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ABSTRACT In molecular biology, protein synthesis is an essential biological process of generating
specific proteins in living systems. Many mathematical models are designed to characterize the process
of the flow of genetic information from deoxyribonucleic acid (DNA) to protein; however, most of them
cannot provide detailed and observed steps to describe and analyze this fundamental biological process.
Colored Petri Net (CPN), as a mathematical method widely applied in the process analysis of discrete event
dynamic systems, has increasingly become an innovative and efficient theoretical approach for exploring
the biological processes. Aiming at describing the entire process of protein synthesis, a CPN-based model
has been designed that successfully and intuitively represents the flow of genetic information involving
transcription and translation. DNA mutations are permanent alterations in the nucleotide sequence of the
DNA strand, while different types of mutations have various effects on the synthesized proteins. Based on the
proposed protein synthesis model, we put forward a new CPN model to identify the type of mutation, which
is beneficial for analyzing whether the mutation has impacts on the structure or function of the produced
protein. The mutation position and bases mutated rate are obtained by contrasting the nucleobases on DNA
sequences, while the mutation type is determined via the alignment of the amino acids in the polypeptide
chain. The model’s effectiveness and accuracy are illustrated by biological mutation examples, indicating
this method offers great superiority in modeling and analyzing the complex biological processes.

INDEX TERMS Protein synthesis, modeling, deoxyribonucleic acid (DNA) mutation, type determination,
colored Petri Net.

I. INTRODUCTION
Molecular Biology is a branch of science that aims to reveal
the essential biological processes in the cell by studying
the structure and function of fundamental cellular molecules
such as nucleic acids and proteins. As a frontier research in
life science, a certain number of researchers have focused
their attention on a variety of academic technologies in this
area [1], such as biochemistry, bioinformatics, computational
biology, genetic engineering, nanotechnology, etc. Protein
synthesis is one of the most fundamental biological pro-
cesses, revealing the process that individual cells produce
specific proteins. The Central Dogma of Molecular Biol-
ogy provides an explanation for understanding the flow of

genetic information. The description and modeling for the
process of protein synthesis can be implemented on various
levels, and a more systematic approach would be beneficial
for researchers to understand the complicated biological sys-
tems on a microscopic level [2].

The textual representation model provides a clear and
complete description of the whole process of genetic infor-
mation flow. However, the lack of systematic model has
been still regarded as the bottleneck among the research
fields such as molecular biology, information science, and
their discipline-crossing research. Hence, recently many
traditional mathematical methods and tools have been
applied for modeling and analyzing the cellular biological
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systems [3], such as gene expression, metabolic pro-
cesses, genetic regulatory networks, etc. These techniques
include numerical calculation, matrix theory, finite state
machine (FSM) theory, Hidden Markov Model, ordi-
nary differential equation, Petri net, and so on. In 2006,
Zhang et al. [4] proposed a numerical calculation formula-
tion of deoxyribonucleic acid (DNA) computation. In 2009,
Gao et al. [5] put forward a mathematical framework for
interpreting the Central Dogma of Molecular Biology based
onmatrix theory. A FSMmodel has been designed to regulate
gene mutation in 2013 [6]. Although these models provide
several mathematical representations of genetic information
flow from an overall aspect, it is indispensable to describe
the protein synthesis from a more microscopic view, i.e., the
model can depict the detailed states and changes of the pro-
cess in the level of nucleobases and amino acids.

The HiddenMarkovModel (HMM) is one of the most suc-
cessful modeling tools applied in the field of computational
biology to solve a surprisingly wide range of multiple bio-
logical sequence alignments problems, including gene pre-
diction [7], multiple sequence alignment of protein families
[8], prediction of protein secondary structures [9], biological
sequence database searching [10], etc. As a powerful tool for
modeling and statistical analysis, HMM owns many advan-
tages in computational biology. However, the method still
does suffer from a major disadvantage of being unable to
describe the biological process, like protein synthesis, mainly
because it ignores the relationships among the nucleobases,
amino acids or proteins that are involved in the whole process
of genetic information transmission.

Ordinary differential equation (ODE) models also play
an important role in studying the biological systems by
providing accurate mathematical expressions and equations
derived from the integration of experimental data and anal-
ysis of biological networks [11]. Since the process of pro-
tein synthesis consists of a series of standard biochemical
reactions, it is possible to accurately build an ODE-based
model to describe the process by analyzing experimental
data [12]. Although ODE approach owns a reasonable ability
to describe dynamical aspects of the biological process, it has
disadvantages in representing the whole process of protein
synthesis. For example, ODE is deterministic and continu-
ous, which makes it unsuitable to describe the systems that
subject to stochastic events [13], such as biological processes
involving interaction with the DNA, mRNA or protein.

