play Store,
Temple Run and Subway Surfers. The memory usage of these
applications has been monitored using Trepn Profiler and
Android Studio, the average results are presented in Table 3.
It can be observed that the ScreenStealer does not consume
memory resources in a susceptible way and use relatively
a low amount of memory. Moreover, its memory usage is
similar to those of small sized applications like calculator.

VOLUME 6, 2018



S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

IEEE Access

TABLE 3. Average memory consumption of ScreenStealer as compared to
other popular apps.

Application Memory [Kbyte]
ScreenStealer - App detection 220.8
ScreenStealer - Screen capturing 269.2
ScreenStealer - Sending to Server 2973
Calculator 279.4
Calendar 301.8
Google Play Music 317.6
Skype 402.8
Gallery 369.6
Facebook 357.1
WhatsApp 303.5
Google Play Store 456.1
Temple Run 435.7
Subway Surfers 329.2
Q0 rmimmem fm qom e o fmemmm pomememm, !
80 bomememesbonn b
270 bmma . AR SIS SO ;
260 omemimee ', ________ ,' ......... '
550 Lommemembo L
240 boom i R IO A A P i
g 30 bimimimmeme ,' ........................ ; ......... '
B 90 bemimiciliiooio, it T CTETE. SREPEPE SRR,
10 F-m e - i
o ! !

0 20 40 60 80 100 120

Java Image AP| Quality Factor

FIGURE 8. Size of screenshots with 320 x 480 resolution and quality
factor of 20 in JPEG format.

Other heavy applications like Subway Surfers and Temple
Run consume about 55% more memory than ScreenStealer.

3) POWER CONSUMPTION

CPU and Network power usage is examined by using the
Trepn Profiler. Evaluation was done by the cross match of
values with results from other tools like PowerTutor and
AppTune-up Kit. Figure 8 shows the average values over the
5 minutes period compared with other acknowledged appli-
cations. ScreenStealer consumes a moderate level of power
in comparison with other applications.

4) IMAGE SIZE REDUCTION

To lessen the memory utilization for temporary screenshot
storage in device and low usage of network data, we shrink
the quality and resolution of image to the level that makes
it easy and faster to send it over the server with reduced
usage of memory and network resources. JPEG is a lossy
format, it may impair the image quality by reducing the size,
as image quality is not the concern in our case, so JPEG
format is employed to shrink its size to maximum with the
settlement of quality and resolution. Therefore, resolution for
screenshots is between 3KB to 17KB maximum in size, with
320x480 resolution and quality factor of 20 (Figure 9).

VOLUME 6, 2018

500 481.2 501.4 490.8
5
387.8
200 352.4
T 292.1
z ® 212.7
5 ™ 97.8 102.6
LT © 892 575 1 :
a | 2283 0w B
& S F S E S E S E
& N & > & S @ &
& & o ¥ @ ) £ & L S
Qb Q\o Q%& & Q « ) zq @6‘ @
l?‘Q & {\b\ O°>Q) OOQ &>
& & /f-)@ «© o
&
&

Applications Names

FIGURE 9. Average power usage.

C. DISCUSSIONS

The real-time data stealing technique of ScreenStealer is
highly efficient and effective. However, the limitations are
still there due to the limited capability of screenshot tak-
ing in Android devices and somewhat smart user interface
of Android devices which varies by different vendors and
Android versions. For example, if ScreenStealer wants to
track instant messages sent and received on user device
through screenshots, then it is a possibility that the messages
are coming and going faster than the rate of screenshots are
being taken and uploaded to the server.

Though this strategy is very much effective where mes-
sages are displayed in the form of thread, which is usually
the scenario in most of the latest and upcoming models of
smartphones, this makes ScreenStealer able to capture 3 to
4 messages of about 20 words in one screenshot, however,
the number of text messages captured is reduced, when the
keyboard is opened in screenshot, that covers about one third
of the smartphone screen. Similar types of limitations can be
faced when ScreenStealer tries to steal contacts information.

V. CONCLUSION

The ADB based workaround has become an ordinary and
legally eligible way for privilege escalation and to obtain
signature-level permissions. This also normally require
the use of local socket channel to develop a connection
between the native service and the application running on
device. Android, however, doesn’t support any control of
access or monitoring of this channel. This can lead to
exploitation of this workaround and channel by any third-
party application in a malicious way.

