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ABSTRACT Energy consumption and cost are the important factors in executing applications in grid or cloud
computing systems, because they directly affect resource consumption and economic benefits. This paper
solves the problem of reducing energy consumption of a cost budgeted directed acyclic graph (DAG)
application in heterogeneous computing systems. The state-of-the-art work has studied the cost budgeted
scheduling for a DAG application in the heterogeneous computing systems by proposing the budget level-
based preassignment method; however, this paper is merely to reduce the schedule length without involving
energy consumption, and its preassignment method is still pessimistic although it improves the existing
method. In this paper, we first propose an available budget preassignment method to further improve it.
We then introduce the available budget preassignmentmethod to reduce the energy consumption.We propose
minimizing energy consumption using the available budget preassignment (MECABP) algorithm based on
the two steps. Experiments on three types of DAG applications with different parallelism degrees confirm
the effectiveness of the proposed MECABP algorithm compared with existing algorithms.

INDEX TERMS Cost budget, budget preassignment, heterogeneous cloud computing systems.

I. INTRODUCTION
A. MOTIVATION
Cloud computing is a promising, effective computing model
for supporting scientific applications [1]–[4], which are fre-
quently used in modeling scientific applications in the fields
of bioinformatics, astronomy, and physics [5]. Heterogeneous
cloud computing systems are special systems in which dif-
ferent virtual machines (VMs) have varying computation
capacities because old and slow machines are continuously
being replaced by new and fast machines [6]. In heteroge-
neous cloud computing systems, an application is commonly
modeled as a set of tasks interconnected via data or com-
puting dependencies and is described as a directed acyclic
graph (DAG) [7]–[10] Examples of DAG applications are
Gaussian elimination and fast Fourier transform [8], [9], [11].

Energy consumption and cost are important factors in
executing DAG applications in cloud computing systems

because they directly affect resource utilization and economic
benefits. Users and service providers are the types of roles
in cloud computing systems, and conflicting requirements
exist between them by the server-level agreement (SLA) [8].
An user submits an application with a given cost budget as its
quality of service (QoS) requirement to the cloud data cen-
ter supplied by service providers. Cost budgeted application
refers to an application with a limited cost budget, which is
the maximum cost that the user can pay. Many cost budgeted
scheduling algorithms have been extensively studied in com-
puting systems [5], [7], [8], [10], [12], [13]. However, these
studies do not involve energy consumption. As the user tends
to focus on low cost and service providers tend to focus on
low energy consumption, combining the two factors is essen-
tial. In cloud computing systems, cost calculation typically
uses pay-as-you-go mode [8], [12], [14], and energy con-
sumption reduction by using dynamic voltage and frequency
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scaling (DVFS) [11], [15], [16]. However, dynamically scal-
ing down the voltage to reduce consumption will increase
execution time, thereby increasing execution costs.

This study aims to solve the problem of reducing energy
consumption of a cost budgeted application in heterogeneous
cloud computing systems. The state-of-the-art work has stud-
ied the cost budgeted scheduling for a DAG application by
proposing the budget level-based preassignment method [8].
However, [8] is merely to reduce the schedule length without
involving energy consumption, and its preassignment method
is still pessimistic although it improves the existing method
of [7] (refer to Section IV.A for more details).

B. OUR CONTRIBUTION
This study aims to reduce the energy consumption of a
cost budgeted application in heterogeneous cloud comput-
ing systems. We divide the problem into two sub-problems:
1) satisfying cost budget, and 2) reducing energy consump-
tion. The main contributions of this study are as follows:

(1) Satisfying cost budget. We first propose an available
budget preassignment method to improve the existing budget
preassignment methods. In this step, we transfer the cost
budget of the application to each task by using the available
budget preassignment.

(2) Reducing energy consumption. We introduce the
available budget preassignment method to reduce the energy
consumption. In this step, we allow each task to select the
combination assignment of VM and frequency that has the
minimum energy consumption while satisfying the cost bud-
get of the task.

(3) We propose the minimizing energy consumption using
available budget preassignment (MECABP) algorithm based
on the two steps.

(4) Experiments on three types of DAG applications with
different parallelism degrees confirm the effectiveness of
the proposed MECABP algorithm compared with existing
algorithms.

The rest of this paper is organized as follows. Section II
reviews related works. Section III shows related models and
problem statement. Section IV presents the MECABP algo-
rithm. Section V evaluates the performance of the MECABP
algorithm. Section VI concludes this study.

II. RELATED WORK
Considering that this study involves reducing energy con-
sumption with cost budget of a DAG application, we review
related works organized by cost scheduling and energy
scheduling, respectively.

A. COST SCHEDULING OF A DAG APPLICATION
Mao and Humphrey [17] proposed the autoscaling com-
putational instances approach to optimize the cost of a
schedule length constrained DAG application in cloud com-
puting systems. Abrishami et al. [18] solved the problem of
minimizing the cost of a schedule length constrained DAG
application on homogeneous computing systems. However,

both [17] and [18] aim to minimize cost with schedule
length constraint rather to minimize schedule length with cost
budget. Wu et al. [19] studied the problem of minimizing
the schedule length of a cost budgeted DAG application
by proposing a critical-greedy approach and introducing a
budget level (BL); however BL is only used in homogeneous
cloud computing systems. Arabnejad and Barbosa [7] studied
the same problem as that reported in [19] on heterogeneous
computing systems and proposed the heterogeneous budget
constrained scheduling (HBCS) algorithm. HBCS is a pes-
simistic algorithm because it preassigns the minimum costs
to unassigned tasks. Chen et al. [8] extended the BL in [19]
to heterogeneous computing systems and proposed the mini-
mizing schedule length using BL (MSLBL) algorithm. How-
ever, asmentioned in Section I.A,MSLBL ismerely to reduce
the schedule length without involving energy consumption,
and its preassignment is still pessimistic although it improves
the HBCS algorithm.