Petri net (PN) is well-known as an effective tool to model
and analyze the discrete event systems [14], [15]. Since the
biological processes own typical feature of discrete event
systems, PN is regarded as the powerful innovative method
for describing and analyzing molecular proce4sses, such as
protein production process [16], metabolic pathways [17],
and gene regulation [18]. CPN is a significant extension
of classical PN and it marks the tokens with different
colors represented various properties of objects [19]–[22].
Recently, many researchers focus on designing CPN
based models of biological processes, including enzymatic

reaction [23], metabolic pathways [24], and gene regulatory
networks [25]. Heiner and Gilbert [26] proposed a CPN
model for the phase variation in bacterial colony growth.
Liu et al. [27] constructed a CPN approach for modeling and
simulating reaction–diffusion systems in systems biology.
Carvalho et al. [28] designed a multilevel CPN model to
reproduce the dynamics of the steps in the infection process
and innate immune response. Pennisi et al. [29] built a
novel CPN-based methodological approach and applied the
approach in the immune system response at the cellular
level. Gratie and Gratie [30] presented an algorithm for
building a composition CPN models and implemented the
data refinement of reaction-based models. Liu et al. [31]
summarized the application of CPN for multilevel, multi-
scale and multidimensional modeling of biological systems.
Therefore, CPN has increasingly become a useful tool that
establishes theoretical foundation for studying the classic
biological processes.

DNAmutation is a permanent alteration in the DNA strand
which may cause the changes in the sequence of amino
acids on the polypeptide chain.Mutations have diverse effects
on protein product depending on where they happen and
whether they change the biological function of essential
proteins. Therefore, mutations have been divided into dif-
ferent types according to the effects of the mutations on
chromosome structure, on protein function, or on protein
sequence [2]. It is necessary to design an intuitive model
for identifying the mutation type by contrasting the DNA
sequences. The model will be not only helpful in studying
how the mutations influence the genetic information, but also
conducive to analyze whether they affect the structure and
function of the produced proteins. A CPN model is proposed
to determine whether mutations occur by comparing the DNA
strand andmutated one [32]. Based on this work, CPNmodels
for describing genetic information transfer [33] and identi-
fying the polarities of amino acids [34] have been designed
later. However, the proposed CPN model in [32] used a
large number of places and transitions, which does not make
good use of the concurrent characteristics of CPN. In 2017,
the authors revised the model for determining the mutation
type and simplified the process to achieve the synchroniza-
tion of alignment in both the bases on the DNA strands
and the amino acids located on the synthesized polypeptide
chains [35]. The work, to some degree, improved the capa-
bilities of the model, reduced the model size and shorten the
processing time.

This paper is an effective extension and improvement of
the work shown in [35]. First of all, starting with the process
of protein synthesis, we established a CPN model to describe
and analyze the whole process of gene information transfers
from DNA to RNA and to protein in several stages. This
provided the theoretical and analytical basis for the analysis
of gene mutation and determination of mutation types. Then,
we improved themutation type determinationmodel to obtain
the mutation position and nucleobase mutation rate. Muta-
tion type is determined by using comparative analysis of the
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amino acids sequences. Specifically, we revised some places
and transitions and enriched the color sets and the priorities
of transitions in the model. We tried to use the actual four
types of mutation examples in nature to verify the validity
and rationality of the model. In these CPN models, the places
and token colors are defined as the states of different stages
in the process of protein synthesis. The firing rules and guard
functions of transitions are defined according to the state
changes or analysis operations during the process of gene
information flow. The operation of the models can be divided
into different stages, representing a number of steps of the
process of protein synthesis.

There are two goals for us to choose CPN as the pre-
ferred method to model and analyze the basic biological
processes involved in protein synthesis and DNA mutation.
Firstly, the model must be able to simulate the various stages
of protein synthesis, such as transcription, identifying start
codon and stop codon, and translation. Secondly, through
analyzing the operation procedure of the model, it can intu-
itively display the states and reflect the interactions among
DNA, mRNA, bases, amino acids and proteins during protein
synthesis, which helps to deepen our understanding of the
genetic information transmission. In other words, compared
to the final simulation results of the model, we pay more
attention to the detailed operation process during the whole
simulation. Therefore, we use the new syntax form of step-
by-step graph description to demonstrate the operation pro-
cedure of the proposed model. Although our own reasoning-
based analysis process is somewhat different from other CPN
simulation software, it provides an effective and intuitive way
to illustrate the detailed states of all elements involved in the
whole process of protein synthesis.

This paper is organized as follows. Section II introduces
the definition and properties of CPN. In Section III, a protein
synthesis CPN model is designed for intuitively describing
the flow of genetic information from DNA to protein. Exam-
ples illustrate and analyze the model’s accuracy and effec-
tiveness. In Section IV, we built a mutation type identifying
model that contrasts the bases on DNA strands and amino
acids on the polypeptide chains respectively. Some biological
examples are demonstrated to validate the model can identify
the type accurately in a finite number of steps. Finally, the
conclusion is summarized in Section V.