Almost all screenshot, sync and backup, and USB tethering
application on google play store uses ADB proxy and deficit
any methodology for unauthorized access of malicious appli-
cations. Whereas, the sensitive applications such as banking,
Skype, messaging or any related applications does not use
any methodology to avert any bogus applications to examine
on-screen activities. We recognized that, security procedures
are needed to be upgraded on individual application and
OS level and also on Google Play Store. A real-time exam-
ple is the upload and verification of our malicious screen-
shot application by Google Play Store, by introducing it as

20731



IEEE Access

S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

Tic-Tac-Toe game for users. Our experiment exhibits that
verification procedure of Play store needs to be upgraded to
detect susceptible activities and approbations by any applica-
tion without depending on user knowledge only.

Future work for this research will aim to investigate loop-
holes of already available security procedures in depth and
execution and development of the suggested mitigation pro-
cedures in practical and constructive ways.

REFERENCES

[1]

[2]

[3]

[4]

[5]
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

The Statistics Portal. Number of Available Applications in the Google
Play Store From December 2009 to February 2016. Accessed: Jun. 2016.
[Online]. Available: http://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/

C. Dehghanpoor. Brain Test Re-Emerges: 13 Apps Found in
Google Play. Accessed: Jun. 2016. [Online]. Available: https://blog.
lookout.com/blog/2016/01/06/brain-test-re-emerges/

Google Play Store. Malwarebytes Anti-Malware. Accessed: Jun. 2016.
[Online]. Available: https://play.google.com/store/apps/details?id=org.
malwarebytes.antimalware&hl=en

M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on secu-
rity for mobile devices,” IEEE Commun. Surveys Tuts., vol. 15, no. 1,
pp. 446471, 1st Quart.,2013.

F. Wu, H. Narang, and D. Clarke, “An overview of mobile malware and
solutions,” J. Comput. Commun., vol. 2, no. 2, pp. 8-17, 2014.

S. M. Muzammal and M. A. Shah, ““ScreenStealer: Addressing screenshot
attacks on Android devices,” in Proc. Int. Conf. Autom. Comput. (ICAC),
Sep. 2016, pp. 336-341.

S. Mukherjee, J. Prakash, and D. Kumar, “Android application develop-
ment & its security,” Int. J. Comput. Sci. Mobile Comput., vol. 4, no. 3,
pp. 714-719, Mar. 2015.

X.-D. Quand G. Yu, “Coordinated attack research between Android appli-
cations and solutions,” in Proc. 5th IEEE Int. Conf. Softw. Eng. Service
Sci. (ICSESS), Jun. 2014, pp. 718-722.

Android Developers. Android Debug Bridge. Accessed: Apr. 2016.
[Online]. Available: http://developer.android.com/intl/zh-CN/tools/help/
adb.html

Android Developers. Download Android Studio and SDK Tools. Accessed:
Apr. 2016. [Online]. Available: http://developer.android.com/intl/zh-
CN/sdk/index.html

A. G. Villan and J. Jorba. (2013). “Remote control of mobile devices in
Android platform.” [Online]. Available: https://arxiv.org/abs/1310.5850
K. Lucic. Over 27.44% Users Root Their Phone(s) in Order to
Remove Built-In Apps, Are You One of Them? Android Headlines.
Accessed: May 2016. [Online]. Available: http://www.androidheadlines.
com/2014/11/50-users-root-phones-order-remove-built-apps-one.html

S. Smalley and R. Craig, “Security enhanced (SE) Android: Bringing
flexible MAC to Android,” in Proc. NDSS, vol. 310. 2013, pp. 20-38.
C.-C. Lin, H. Li, X. Zhou, and X. Wang, ‘‘Screenmilker: How to milk your
Android screen for secrets,” in Proc. NDSS, 2014, pp. 1-14.

E. Chin, A. P. Felt, V. Sekar, and D. Wagner, ‘“Measuring user confidence
in smartphone security and privacy,” in Proc. 8th Symp. Usable Privacy
Security, 2012, Art. no. 1.