B. ENERGY SCHEDULING OF A DAG APPLICATION
DVFS-based energy design techniques have been used to
execute a DAG application. These techniques and algo-
rithms aim to minimize energy consumption with schedule
length budget or minimize schedule length with energy con-
sumption budget. Lee and Zomaya [20] presented energy-
conscious scheduling to implement joint reduction between
the schedule length and energy consumption of a DAG appli-
cation on heterogeneous computing systems. Xiao et al.
[21] studied the problem of reducing schedule length of an
energy consumption constrained DAG application on het-
erogeneous computing systems by preassigning minimum
energy values to unassigned tasks. Huang et al. [22] studied
the problem of reducing energy consumption of a schedule
length constrained DAG application on heterogeneous com-
puting systems by reclaiming the slack time using upward
approach [22]. Xie et al. [23] studied the same problem as that
reported in [22] by proposing a combination of downward and
upward approaches. Tang et al. [24] proposed the method of
turning off inefficient VMs on the basis of [22]. Xie et al. [25]
improved the limitations of [24] by proposing energy-aware
VM merging algorithms.

Unlike the above related works, this study will study
the new problem of minimizing energy consumption of a
cost budgeted application. Particularly, we will propose a
new budget preassignment method to improve the existing
methods.

III. MODELS
A. DAG APPLICATION MODEL
A targeted cloud computing platform is composed of a set of
heterogeneous VMs to provide services with different capa-
bilities and costs. Let U = {u1, u2, . . . , u|U |} denote a set of
heterogeneous VMs, where |U | represents the size of set U .
For any set X , |X | is used to denote its size. We assume that
communication can overlap with computation, which means
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FIGURE 1. Motivational example of a DAG application with ten
tasks [8], [11], [23], [25], [26].

that data can be transmitted from one VM to another while a
task is being executed on the recipient VM. A work running
on VMs is represented by a DAG G = (N ,W ,M , C) [7]–[9],
[21], [25], [26].

(1) N represents a set of nodes in G, and each node
ni ∈ N represents a task. pred(ni) represents the set of the
immediate predecessor tasks of ni. succ(ni) represents the set
of the immediate successor tasks of ni. The task that has no
predecessor task is denoted as nentry, and the task that has
no successor task is denoted as nexit. If a DAG application
has multiple entry or exit tasks, then a dummy entry or exit
task with zero-weight dependencies is added to the
graph.

(2) W is a |N | × |U | matrix, where wi,k denotes the exe-
cution time of ni running on uk [7]–[9], [21], [25], [26]. Each
task has different execution time values on different VMs due
to the heterogeneity of the VMs.

(3) M is a set of communication edges, and each edge
mi,j ∈ M represents the communication message from ni
to nj.

(4) ci,j ∈ C represents the communication time of mi,j if
ni and nj are not assigned to the same VM. All computation
and storage services are assumed to be in the same physi-
cal region. Hence, communication time ci,j depends on the
amount of data to be transferred between task ni and task nj,
which is independent of the computation service on the
VMs [8]. When tasks ni and task nj are assigned to the same
VM, ci,j is zero because the intra-VM communication cost
can be ignored.

Fig. 1 shows a motivational example of a DAG appli-
cation. Table 1 shows a matrix of execution time values
in Fig. 1. The example shows 10 tasks executed on 3 VMs
{u1, u2, u3}. The weight 16 of n1 and u2 in Table 1 represents
the execution time with the maximum frequency denoted
by w1,2 = 16. The weight 18 of the edge between n1 and
n2 represents the communication time denoted as c1,2 if n1
and n2 are not assigned to the same VM [7], [8], [11], [23],
[25], [26]. All the time unit is omitted in this example for
simplicity.

TABLE 1. Execution time values of tasks on different VMs with the
maximum frequencies of the DAG application
in Fig. 1 [8], [11], [23], [25], [26].

B. ENERGY MODEL
Considering the linear relationship between voltage and fre-
quency, DVFS decreases the voltage and frequency to save
energy. Similar to [11], [21], [23], and [25], we use the
term frequency change to represent the process of chang-
ing the voltage and frequency simultaneously. Considering a
DVFS-capable system, we also adopt the system-level power
model that is widely used in [11], [21], [23], and [25],
in which the power consumption at frequency f is given by

P(f ) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceff m),

where Ps represents the static power that can only be removed
by powering off the entire system. Pind represents frequency-
independent dynamic power that can be removed by putting
the system into the sleep state. Pd represents frequency-
dependent dynamic power. h represents system states and
indicates whether dynamic power is currently consumed by
the system. When the system is active, h = 1; otherwise,
h = 0. Cef represents an effective switching capacity, and
m represents the dynamic power exponent that is not less
than 2. Both Cef and m are VM-dependent constants.