II. PRELIMINARIES
The definition and function of CPN are stated in this section.
Besides, an example of chemical reaction model is given to
illustrate the operation process of a CPN model.
Definition 1 (CPN [20], [21]): A CPN is a 9-tuple,

CPN = (6, P, T , A, N , C , G, E , I ), where:
1) 6 = (61, 62, . . . ) is a finite set of color sets

defined by non-empty types. This set represents all
possible color types, operations and functions in the
model;

2) P = (P1,P2, . . . ,Pm) is a finite set of places;
3) T = (T1,T2, . . . ,Tn) is a finite set of transitions;

4) A = (A1,A2, . . . ,As) denotes a set of directed arcs
such that P ∩ T = P ∩ A = T ∩ A = Ø;

5) N denotes a node function, which maps from A into
(P× T ) ∪ (T × P);

6) C = (C1,C2, . . . ,Cm) is a set of color functions, and it
maps from places in P to colors in 6;

7) G = (G1,G2, . . . ,Gn) is a set of guard functions,
which maps each transition into a Boolean expression:
true or false, to decide the transition will be fired or not;

8) E denotes an arc expression function, representing the
weight function of directed arcs in set A;

9) I = (I1, I2, . . . , Im) is an initialization function, where
Ii represents the number of tokens stored in Pi.

Definition 2 (Transition Enabled and Fired [20], [21]):
A Transition T is enabled if each input place Pi of T is
marked with at leastW (Pi,T ) tokens, whereW (Pi,T ) repre-
sents the weight of the directed arc from Pi to T . The transi-
tion T is said to be fired if and only if the transition is enabled
and its guard function evaluates to true.
Definition 3 (Firing Rule): When an enabled transition T

is fired, it removesW (Pi,T ) tokens from each input place Pi
of T , and addsW (T ,Pj) tokens to each output place Pj of T ,
whereW (T ,Pj) is the weight of the directed arc from T to Pj.
That is to say if the transition is fired, the number of tokens
either removed or added in the model is equal to the weight
of the corresponding directed arcs.

FIGURE 1. CPN model of a chemical reaction (redrawn from [36]).

To illustrate the operation process of CPN model, we refer
to a simple model that describes a chemical reaction of
relight-induced phosphorylation [36], as shown in Fig. 1.
This model has two input places (P1 and P2), three output
places (P3, P4, and P5), and one transition T1. Here, T1 stands
for the chemical reaction process; input places and output
places can store tokens that represent the different reactants
and resultants of this chemical reaction, respectively; and the
number marked on the edges means the weight of the directed
arcs. Notice that P1 and P2 each have two tokens represented
by the color dot inside each place initially, as shown in (a),
which means T1 is enabled and can be fired. As the firing
of T1, the tokens stored in the input places are consumed,
while the output places are filled by the tokens that denote
the resultants of reaction, shown in (b). In Fig. 1(c), different
colors of the tokens stand for the reactants and resultants
involved in the chemical reaction.
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III. CPN MODEL OF PROTEIN SYNTHESIS PROCESS
Proteins are the end product of many metabolic processes,
and are regarded as the most fundamental part of life on earth.
The process of protein synthesis transcribes the DNA strand
to mRNA, and in turn translates the codons on mRNA into a
polypeptide chain of the proteins.

A. PROCESS OF PROTEIN SYNTHESIS
Protein synthesis process is generally described as four steps,
including transcription, initiation, translation elongation, and
termination [37]. Transcription is the first step in which the
information in DNA is transferred to mRNA molecule in
the nucleus. Then the mRNA moves out of the nucleus and
travels to the cytoplasm. Initiation denotes the recognition of
Start Codon (AUG) on mRNA by the ribosome, signaling the
start of translation. Translation elongation is the third step in
which the mRNA strand is read according to the genetic code,
transferring the DNA sequence to a chain of amino acids.
With the ribosome moving from the 5’-end to the 3’-end of
the mRNA, the polypeptide chain elongates by sequentially
adding the amino acids encoded by the codons, resulting in a
growing protein. Elongation continues until one of three Stop
Codons (UAA, UAG, and UGA) appears on mRNA, which
signals the termination of translation. Then, the polypeptide
chain releases from the mRNA and the ribosome.

B. CPN MODEL OF PROCESS OF PROTEIN SYNTHESIS
Based on the description of genetic information flow,
we build a CPNmodel of protein synthesis, as shown in Fig. 2.
In accordance with the steps of protein synthesis, we divide
the operation procedure into five stages in the model.

FIGURE 2. CPN model of the protein synthesis process.

1) Initialization. The DNA strand is read in the CPNmodel
and stored in P1, which stands for the genetic information
contained in the given DNA strand that is ready to transfer to
a corresponding mRNA molecule, indicating the beginning
of the process of protein synthesis.