A. Mylonas, D. Gritzalis, B. Tsoumas, and T. Apostolopoulos, “A qual-
itative metrics vector for the awareness of smartphone security users,”
in Trust, Privacy, and Security in Digital Business. Berlin, Germany:
Springer, 2013, pp. 173-184.

B. Rashidi and C. Fung, “A survey of Android security threats and
defenses,” J. Wireless Mobile Netw., Ubiquitous Comput., Dependable
Appl., vol. 6, no. 3, pp. 3-5, 2015.

A.P.Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proc. 8th
Symp. Usable Privacy Security, 2011, Art. no. 3.

P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing applications on
an Android smartphone,” in Financial Cryptography and Data Security.
Berlin, Germany: Springer, 2012, pp. 68-79.

(Oct. 2014.). The Impact of Mobile Devices on Information Security:
A Survey of IT and Security Professionals. Accessed: Jun. 2016. [Online].
Available: http://www.checkpoint.com/downloads/products/check-point-
mobile-security-survey-report.pdf

20732

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proc. 1st ACM Workshop Secur. Privacy
Smartphones Mobile Devices, 2011, pp. 3—14.

The Problem with Mobile Phones: Surveillance Self-Defense, A Project of
the Electronic Frontier Education. Accessed: Jun. 2016. [Online]. Avail-
able: https://ssd.eff.org/en/module/problem-mobile-phones

W. Jeon, J. Kim, Y. Lee, and D. Won, “A practical analysis of smartphone
security,” in Proc. Human Interface Manage. Inf. Interact. Inf., 2011,
pp. 311-320.

X. Ni, Z. Yang, X. Bai, A. C. Champion, and D. Xuan, “DiffUser: Differ-
entiated user access control on smartphones,” in Proc. IEEE 6th Int. Conf.
Mobile Adhoc Sensor Syst., Oct. 2009, pp. 1012-1017.

Accounts Help. Protect Against Harmful Apps. Accessed: Apr. 2016.

[Online]. Available: https://support.google.com/accounts/answer/
2812853%hl=en
J. Hindy, (2016). 15 Best Antivirus Android Apps and Anti-

Malware Android Apps. Accessed: Apr. 2016. [Online]. Available:
http://www.androidauthority.com/best-antivirus-android-apps-269696/
G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, and
D. Sgandurra, “A multi-criteria-based evaluation of Android applica-
tions,” in Trusted Systems. Berlin, Germany: Springer, 2012, pp. 67-82.
Grey Shirts Productivity. (2014). NoRoot Firewall. Accessed:
Jun. 2016. [Online]. Available: https:/play.google.com/store/apps/
details?id=app.greyshirts.firewall&hl=en

Z. R. Rodrigo. (2011). DroidWall - Android Firewall. Accessed:
Jun. 2016. [Online]. Available: https://play.google.com/
store/apps/details?id=com.googlecode.droidwall.free&hl=en

S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A. R. Sadeghi, and
B. Shastry, “Practical and lightweight domain isolation on Android,”
in Proc. 1st ACM Workshop Security Privacy Smartphones Mobile Devices,
2011, pp. 51-62.

Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on Android),” in Trust and Trustworthy
Computing. Berlin, Germany: Springer, 2011, pp. 93-107.

Whatatech. (2016). TicTacToe. Accessed: Apr. 2016. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=screenshot.screenshot
project

Google Code-Archive. Android Screenshot Library. Accessed: Apr. 2016.

[Online]. Available: https://code.google.com/archive/p/android-
screenshot-library/
C. Cortes and A. Krauser. Android: Resource Consumption in

Native and Web Applications. [Online]. Available: http://www.diva-
portal.org/smash/record.jsf?pid=diva2 %3 A832028&dswid=5995. 2013.

SYEDA MARIAM MUZAMMAL received the
B.Sc. and M.Sc. degrees in computer science
from the COMSATS Institute of Information Tech-
nology, Islamabad, Pakistan, in 2012 and 2016,
respectively. Her M. Sc. dissertation topic is based
on Security Attacks and User’s Privacy Protec-
tion in Smartphones. Her research interests include
security risks and threats in smart devices, ethical
hacking, information security, Internet of Things,
and machine learning.