In this study, we assume that the system is always turned on
because turning on/off a system causes excessive overhead.
In other words, Ps is always consumed and is unmanage-
able. Similar to [11], [21], [23], and [25], this study concen-
trates on dynamic power (e.g., Pind and Pd) and ignores the
Ps in the calculation. Less Pd does not result in less energy
consumption because of the Pind, that is, a minimum energy-
efficient frequency fee exists [11], [21], [23], [25] and is
denoted as

fee =
m

√
Pind

(m− 1)Cef
. (1)

Assuming the frequency of a VM varies from a minimum
available frequency fmin to the maximum frequency fmax,
the lowest frequency to execute a task is

flow = max(fmin, fee). (2)

Therefore, any actual effective frequency fh should belong to
the scope of flow 6 fh 6 fmax.
Considering that the number of VMs is |U | in the

system and these VMs are completely heterogeneous,
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each VM should have individual power parameters. Here,
we define frequency-independent dynamic power set

{P1,ind,P2,ind, . . . ,P|U |,ind},

frequency-dependent dynamic power set

{P1,d,P2,d, . . . ,P|U |,d},

effective switching capacitance set

{C1,ef,C2,ef, . . . ,C|U |,ef},

dynamic power exponent set

{m1,m2, . . . ,m|U |},

minimum energy-efficient frequency set

{f1,ee, f2,ee, . . . , f|U |,ee},

and actual effective frequency set
{f1,low, f1,α, f1,β , . . . , f1,max},

{f2,low, f2,α, f2,β , . . . , f2,max},

. . . ,

{f|U |,low, f|U |,α, f|U |,β , . . . , f|U |,max}

 .
We let E(ni, uk , fk,h) represent the energy consumption of

the task ni on the VM uk with frequency fk,h. This set is
calculated by

E(ni, uk , fk,h) =
(
Pk,ind + Ck,ef × fk,hmk

)
× wi,k ×

fk,max

fk,h
.

(3)

The energy consumption of the DAG application G is calcu-
lated by

E(G) =
|N |∑
i=1

E (ni) =
|N |∑
i=1

E
(
ni, upr(i), fpr(i),hz(i)

)
, (4)

where upr(i) and fpr(i),hz(i) represent the assigned VM and
frequency of ni, respectively. In this study, the overheads of
the frequency transitions are ignored because of the negligible
amount of time (e.g., 10 µs-150 µs [20], [25]).

C. COST MODEL
The cost model in this study is based on a pay-as-you-go
mode, and users are charged based on to the amount of
time that they used VMs according to the current commer-
cial clouds [8], [12]. Each VM has an individual unit price
because VMs in the system are completely heterogeneous [7],
[8], [10].We let rk be the unit price of the assigned computing
service on VM uk . Accordingly, we formally define the cost
cost(ni, uk , fk,h) of task ni on VM uk with frequency fk,h and
is calculated by

cost(ni, uk , fk,h) = wi,k ×
fk,max

fk,h
× rk . (5)

The total cost of the DAG application G is calculated by

cost(G) =
|N |∑
i=1

cost(ni) =
|N |∑
i=1

cost(ni, upr(i), fpr(i),hz(i)). (6)

D. COST BUDGET SCOPE
As the maximum frequency means minimum execution time,
and lowest frequency means the maximum execution time
for a task on the same VM, we can obtain the minimum
and maximum costs of task ni, denoted by costmin(ni) and
costmax(ni), respectively, by traversing all the VMs

costmin(ni) = min
uk∈U

cost(ni, uk , fk,max), (7)

and

costmax(ni) = max
uk∈U

cost(ni, uk , fk,low). (8)

Then, the total cost of the DAG application G is the sum
of that of each task, and the minimum and maximum costs of
the DAG application are

costmin(G) =
|N |∑
i=1

costmin(ni), (9)

and

costmax(G) =
|N |∑
i=1

costmax(ni), (10)

respectively.
The cost budget of the DAG application costbudget (G)

must be larger than or equal to costmin(ni); otherwise,
costbudget (G) is always unsatisfied. Meanwhile, costbudget (G)
should be less than or equal to costmax(ni); otherwise,
costbudget (G) is always satisfied. Therefore, this study
assumes that costbudget (G) belongs to the scope of costmin(G)
and costmax(G):

costmin(G)) ≤ costbudget (G) ≤ costmax(G). (11)

E. PROBLEM STATEMENT
The problem to be solved is to assign a combination of
VM and frequency for each task to reduce the energy con-
sumption of the DAG application

E(G) =
|N |∑
i=1

E (ni) =
|N |∑
i=1

E
(
ni, upr(i), fpr(i),hz(i)

)
, (12)

subject to its cost budget

cost(G) 6 costbudget(G). (13)

Considering that scheduling tasks with quality of ser-
vice (QoS) requirement for optimality on multiprocessors is
known to be an NP-hard optimization problem [27], the prob-
lem to be solved in this study is also an NP-hard optimization
problem.

IV. REDUCING ENERGY CONSUMPTION
WITH COST BUDGET
A. EXISTING COST BUDGETED SCHEDULING
Although no research is exactly the same as this paper
(i.e., reducing energy consumption with cost budget), the idea
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of reducing the schedule length with cost budget can be
referred to [7] and [8].