2) Transcription. Based on the type of given DNA chain,
either coding or template strand, it can be transcribed into
mRNA chain in accordance with the base conversion rules.
The conversion rule is defined as: i) If a coding DNA strand
is read, the conversion rules are A → A, C → C , G → G,
and T → U ; ii) If it is a template DNA strand, the rules are
defined by A→ U , C → G, G→ C , and T → A.
3) Identifying start codon. The stage of translation will

begin when the start codon is identified on the mRNA chain.
Therefore, we define that the model can determine the start
codon in this stage, which represents the start of translation.

4) Identifying stop codons. The protein elongation carries
on until any one of three stop codons is recognized on the
mRNA chain. This stage is to determine any stop codons in
the mRNA strand, indicating the termination of translation.

5) Translation. The last stage depicts the translation pro-
cess that shows the stepwise addition of amino acids to the
growing polypeptide chain, with the next amino acid attach-
ing to the adjacent produced amino acids.

The basic definition of each element and its symbol expres-
sion of the proposed protein synthesis CPN model are stated
as follows.

1) COLOR SETS
In the process of protein synthesis, there exist many statuses
and features of the various stages. Accordingly, to attribute
the different status and characteristics, we define six types
of color sets in the model. The name of color sets and their
definitions are shown in Table 1.

2) PLACES
The places are defined on the basis of the diverse states and
various stages involved in the genetic information transfer.
Table 2 gives the detailed definition of the defined nine places
in the model.

3) TRANSITIONS
According to the state changes or analysis occurred in protein
synthesis, nine transitions are designed in the CPN model.
Each transition’s definition, input and output places, as well
as its firing rule and guard function, are listed in Table 3.

4) WEIGHT OF DIRECTED ARCS
Once a transition is fired, the weight of directed arcs deter-
mines howmany tokens have been taken from the input places
and distributed into the output places. The weight of directed
arc from P3 to T9 is defined as 2, i.e., W (P3, T9) = 2.
While for the other directed arcs, we define their weights
equal to 1 in this model, that is W (P1, T1) = W (T1, P1) =
· · · = W (T8, P9) = 1, which means only one token can be
transferred via each directed arc among them at each time.

5) INITIAL MARKING
In the initial state of the model, only one token is stored in
place P1, which indicates the original DNA strand. Besides,
the other places do not have any tokens at the beginning.
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TABLE 1. Color sets definition and symbol expression in CPN model of protein synthesis.

TABLE 2. Places definition and symbol expression in CPN model of protein synthesis process.

TABLE 3. Transitions definition and symbol expression in CPN model of protein synthesis.

So the initial marking of all places in the model is
M0 = {1, 0, 0, 0, 0, 0, 0, 0, 0}.

6) PRIORITY OF TRANSITIONS
During the operation of CPN model, a situation may occur
where the tokens stored in one place may make two or more

transitions to be enabled and fired simultaneously. Therefore,
to avoid the transitions conflict in this case, we need to define
the firing conditions for these transitions to ensure which one
can be fired, that is, we define the priority of the transition.

1) In the stages of initialization and transcription, if the
transition T1 and T2 are enabled simultaneously, we
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TABLE 4. State changes of the protein synthesis CPN model in example 3.1.

define the priority rule of them as T2 >T1, which is
to ensure the place P2 can store only one token.

2) For transition T3 and T9, we define their priority rule
as T9 >T3, which guarantees that the bases are listed
sequentially in the process of transcription before form-
ing the whole mRNA strand.

3) In the stage of identifying start codon, the priority rule
of transitions T4 and T5 is defined as T4 >T5.

4) In the stage of identifying stop codons, the priority of
T6 and T7 is T6 >T7.

C. EXAMPLE AND RESULT ANALYSIS
E. coli ribonuclease H gene is an extensively studied gene
which is used to explore the relationships between structure
and enzymatic activity, especially as model systems to study
protein folding. To illustrate the effectiveness and accuracy of
the proposed model, we select a segment of DNA sequence
of the E. coli ribonuclease H gene [38] which has 760 base
pairs as a representative biological example. To simplify the
operation, here we select the first four codons beginning with
the start codon ATG and then we fill the stop codon TAA to the
DNA sequence. Meanwhile, we add one base before the start
codon and after the stop codon, respectively, to demonstrate
themodel’s ability to identify the start codon and stop codons.

Fig. 3 shows a segment of DNA coding strand of the E. coli
ribonuclease H gene. The relative mRNA and amino acids
sequence along the polypeptide chain are obtained.

1) EXAMPLE 3.1
Assume a fragment of DNA coding strand of E. coli ribonu-
clease H gene with 17 bases (as shown in Fig. 3). Use the

FIGURE 3. DNA coding strand, relative mRNA and polypeptide chain in
Example 3.1.

proposedmodel to illustrate the entire process that the genetic
information within DNA is transcribed to mRNA and then
translated to an amino acid chain.