MUNAM ALI SHAH received the B.Sc. and
M.Sc. degrees in computer science from the Uni-
versity of Peshawar, Pakistan, in 2001 and 2003,
respectively, the M.S. degree in security technolo-
gies and applications from the University of Sur-
rey, UK., in 2010, and the Ph.D. degree from the
University of Bedfordshire, U.K., in 2013. Since
2004, he has been a Lecturer with the Depart-
ment of Computer Science, COMSATS Institute of
Information Technology, Islamabad, Pakistan. He

has authored over 50 research articles published in international conferences
and journals. His research interests include MAC protocol design, QoS, and
security issues in wireless communication systems. He received the Best
Paper Award of the International Conference on Automation and Computing
in 2012.

VOLUME 6, 2018



S. M. Muzammal et al.: Counter Measuring Conceivable Security Threats on Smart Healthcare Devices

IEEE Access

HASAN ALI KHATTAK received the B.CS. degree
in computer science from the University of
Peshawar, Peshawar, Pakistan, in 2006, the mas-
ter’s degree in information engineering from the
Politecnico di Torino, Torino, Italy, in 2011, and
the Ph.D. degree in electrical and computer engi-
neering from the Politecnico di Bari, Bari, Italy,
in 2015. He has been serving as an Assistant Pro-
fessor of computer science with the COMSATS
Institute of Information Technology since 2016.
His current research interests focus on distributed system, Web of things and
vehicular Ad Hoc networks, and data and social engineering for smart cities.
He is involved in a number of funded research projects in the Internet of
Things, semantic Web and fog computing while exploring Ontologies, Web
Technologies using Contiki OS, NS 2/3, and Omnet++ frameworks.

SOHAIL JABBAR was a Post-Doctoral Researcher
with Kyungpook National University, Daegu,
South Korea. He has also served as an Assistant
Professor with the Department of Computer Sci-
ence, COMSATS Institute of Information Tech-
nology (CIIT), Sahiwal, where he also headed the
Networks and Communication Research Group.
He is currently an Assistant Professor with the
Department of Computer Science, and the Director
of the Graduate Programs with the Faculty of
Sciences, National Textile University, Faisalabad, Pakistan. He has authored
one book, two book chapters, and over 60 research papers. His research
work is published in various renowned journals and magazines of the IEEE,
Springer, Elsevier, MDPI, Old City Publication and Hindawi, and conference
proceedings of the IEEE, ACM, and IAENG. He is on collaborative research
with renowned research centers and institutes around the globe on various
issues in the domains of Internet of Things, wireless sensor networks and
big data. He received many awards and honors from Higher Education
Commission of Pakistan, Bahria University, CIIT, and the Korean Govern-
ment. Among those awards, the Best Student Research Awards of the Year,
the Research Productivity Award, and BK-21 Plus Post Doc. Fellowship.
He received the Research Productivity Award from CIIT in 2014 and 2015.
He has been engaged in many national and international level projects.
He has been the reviewer for leading journals (ACM TOSN, JoS, MTAP,
AHSWN, and ATECS) and conferences (C-CODE 2017, ACM SAC 2016,
and ICACT 2016). He is currently engaged as a TPC member/chair in many
conferences. He is the Guest Editor of special issue on Concurrency and
Computation Practice and Experience (Wiley), Future Generation Computer
Systems (Elsevier), Peer-to-Peer Networking and Applications (Springer),
Journal of Information and Processing System (KIPS), and Cyber-Physical
System (Taylor & Francis).

GHUFRAN AHMED received the Ph.D. degree
from the Department of Computer Science,
Capital University of Science and Technology,
Islamabad, in 2013, the Post-Doctoral degree from
the Department of Computer Science and Digital
Technology, Faculty of Engineering and Environ-
ment, Northumbria University, Newcastle Upon
Tyne, U.K., in 2015, and the Ph.D. degree from
the Faculty of Computer Science and Engineering,
GIK Institute, Topi, Swabi, KPK. He was a Visit-
ing Scholar with the CReWMaN Lab, Department of Computer Science and
Engineering, The University of Texas at Arlington from 2008 to 2009. He
is currently serving as an Assistant Professor with the Department of Com-
puter Science, COMSATS Institute of Information Technology, Islamabad,
Pakistan. His area of research is wireless sensor networks and wireless body
area networks.