Assuming that the task to be assigned is ns(y), where ns(y)
represents the yth assigned task, then {ns(1), ns(2), . . . , ns(y−1)}
represents the task set where the tasks have been
assigned (i.e., high-priority tasks correspond to ns(y)), and
{ns(y+1), ns(y+2), . . . , ns(|N |)} represents the task set where
the tasks are unassigned (i.e., low-priority tasks correspond
to ns(y)) [8]. Initially, all tasks of the DAG application are
unassigned. Tasks are prioritized according to the decreasing
order of upward rank value (ranku) [26]

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)}, (14)

which is considered the de facto prioritizing task criterion
of list scheduling for a DAG application on heterogeneous
computing systems because it is widely used in energy and
cost budget scheduling [7], [8], [11], [23], [25].

To ensure that the cost budget of theDAGapplication is sat-
isfied at each task assignment, the HBCS algorithm proposed
in [7] presents the preassignment to each unassigned task
ns(z) in {ns(z+1), ns(z+2), . . . , ns(|N |)} with minimum cost of
costmin(ns(z)). When assigning ns(y), the cost budgeted value
of the DAG application is expressed as follows:

cost(G) =
y−1∑
x=1

cost(ns(x))+cost(ns(y))+
|N |∑

z=y+1

costmin(ns(z)),

where cost(ns(x)) is the actual used cost of ns(x) and
costmin(ns(z)) is the preassigned cost of ns(z).
cost(G) must be less than or equal to costbudget(G) accord-

ing to the problem statement. Therefore, we have

y−1∑
x=1

cost(ns(x))+ cost(ns(y))+
|N |∑

z=y+1

costmin(ns(z))

6 costbudget(G).

Therefore, the cost value of the task ns(y) should have the
following constraint:

cost(ns(y))

6 costbudget(G)−
y−1∑
x=1

cost(ns(x))−
|N |∑

z=y+1

costmin(ns(z)).

The cost budget of task ns(y) is

costbudget(ns(y))

=costbudget(G)−
y−1∑
x=1

cost(ns(x))−
|N |∑

z=y+1

costmin(ns(z)). (15)

Eq. (15) indicates that the cost budget of the application is
transferred to each task. As long as each task satisfies its cost
budget of

cost(ns(y)) 6 costbudget(ns(y)),

then the cost budget of the application can also be satisfied.

The minimum cost preassignment method is pessimistic
because preassigning with the minimum cost to unassigned
low-priority tasks will cause the cost budgets of the high-
priority tasks to be large, such that thismethod is severely pes-
simistic toward unfair frequency assignment and cost usage
among tasks (see more details in Table 6), and thus results in
limited reduction of the schedule length. Therefore, a more
fair method called budget level preassignment was proposed
in [8].
The main idea of the budget level preassignment is that the

budget preassignment value of ns(z) is changed to costbl(ns(z)),
which is calculated by

costbl(ns(z))

= costmin(ns(z))+
(
costmax(ns(z))−costmin(ns(z))

)
×BL(G),

(16)

where BL(G) represents the budget level of the DAG applica-
tion and is calculated by

BL(G) =
costbudget(G)− costmin(G)
costmax(G)− costmin(G)

. (17)

When assigning ns(y), its cost budget is correspondingly
changed to

costbudget(ns(y))

= costbudget(G)−
y−1∑
x=1

cost(ns(x))−
|N |∑

z=y+1

costbl(ns(z)). (18)

The budget level preassignment in [8] can greatly reduce
the pessimism compared with the minimum cost preassign-
ment [7]. However it is still pessimistic due to the following
reason.

We can see that costbl(ns(z)) is related to both costmax(ns(z))
and costmax(G) in Eq. (16). However, these two values are
unnecessary in DVFS-enabled systems due to the large fre-
quency scaling scope, because

costmax(ns(z))� costmin(ns(z)),

and

costmax(G)� costmin(G),

Therefore, costbl(ns(z)) will degenerate to

costbl(ns(z)) = costmax(ns(z))×
costbudget(G)
costmax(G)

.

In this case, the high-priority tasks will have relative low
cost usage, and low-priority tasks will have relative high cost
usage (see more details in Table 7). In other words, the budget
level preassignment is still pessimistic and can be improved
further.
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B. AVAILABLE BUDGET PREASSIGNMENT
Given the limitations in preassignment to unassigned tasks
using MSLBL, this subsection presents the improved budget
preassignment method. We first give a new definition as
follows.
Definition 1 (Available Budget): Available energy is the

available budget between costbudget(G) and costmin(G) of the
DAG application, as shown in Eq. (19):

AB(G) = costbudget(G)− costmin(G). (19)

Compared with the budget level preassignment, the main
improvement in this subsection is that the preassignment
of ns(z) is changed from costbl(ns(z)) to costavail(ns(z)), and
thus, costbl(ns(z)) is changed to costavail(ns(z)) in calculating
costbudget(ns(y)):

costbudget(ns(y))

= costbudget(G)−
y−1∑
x=1

cost(ns(x))−
|N |∑

z=y+1

costavail(ns(z)).

(20)

costavail(ns(z)) is calculated by

costavail(ns(z)) =
costmin(ns(z))
costmin(G)

× AB(G)+ costmin(ns(z)),

(21)

costavail(ns(z)) can be further updated to the following by
substituting Eq. (19) to Eq. (21):

According to Eq. (21), we let the available budget be pre-
assigned to each task based on its cost proportion costmin(ns(z))

costmin(G)
.