The state changes of the protein synthesis CPN model in
Example 3.1 are shown in Table 4. At each step, we can know
the detailed information about the tokens distributed to all
places in the model, as well as the transitions that could be
enabled or fired during a certain stage.

2) RESULT ANALYSIS
As shown in Table 4, the stage of initialization and transcrip-
tion are proceeding simultaneously, from step 1 to step 20.
The stage of determining the start codon is processed in steps
21-22. Identifying the stop codon and translation are carried
out at the same time from step 23 to 28. The mRNA chain
is translated into a chain of amino acids via the gene reading
frame until the stop codon UAA is identified.
Through the transfer of tokens in the model, the process of

protein synthesis has been described intuitively. In the final
state of the CPN model, there is one colorless token stored
in P1. The colored token {G} stored in P6 represents the
base before the start codon on the mRNA chain. P8 also has
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one token with color {UAAG}, and it is a segment of mRNA
which contains the stop codon along with the bases behind it.
If this mRNA segment still has the start and stop codon, we
can let it reread in P1 then the model will continue working
and produce a new polypeptide chain. Four colored tokens are
listed sequentially in P9, including {AUG}, {CUU}, {AAA},
and {CAG}. They represent a group of amino acids along
the polypeptide chain that transformed from the given DNA
coding strand.

The operation and results of the model demonstrate that the
proposed model can completely simulate the whole process
of protein synthesis, while the operation procedure is also
consistent with the actual biological process of genetic infor-
mation transfer. The model provides a more intuitive charac-
terization and description of this complex process, showing
the feasibility and superiority of the Petri Nets applied in
modeling and analysis the processes in biological systems.

IV. CPN MODEL OF MUTATION TYPE DETERMINATION
DNA mutation is defined as an alteration that may affect
a single nucleotide pair or larger segments in the sequence
of DNA. Changing nucleotide sequences most often results
in the alterations in amino acids types or sequences along the
polypeptide chain that may produce nonfunctioning proteins,
which leads to the genetic variation of biological functions
and the potential to develop the disease.

A. TYPES OF DNA MUTATION
DNA mutations can affect the gene expression in numerous
ways resulting in varying influences on health, like neutral,
beneficial or harmful effects. In view of the impact on protein
sequence, DNA point mutations can be generally catego-
rized into four types: missense mutation, nonsense mutation,
frameshift mutation and synonymous mutation [39].

1) Missense mutation. A missense mutation is a genetic
alteration in which a change or substitution occurs in a DNA
base pair that alters the genetic code, resulting in one amino
acid being substituted by another one at that position in the
product protein.

2) Nonsense mutation. This type of mutation alters the
nucleotide sequence in one DNA base pair so that a normal
amino acid is substituted by a stop codon, which signals
the termination of the process of translation and stops pro-
tein production. A nonsense mutation may produce a trun-
cated or incomplete protein product, which quite often lacks
the functionality of the normal protein.

3) Frameshift mutation. A frameshift mutation is regarded
as an alteration that results from the addition or deletion of
a single or several nucleotides on the DNA strand, causing
a shift in the codon reading frame. Frameshift mutation usu-
ally yields a completely different amino acid chain from the
original one and results in a nonfunctional protein.

4) Synonymous mutation. Although a base substitution
occurs in the DNA strand, this mutation does not change the
encoded amino acid in a produced protein. The reason is that
an amino acid can be encoded by multiple genetic codons.

Due to the redundancy in the genetic code, synonymous
substitutions usually occur in the third position of a codon.

There are 20 different types of amino acids that can be
combined to make a protein, each having its own physical and
chemical properties. The genetic code is a set of instructions
that link groups of nucleotides in a mRNA to amino acids in a
protein. According to the genetic codes, 64 triplets are coded
for the 20 amino acids and three stop codons, implying that
some amino acids are encoded by multiple codons, called the
redundancy of the genetic code. Synonymous codons of the
20 different types of amino acids are shown in Fig. 4.

FIGURE 4. Synonymous codons of 20 amino acids.

B. CPN MODEL OF MUTATION TYPE DETERMINATION
In section III, we built a CPN model of the protein synthesis
process that describes the flow of genetic information. Based
on the proposed model, we further put forward a CPN model
to analyze the normal and mutated DNA strands, and then
determine the type of mutations, as shown in Fig. 5.

This model firstly carries out a base sequence alignment
between the original and mutated DNA strands for determin-
ing the position of the mutations as well as the base mutation
rate. After that, the model contrasts the codons of amino
acids along the two synthesized polypeptide chains such that
the mutation type can be identified by using the mutation
type determining rules. Seven stages are defined to show the
operation procedure of this model, including initialization,
transcription, base contrasting, identify start codon, identify
stop codons, translation, and codons alignment and mutation
type analysis. Except for stage 3 and stage 7, the other five
stages are the same as the definition stated in the model of
protein synthesis. Now we focus on the two added stages.