i

VOLUME 6, 2018

SHEHZAD KHALID graduated the degree from
the Ghulam Ishaq Khan Institute of Engineer-
ing Sciences and Technology, Pakistan, in 2000,
the M. Sc. degree from the National University of
Science and Technology, Pakistan, in 2003, and the
Ph.D. degree from the University of Manchester,
UK., in 2009. He is currently a Professor and
the Head of the Department with the Depart-
ment of Computer Engineering, Bahria Univer-
sity, Pakistan. He is a qualified academician and
a Researcher with over 60 international publications in various renowned
journals and conference proceedings. He is the Head of the Computer Vision
and Pattern Recognition Research Group which is a vibrant research group
undertaking various funded research projects. His areas of research include
but are not limited to shape analysis and recognition, motion-based data min-
ing and behavior recognition, medical image analysis, ECG analysis for dis-
ease detection, biometrics using fingerprints, vessels patterns of hands/retina
of eyes, ECG, Urdu stemmer development, short and long multi-lingual text
mining, and Urdu OCR. He has been the reviewer for various leading ISI
indexed journals. He has received the Best Researcher Award from Bahria
University in 2014. He has also received the Letter of Appreciation for
Outstanding research contribution in 2013 and the Outstanding Performance
Award for the academic year 2013-2014.

SHAHID HUSSAIN received the Ph.D. degree
from the Department of Computer Science, City
University of Hong Kong. He is currently an
Assistant Professor of computer science with the
COMSATS Institute of Information Technology,
Islamabad, Pakistan. He has authored numerous
articles in reputed journal and conferences. His
major research interests include software design
patterns, fault prediction, text mining, data sci-
ence, and metrics threshold.

KIUN HAN received the B.S. degree in electrical
engineering from Seoul National University, South
Korea, in 1979, and the M.S. degree in electri-
cal engineering from the KAIST, South Korea,
in 1981, and the M.S and Ph.D. degrees in com-
puter engineering from the University of Arizona,
in 1985 and 1987, respectively. He served as a
Researcher of Agency for Defense Development
from 1981 to 1984. He has been holding the pro-
fessor position with the School of Computer Sci-
ence and Engineering, Kyungpook National University, South Korea, since
1988. He headed good number of national and international level projects.
His research work is published in various renowned journals and magazines
of the IEEE, Springer, Elsevier, MDPI, Old City Publication and Hindawi,
and conference proceedings of the IEEE and ACM. His research interests
include Internet of Things, Wireless Sensor Networks, and big data.

20733



	INTRODUCTION
	ARCHITECTURE OF ANDROID
	SECURITY IN ANDROID
	ADB - ANDROID DEBUG BRIDGE
	THE LOCAL SOCKET CHANNEL AND ADB SCREENSHOTS

	RELATED WORK
	ANDROID PERMISSION MECHANISMS AND APPLICATIONS
	TYPES OF ATTACK VECTORS
	SECURITY AT APPLICATION-LEVEL
	SCREENMILKER AND ADB
	GENERALITY OF PROBLEM
	ANDROID PROTECTION MECHANISM

	OVERVIEW AND IMPLEMENTATION
	OVERVIEW
	ARCHITECTURE
	WORKFLOW
	RIVALRY MODEL
	SCREENSHOT CAPABILITY OF ADB, DETECTION OF INFORMATION EXPOSURE AND SCREEN CAPTURING
	IMPLEMENTATION
	REAL-TIME DATA STEALING
	MALICIOUS ENHANCEMENT OF ScreenStealer

	RESULTS AND EVALUATION
	EFFECTIVENESS AND EFFICIENCY
	STEALTHINESS
	OVERALL EXECUTION TIME
	MEMORY USAGE
	POWER CONSUMPTION
	IMAGE SIZE REDUCTION

	DISCUSSIONS

	CONCLUSION
	REFERENCES
	Biographies
	SYEDA MARIAM MUZAMMAL
	MUNAM ALI SHAH
	HASAN ALI KHATTAK
	SOHAIL JABBAR
	GHUFRAN AHMED
	SHEHZAD KHALID
	SHAHID HUSSAIN
	KIJUN HAN