Eq. (21) can be further updated to the folllowing by substi-
tuting Eq. (19) into it.

costavail(ns(z))

=
costmin(ns(z))
costmin(G)

×
(
costbudget(G)−costmin(G)

)
+ costmin(ns(z))

= costmin(ns(z))×
costbudget(G)
costmin(G)

. (22)

According to the Eq. (22), we distribute the available bud-
get to unassigned tasks according to the cost proportion
costmin(ns(z))
costmin(G)

. In this manner, the cost budget of the DAG appli-
cation can still be transferred to each task while costmax(G)
does not appear in Eq. (22).

When assigning ns(y), its cost budget is correspondingly
changed to

costbudget(ns(y))

= costbudget(G)−
y−1∑
x=1

cost(ns(x))−
|N |∑

z=y+1

costavail(ns(z)).

(23)

Compared with the minimum cost preassignment
costmin(ns(z)) and budget level preassignment

costmax(ns(z)) ×
costbudget(G)
costmax(G)

, the available budget preassign-

ment costmin(ns(z))×
costbudget(G)
costmin(G)

only accepts the advantages
of both, but also comprehensively improves the pessimism of
both. The detailed comparison can be found in Section IV.E.
We prove the correctness of the proposed available budget
preassignment in Theorem 1.
Theorem 1: Each task in the DAG applicationG can always

find an assignment of VMs to satisfy

cost(G) =
y−1∑
x=1

cost(ns(x))+cost(ns(y))+
|N |∑

z=y+1

costavail(ns(z))

6 costbudget(G).

Proof: Considering that available budget preassignment
costavail(ns(z)) is considered the minimum cost of ns(z)),
if we can prove that the sum of the available budget pre-
assignment of all tasks is less than or equal to the given
cost budget of the DAG application, then the theorem is
proven.

First, let the sum of the available budget preassignments of
all tasks be

costavail(G) =
|N |∑
z=1

costavail(ns(z)). (24)

Then, substituting Eq. (22) into Eq. (24) obtains

|N |∏
z=1

costavail(ns(z))

=

|N |∏
z=1

(
costmin(ns(z))×

costbudget(G)
costmin(G)

)

=
costbudget(G)
costmin(G)

×

|N |∏
z=1

costmin(ns(z))

=
costbudget(G)
costmin(G)

× costmin(G)

= costbudget(G).

Given that costavail(G) is equal to costbudget(G) under the
available budget preassignment, we can find assigned VMs
to satisfy costbudget(G). Thus, Theorem 1 is proven. �

C. REDUCING ENERGY CONSUMPTION
The MSLBL algorithm in [8] aims to reduce the sched-
ule length rather than the energy consumption. In this
subsection, we solve the problem of reducing energy
consumption.

After transferring the cost budget of the DAG applica-
tion to each task, these tasks are assigned to the VM with
the minimum energy consumption while satisfying the cost
budget of each task. The strategy is as follows: we simply
need to traverse all the VMs and frequencies to assign the
current task ni to the combination of VM and frequency with
the minimum energy consumption while satisfying the cost
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budget of cost(ni, uk , fk,h) 6 costbudget(ni):

E(ni, upr(i), fpr(i),hz(i))

= min
uk∈U ,fk,h∈[fk,low,fk,max],
cost(ni,uk ,fk,h)6costbudget(ni)

{
E(ni, uk , fk,h)

}
(25)

The above expression is a heuristic search although it tra-
verses all the VMs and frequencies.We find an efficient, good
solution instead of the best solution because finding the best
solution needs global search and is an NP-hard optimization
problem. In this study, we conduct a heuristic search to find
a partial optimization result. Given that the VM number and
frequency levels are bounded, our heuristic search is effective
and fast.

Considering that low frequency means low energy con-
sumption and high cost for a task in the same VM, we can
traverse the frequencies from fk,low to fk,max on the VM uk .
When a frequency is found in a VM that has the minimum
energy consumption, then the remaining frequencies in this
VM can be skipped.

D. THE MECABP ALGORITHM
In the analysis of Sections IV.B and IV.C, the MECABP
algorithm is presented, as shown in Algorithm 1.

Algorithm 1 The MECABP Algorithm
Input: G = (N ,W ,M ,C), U , costbudget(G)
Output: E(G), cost(G) and its related values
1: Prioritize the tasks in a list rank_list based on ranku

values;
2: while (rank_list is not null) do
3: ni← ns(y)← rank_list.out();
4: Calculate costmin(G) by using Eq. (9);
5: Calculate available budget AB(G) by using Eq. (19);
6: Calculate costbudget(ni) by using Eq. (20);
7: E(ni) = +∞;
8: for (each VM uk ∈ U ) do
9: for (each frequency fk,h in [fk,low and fk,max] ) do
10: Calculate cost

(
ni, uk , fk,h

)
for the task ni;

11: if (cost(ni, uk , fk,h) 6 costbudget(ni)) then
12: Calculate E(ni, uk , fk,h) by using Eq. (3);
13: if (E(ni, uk , fk,h) < E(ni)) then
14: E(ni)← E(ni, uk , fk,h);
15: cost(ni)← cost(ni, uk , fk,h);
16: end if
17: break;
18: end if
19: end for
20: end for
21: end while
22: Calculate cost(G) by using Eq. (6);
23: Calculate E(G) by using Eq. (4);

The main idea of MECABP is that the cost budget of the
DAG application is transferred to each task by preassigning
available budget preassignment values to unassigned tasks.