Stage 3: Bases contrasting. The bases from the normal and
mutatedDNA strands are contrasted sequentially in this stage,
which generates a base alignment judgment result. So the
position of mutations is obtained and the base mutation rate
between the two DNA strands can be calculated.

Stage 7: Codons alignment and mutation type analysis.
Judgment result of amino acids is achieved by contrasting the
amino acid codons along the polypeptide chains translated
from the normal and mutated DNA strands. We can then
analyze the mutation type according to the determining rules.
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FIGURE 5. CPN model of DNA mutation type determination.

TABLE 5. Definition and symbol expression of two new color sets in DNA mutation type determination CPN model.

TABLE 6. Places definition and symbol expression in DNA mutation type determination CPN model.

Next, we will give the detailed definition and symbol
expression of the proposed CPNmodel of DNAmutation type
determination and introduce the operation procedure of the
model.

1) COLOR SETS
Based on the diverse states and features appearing in the
above mentioned numerous stages within protein synthesis
and mutation type determination, eight color sets are defined

in the model, where Base_DNA, Base_mRNA, Codon, Posi-
tion, DNA or mRNA strand, and Null are defined in Table 1.
The definition of two new color sets, Judgment result of
mutated base and Judgment result of amino acid, is demon-
strated in Table 5.

2) PLACES
Accordingly, we define 24 places in the model to stand for the
various states and stages. The detailed definition and symbol
expression of each place are shown in Table 6.
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TABLE 7. Transitions definition and symbol expression in DNA mutation type determination CPN model.

3) TRANSITIONS
In the model, we design 20 transitions to represent the state
changes or alignment analysis operations involved in the
process of gene expression and mutation type determination.
The definition and function of all transitions are defined
in Table 7.

4) WEIGHT OF DIRECTED ARCS
Similar to the definition stated in the protein synthesis CPN
model, we define the weight of two directed arcs as 2,
i.e., W (P5,T5) = 2 and W (P′5, T

′

5)= 2. The weight of the
other directed arcs in the model is still defined as 1, signifying
when a transition is fired only one token can be transmitted
through each input arc or output arc at a time.

5) INITIAL MARKING
We define two tokens stored in all places in the original state
of the proposed model. One token is placed in P1, which
denotes the original DNA strand, and the other one is in P′1,
representing the mutated DNA strand.

6) PRIORITY OF TRANSITIONS
Based on the transition priority rules in the protein synthesis
CPN model, we still define the priority of transitions in this
model.

1) For transition T1 (T′1) and T2(T′2) used in the stages of
initialization and transcription, we define their priority rules
as T2 >T1 and T′2>T′1.

2) The priority rule of T4(T′4) and T5(T′5) are defined by
T5 >T4(T′5>T′4), in order tomake the bases list sequentially
in the process of transcription and form the corresponding
mRNA strand.
3) For the stage of identifying the start codon, the priority

rules of transitions among T6, T7, T′6 and T
′

7, are that T6 >T7
and T′6>T′7.
4) Also in the stage of identifying stop codons, the priority

of T8, T9, T′8 and T′9, is defined as T8 >T9 and T′8>T′9.

7) BASES MUTATION RATE
In genetics, the mutation rate can be expressed and defined in
many different ways. Generally, the mutation rate is assumed
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as a measure that equivalent to the error rate of base changes
in the nucleotide sequence of DNA in replication. On the
basis of definition and procedure operation of DNA bases
alignment in the model, it is possible to get a ratio of how
many bases changed between the given normal and mutated
DNA sequences by determining the token’s color that stored
in P4. We define the bases mutation rates (R) as:

R = s/P,

where s is the number of the bases that have mutated between
the two DNA sequences (i.e., the number of si = 1 appeared
in the base judgment result), andP is the total number of bases
along the whole DNA strand. The bases mutation rate is just
a reflection of the percentage of bases changed among the
contrasting original DNA strand and mutated DNA strand.

8) MUTATION TYPE DETERMINING RULES
Throughmodel operation and alignment analysis of twoDNA
strands, the following mutation type determining rules are
provided to identify and analyze themutation type via judging
the tokens and their colors stored in the final stage.

Mutation Type Determining Rules: Considering all
tokens stored in places P4, P12 and P13in the final state
of the model, we determine the mutation type by analyz-
ing the judgment result of amino acid {XiXi+1Xi+2, k}
(k ∈ {0, 1}) stored in P13 associated with the base judg-
ment result {s1, s2, . . . , si, . . . , sP}(si ∈ {0, 1}) stored in P4.
The determining rules are defined as follows.