TABLE 2. Unit prices of VMs [8].

TABLE 3. Power parameters of VMs (u1, u2, and u3).

(1) MECABP prioritizes the tasks based on ranku values in
Line 1.

(2) MECABP iteratively assigns each task to the VM with
the minimum energy consumption of the DAG application in
Lines 2-21.

(3) MECABP gets the cost budget of ni by using Eq. (20)
in Lines 4-6.

(4)MECABP selects the effective combination assignment
of VM and frequency for ni while satisfying its cost budget
in Lines 8-20.

(5) In Lines 22 and 23, MECABP calculates the related
values of the DAG application.

The time complexity of the MECABP algorithm is
O(|N |2 × |U | × |F |). The details are analyzed as follows:

(1) The energy consumption of the application is the sum of
those of all the tasks, which can be performed within O(|N |)
time (the While loop in Lines 2-21).

(2) Selecting the combination assignment of VM and fre-
quency needs O(|N | × |U | × |F |) time (the For loop in
Lines 8-20). |F |means the maximum frequencies number on
the VM.

E. EXAMPLE OF THE ALGORITHMS
This subsection illustrates the results of themotivational DAG
application using HBCS, MSLBL. We assume that the unit
prices of VMs are shown in Table 2 [8]. We assume that
the power parameters for all VMs are known and shown
in Table 3. The maximum frequency fk,max for each VM is 1
and the frequency precision is 0.01. All the parameter units
are ignored in the example for simplicity. The lowest energy-
efficient frequency fk,low for each VM can be obtained
according to Eq. (2). The minimum and maximum cost val-
ues are costmin(G) = 344 and costmax(G) = 2681 by
using Eqs. (9) and (10), respectively, for the motivational
DAG application. We set the cost budget of the motivational
DAG application as costbudget(G) = 400.
The original HBCS and MSLBL algorithms aim to min-

imize the schedule length and do not involve energy con-
sumption. The results using HBCS and MSLBL have been
shown in [8]. HBCS and MSLBL can also be applied to this
study as long as the objective of reducing schedule length
is changed to reducing energy consumption according to
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TABLE 4. Available budget preassignment values of the tasks of the
motivational application.

the guide of Section IV.C. The new algorithms are named
as energy-efficient HBCS (EHBCS) and minimizing energy
consumption using budget level (MECBL) in this study.
The algorithm descriptions of the EHBCS and MECBL are
show in Algorithms 2 and 3, respectively. The main differ-
ence among three algorithms is in calculating costbudget(ni),
which is calculated by Eqs. (20), (15), and (23) for MECAB,
EHBCS, and MECBL, respectively.

Algorithm 2 The EHBCS Algorithm
Input: G = (N ,W ,M ,C), U , costbudget(G)
Output: E(G), cost(G) and its related values
1: Prioritize the tasks in a list rank_list based on ranku

values;
2: while (rank_list is not null) do
3: ni← ns(y)← rank_list.out();
4: Calculate costbudget(ni) by using Eq. (15);
5: E(ni) = +∞;
6: for (each VM uk ∈ U ) do
7: for (each frequency fk,h in [fk,low and fk,max] ) do
8: Calculate cost

(
ni, uk , fk,h

)
for the task ni;

9: if (cost(ni, uk , fk,h) 6 costbudget(ni)) then
10: Calculate E(ni, uk , fk,h) by using Eq. (3);
11: if (E(ni, uk , fk,h) < E(ni)) then
12: E(ni)← E(ni, uk , fk,h);
13: cost(ni)← cost(ni, uk , fk,h);
14: end if
15: break;
16: end if
17: end for
18: end for
19: end while
20: Calculate cost(G) by using Eq. (6);
21: Calculate E(G) by using Eq. (4);

1) RESULTS OF THE MECABP ALGORITHM
Table 5 shows the combination assignment of VM and fre-
quency of each task by usingMECABP. The available budget
AB(G) of the DAG application is 400− 344 = 56 calculated
by Eq. (19).

1) We calculate that the available budget preassignment
costavail(ns(z)) for each task is shown in Table 4 by using
Eq. (22).

2) Each row in Table 5 represents the combination
assignment of VM and frequency, cost value, and energy
consumption of each task. For the first task n1, its cost budget

Algorithm 3 The MECBL Algorithm
Input: G = (N ,W ,M ,C), U , costbudget(G)
Output: E(G), cost(G) and its related values
1: Prioritize the tasks in a list rank_list based on ranku

values;
2: while (rank_list is not null) do
3: ni← ns(y)← rank_list.out();
4: Calculate costbudget(ni) by using Eq. (23);
5: E(ni) = +∞;
6: for (each VM uk ∈ U ) do
7: for (each frequency fk,h in [fk,low and fk,max] ) do
8: Calculate cost

(
ni, uk , fk,h

)
for the task ni;

9: if (cost(ni, uk , fk,h) 6 costbudget(ni)) then
10: Calculate E(ni, uk , fk,h) by using Eq. (3);
11: if (E(ni, uk , fk,h) < E(ni)) then
12: E(ni)← E(ni, uk , fk,h);
13: cost(ni)← cost(ni, uk , fk,h);
14: end if
15: break;
16: end if
17: end for
18: end for
19: end while
20: Calculate cost(G) by using Eq. (6);
21: Calculate E(G) by using Eq. (4);

is 41.8605 calculated by Eq. (20) as follows:

costbudget(n1)

= costbudget(G)−
10∑
z=2

costavail(ns(z))

= 400− 45.3488 - 38.3721− 45.3488 - 41.8605

− 41.8605 - 24.4186 - 17.4419 - 62.7907 - 40.6977

= 41.8605.

We find that costbudget(n1) is equal to costavail(n1), which
indicates that these two values are equal for the first assigned
task.

3) Then, n1’s combination assignment of VM and fre-
quency is u3 and 0.87, because this combination can
generates the minimum energy consumption of 8.0275
calculated by Eq. (3) while satisfying its cost budget
of 41.8605. In this case, the actual cost value
is 41.3793.

4) The remaining tasks use the same pattern as n1, as shown
in Table 5. For example, the cost budget for n3 is 38.8532 cal-
culated by Eq. (20); n3’s combination assignment of VM and
frequency is u1 and 0.85.
5) The actual cost and final energy consumption of the

DAG application G are 399.9325 and 63.8819 calculated by
Eqs. (6) and (4), respectively.

To get intuitive comparison, we also list the results of the
motivational DAGapplication using the EHBCS andMECBL
algorithms.
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TABLE 5. Combination assignments of VM and frequency for tasks of the
motivational DAG application by using MECABP.

TABLE 6. Combination assignments of VM and frequency for tasks of the
motivational DAG application by using EHBCS.

2) RESULTS OF THE EHBCS ALGORITHM
Table 6 shows the combination assignment of VM and fre-
quency of each task by using EHBCS. The actual cost and
final energy consumption of the DAG application G using
EHBCS are 399.9778 and 83.5297, respectively. We can see
from Table 6 that only the high-priority tasks n1 and n3
achieve the frequency reduction adjustment while other tasks
are all executed at the highest frequency of 1.0. EHBCS
shows visible pessimism and its effect on energy reduction
is limited in this example.

3) RESULTS OF THE MECBL ALGORITHM
Table 7 shows the combination assignment of VM and fre-
quency of each task by using MECBL. The actual cost and
final energy consumption of the DAG application G using
MECBL are 399.7195 and 67.0192, respectively. We can see
from Table 7 that the frequency scope is between 0.77 and
0.91 for all the tasks. Therefore, MECBL can reduce more
energy consumption than EHBCS in general. However, com-
pared with that the frequency scope is between 0.85 and
0.89 in Table 5 using MECABP, MECBL has certain disad-
vantage in energy reduction. MECABP achieves a more fair
frequency assignment, thus effectively reducing the energy
consumption.

F. SUMMARY OF ALGORITHMS
Table 8 shows the results of themotivational DAG application
using EHBCS, MECBL, and MECABP algorithms.

TABLE 7. Combination assignments of VM and frequency for tasks of the
motivational DAG application by using MECBL.

TABLE 8. Results of the motivational DAG application using EHBCS,
MECBL, and MECABP.

In Table 8, the following results can be observed:
(1) All the algorithms can satisfy the cost budget of the

application, and the actual cost value is very close to the cost
budget.

(2) EHBCS generates the highest energy consumption
because its cost budget preassignment is pessimistic resulting
in frequency reduction adjustment does not work for low-
priority tasks.

(3) MECBL generates less energy consumption than
EHBCS because it improves the cost budget preassignment
compared with EHBCS. However, MECBL can be further
improved.

(4) MECABP generates the lowest energy consumption
among them because it not only accepts the advantages of
EHBCS andMECBL, but also comprehensively improves the
pessimism of both.

(5) All the algorithms have the time complexity of
O(|N |2 × |U | × |F |).

V. EXPERIMENTAL RESULTS AND DISCUSSION
The metrics are the actual cost value cost(G) (calculated by
Eq. (6)) and final energy consumption E(G) (calculated by
Eq. (4)) of the DAG application. The algorithms compared
with the proposed MECABP algorithm are aforementioned
EHBCS [7] and MECBL [8].

The simulated heterogeneous cloud computing platform
contains 64 VMs with different computing abilities and unit
prices. As this study uses the VM specification of short-term
lease (i.e., pay-as-you-go), the prices for VMs range from
$0.095 to $0.38 per hour are based on the Amazon EC2 [28].
The execution time values of tasks and communication time
values of messages could be within the scope of 1 h≤ wi,k ≤
128 h, 1 h ≤ ci,j ≤ 128 h [8]. The VM parameters taken
from [25] are as follows: 10 ms6 wi,k 6 100 ms, 10 ms6
ci,j 6 100 ms, 0.03 6 Pk,ind 6 0.07, 0.8 6 Ck,ef 6 1.2, and
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FIGURE 2. Three DAG applications. (a) Gaussian elimination. (b) Linear algebra. (c) Fast Fourier
transform.

TABLE 9. Average schedule lengths (unit: h) of DAG applications
using HEFT.