1) If there is a base alteration happened in the DNA strand
expressed by si = 1, and the judgment result of its corre-
sponding amino acid is k = 0, which means the amino acid
is the same one as respected in product polypeptide chain, this
mutation type must be synonymous mutation.

2) If the mutation not only brings about the base change but
also results in a different amino acid finally, i.e., the judgment
result of the amino acid is k = 1, the type of this mutation
should be missense mutation.

3) If the base judgment result si = 1 and its corresponding
amino acid judgment result k = 1 appear continuously,
indicating that the base variation caused a number of bases
and amino acid are changed subsequently, the mutation is
regarded as frameshift mutation.

4) If P12 still has colored tokens in the final stage, which
signifies the translation process on the mutated DNA strand
has been forced to terminate prematurely, so the mutation
type is nonsense mutation.

The following procedure of mutation type determination is
proposed to complete this process.

Here we would like to state the feasibility of mutation type
determining rules, especially in determining the missense
mutation and frameshift mutation. As is known, in nature the
mutation rarely occurs and the mutation rate is actually very
low, though a great number of mutations have been found by
researchers. If the base and codon judgment results si = 1
and k = 1 appear separately or discontinuously, we can
decide the mutation is missense mutation. Otherwise, if the

Procedure 1Mutation Type Determination
(1) Input: given normal DNA strand and the mutated one
(2) Output: mutation type of the occurred base changes
(3) Model operation: the input DNA strands are read and
then the model is operated step by step until we have the final
state of each place of the model.
(4) Mutation type determining: consider the token stored
in P4, like {s1, s2, . . . , si, . . . , sP}(si ∈ {0, 1}), that shows
which base has been mutated and may result in a mutation;

For si = 1, i ∈ {1, 2, . . . ,P}, do
Check the tokens stored in place P13. Determine the
mutation type by judging the token color {XiXi+1Xi+2,
k} where k ∈ {0, 1}, denoting the corresponding amino
acid codon XiXi+1Xi+2 and the judgment result k .
(4a) If k = 0, then it is synonymous mutation;

End if
(4b) If k = 1, then it is missense mutation;

End if
End For
If si = 1 and k = 1 continuously appear, then the
missense mutations identified in (4b) are further deter-
mined as frameshift mutation;

End if
If P12 still has tokens, then it is nonsense mutation;
End if

End Procedure

base judgment result si = 1 and its related codon judgment
result k = 1 are emerged continuously in DNA sequence and
amino acids chain respectively, implying that the base inser-
tion or deletion causes a great change in the DNA sequence
and the reading frame shifts during the translation process,
so we can determinate the type should be frameshift mutation.
This determinant is based on the fact that several missense
mutations occurred continuously at the same time is very rare.

C. EXAMPLE AND RESULT ANALYSIS
It is an important step in model verification to validate and
illustrate the rationality, effectiveness, and accuracy of the
proposed CPN model through the actual mutation examples.
Therefore, it is necessary to find some representative bio-
logical examples of DNA mutations in nature. In order to
better test the function of the model, in the paper we select
some DNA mutation examples to constitute persuasive and
confirmatory test examples.

1) BIOLOGICAL EXAMPLES OF MUTATIONS
The Human GeneMutation Database (HGMD) builds a com-
prehensive collection of published germline mutations in
nuclear genes, which underlies the close relationship between
mutations and human inherited disease. The database stored
more than 203,000 different gene mutations identified in
over 8,000 genes until March 2017 [40]. Missense mutations
account for 45.3% of the total number of mutations and
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52.5% of nearly 9,800 human inherited diseases together with
disease-associated/functional polymorphisms that are cata-
loged in the database. For nonsense mutations, the percentage
is about 11.0% of total mutations and this type of mutation
accounts for 3.4% of human inherited diseases [41].
Sickle cell anemia is one of the most common inherited red

blood cell disorders. This disease is caused by a missense
mutation in codon 6 of the b-globin gene leading to an
amino acid substitution thatGlutamic acid (GAG) is replaced
by Valine (GTG) [42]. As reported in HGMD, the num-
bers of nonsense mutations resulting in stop codons TGA
(38.5%) or TAG (40.4%) are approximately equal, which is
nearly twice of the instances of mutation to TAA (21.1%).
Statistics show that the substitutions CGA (Arginine)→ TGA
and CAG (Glutamine)→ TAG are two of the most frequent
nonsense mutations in the HGMD. Beta thalassemia is a
blood disorder that reduces the production of hemoglobin,
mainly resulting from the introduction of premature termi-
nation codons [43]. A nonsense mutation has been first dis-
covered and extensively studied is the mutation occurred at
the codon 39 (CAG→ TAG) of the β-globin gene [44].
Frameshift mutations are generally known as one of the