2.5 6 mk 6 3.0. The aforementioned values are generated
with uniform distribution. All frequencies are discrete, and
the resolution is 0.01 GHz.

Many DAG applications are executed in cloud computing
systems. We selected three representative DAG applications,
namely, Gaussian elimination, linear algebra, and fast Fourier
transform [11], [25], because they represent low-parallelism,
middle-parallelism, and high-parallelism DAG applications,
respectively. The parallelism degree can be identified by cal-
culating the schedule lengths for approximate equal scales of
DAG applications using the well-studied and commonly used
heterogeneous earliest finish time (HEFT) algorithm [26],
as shown in Table 9. A short schedule length corresponds to
a high parallelism. The structures of the three DAG applica-
tions are shown in Figs. 2(a), 2(b), and 2(c), respectively.

Note that the values of experimental results are obtained by
executing one run for one function. Many tests with the same
parameter values and scales are preformed and show the same
regular pattern and relatively stable results. In other words,
experiments are repeatable and do not affect the consistency
of the results.

A. GAUSSIAN ELIMINATION
The results of the Gaussian elimination application with
1,175 tasks are shown in Table 10. The cost budgets are
changed from $2,000 to $10,000 with $2,000 increments.
The following observations are summarized and analyzed as
follows:

(1) The actual costs are less than the given cost budgets in
all the cases using all the three algorithms. All the actual costs

TABLE 10. Actual cost (unit: $) and final energy consumption values
(unit: GWh) of the Gaussian elimination with ρ = 48 (|N| = 1,175)
for varying cost budgets (Experiment 1).

obtained by all the algorithms are very close to the given cost
budgets. These results confirm that all the three algorithms
can satisfy the given cost budgets.

(2) With the increase of cost budgets, the energy consump-
tions are reduced gradually using all the algorithms. These
results confirm that dynamically scaling down the voltage
to reduce consumption will increase execution time, thereby
increasing execution costs.

(3) MECABP obtains the minimum energy consump-
tions, flowed by MECBL and EHBCS in all the cases.
When the cost budget is $4,000. MECABP and MECBL
can reduce 66.4% and 54.1% energy consumptions compared
with EHBCS. MECABP can reduce 35.1% (costbudget(G) =
2, 000) to 66.4% (costbudget(G) = 4, 000) energy con-
sumptions compared with EHBCS and can reduce 2.2%
(costbudget(G) = 10, 000) to 26.8% (costbudget(G) = 4, 000)
energy consumptions compared with EHBCS. These results
confirm that the budget preassignment method of MECABP
is more efficient than MECBL and EHBCS.

B. LINEAR ALGEBRA
Linear Algebra is a middle-parallelism DAG application. The
results of the linear Algebra application with 1,176 tasks are
shown in Table 11. The cost budgets are also changed from
$2,000 to $10,000 with $2,000 increments. A comparison
between Tables 10 and 11 indicate that middle-parallelism
linear Algebra shows an approximately equal regular pat-
tern as low-parallelism Gaussian elimination in obtained
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TABLE 11. Actual cost (unit: $) and final energy consumption values
(unit: GWh) of the fast Fourier transform with ρ = 128 (|N| = 1,176)
for varying cost budget (Experiment 2).

TABLE 12. Actual cost (unit: $) and final energy consumption values
(unit: GWh) of the fast Fourier transform with ρ = 128 (|N| = 1,151)
for varying cost budgets (Experiment 3).

actual cost values and final energy consumptions. MECABP
still generates the minimum energy consumption, followed
by MECBL and EHBCS. MECABP can reduce 20.1%
(costbudget(G) = 2, 000) to 65.7% (costbudget(G) = 6, 000)
energy consumptions compared with EHBCS and can reduce
8.4% (costbudget(G) = 1, 000) to 30.5% (costbudget(G) =
2, 000) energy consumptions compared with MECBL. These
results further indicate that MECABP is more energy-
efficient than MECBL and EHBCS.

C. FAST FOURIER TRANSFORM
High-parallelism fast Fourier transform is used in an exper-
iment. The results of the fast Fourier transform application
with 1,151 tasks are shown in Table 12. The cost budgets are
also changed from $2,000 to $10,000with $2,000 increments.
On the basis of the experimental results (Tables 10-12) of
three types of DAG applications with different parallelism
degrees, the following findings were obtained:

(1) Regardless of the parallelism degrees of DAG applica-
tions, the actual cost values basically have the same rule pat-
tern in approximately equal task scales. MECABP, MECBL,
and EHBCS can satisfy the cost budgets, and the actual cost
values obtained by them are close to the cost budgets.

(2) Regardless of the parallelism degrees of DAG applica-
tions, the final energy consumption values basically have the
same rule pattern in approximately equal task scales, namely,
MECABP is the most energy-efficient, followed by MECBL
and EHBCS.

VI. CONCLUSIONS
This study proposed an algorithm called MECABP to reduce
the energy consumption of a cost budgeted DAG applica-
tion in heterogeneous cloud computing systems. MECABP
attempts to minimize energy consumption while satisfying
the cost budget of the DAG application by proposing the
available budget preassignment method. MECABP decom-
poses the problem into two sub-problems to implement the

heuristic algorithm with low time complexity. MECABP
demonstrates its effectiveness compared with existing algo-
rithms through experiments based on three types of DAG
applications with different parallelism degrees.
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