most deleterious changes to the coding sequence of a protein.
They are extremely likely to cause large-scale changes in the
length of the polypeptide and chemical composition, which
may produce a non-functional protein that often disrupts the
biochemical processes of a cell. Smith-Magenis syndrome
is a complex disorder affecting facial features, intellectual
disability, difficulty sleeping, and other behavioral prob-
lems [45]. One patient with this disease was reported to have
a frameshift mutation in the retinoic acid induced-1 (RAI1)
gene [46], resulting from the deletion of the base C within
the codon CAG that changes the gene’s reading frame.
Synonymousmutations are regarded as the genetic changes

that indirectly alter the sequence of amino acids on the
encoded protein, but there is evidence that some of them still
frequently contribute to human cancer or diseases [47].Cervi-
cal and vulvar cancer is reported as one of the human diseases
sometimes caused by a synonymous mutation. One inductive
reason for this disease is that a codon CTG located in gene
Interleukin-2 (IL2) is changed to CTT, though these two
codons stand for the same amino acid Leucine [48].
Although a large number of mutations have been discov-

ered and studied at the nucleotide sequence level, the muta-
tion rate in nature is usually very low. Due to the many
harmful effects that can be caused by mutations, biological
systems exhibit an extraordinary ability to keep the number of
genetic variations at extreme low level. According to whole
genome sequencing data, the human genome mutation rate
is similarly estimated to be 1.1× 10−8 per site per genera-
tion [49]. Therefore, it is difficult to give a biological example
that includes these four kinds of mutations simultaneously
in one DNA strand. Without loss of generality, in the paper
we assume two concrete examples with above representative
mutational diseases in DNA strands. In example 4.1, there are
three mutations occurred in a DNA coding strand, containing

a missense mutation (sickle cell anemia [42], GAG mutates
to GTG), a synonymous mutation (Cervical and vulvar can-
cer [48], CTG changes to CTT), and a nonsense mutation
(Beta thalassemia [43], CAG to TAG). Example 4.2 is one of
the causes of Smith-Magenis syndrome that has a frameshift
mutation in the RAI1 gene [46] with the deletion of the base
C within the codon CAG. Therefore, we assume a base C is
deleted in the mutated DNA strand which reduces the length
of the DNA strand of the RAI1 gene and also contains the
start codon as well as the stop codon to ensure the translation
process is complete.

2) EXAMPLE 4.1
Assume two equal-length DNA sequences, including a cod-
ing DNA strand and a mutated one. Compared with the
coding DNA strand, there are three alterations happened in
the mutated DNA strand, where the 6th base mutated from
Ato T , 10th base from G to T , and 11th base from C to T ,
respectively. Use the proposed model and mutation type
determining rules to identify the type of these threemutations.
The coding and the mutated DNA strands as well as their
produced proteins are shown in Fig. 6. The red arrows mark
the changes of three bases. Furthermore, Fig. 6 also displays
the gene reading frame and the encoded amino acids with the
start and stop codon.

FIGURE 6. DNA coding strand, mutated DNA strand, and corresponding
polypeptide chain in Example 4.1.

Table 8 displays the state changes and the token distribu-
tions in all places of the CPN model for contrasting the two
DNA strands shown in Example 4.1. After 28 steps process-
ing and analysis, we have the following results in the final
state of the model. Each place of P1 and P′1 stores one col-
orless token, indicating all bases have been processed in the
model. P4 owns one token with color {0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0}, which stands for the base contrasting result
and its position (where the base judgment result 1 appears)
along the two DNA sequences. According to the def-
inition of base mutation rate, it can be calculated by
R = 3/16 = 18.75%. There is one colored token stored
in P8 and P′8, which indicates the bases ahead of the start
codon on the coding and mutated DNA strands, respectively.
The tokens in P10 and P′10 stand for the stop codon together
with the following bases in the coding and mutated DNA
sequences, respectively. In P11 and P′11, a group of colored
tokens represent the amino acids that are sequenced in the
polypeptide chains transformed from the given coding and
mutated DNA strands, respectively. Since the 11th base C is
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TABLE 8. State changes of the mutation type determination CPN model in Example 4.1.

mutated to T that constitutes a stop codon TAG, this sub-
stitution causes the translation process in the mutated DNA
strand to terminate in advance. It is for this reason that P12
still has one token {CAG}, implying that in the mutated
polypeptide chain the corresponding amino acids are missing
after translation. Three colored tokens are orderly stored in
P13, containing {AUG, 0}, {GUG, 1}, and {CUU, 0}. These
tokens not only stand for the amino acids chain that trans-
formed from themutatedDNA strand but also show the codon
judgment results via contrasting the codons along the two
produced amino acids chain.

Finally, we can recognize the mutation type of each base
change ocurred according to the procedure of mutation type
determining. The mutations that happened on the 6th and

10th bases are missense mutation and synonymous mutation,
respectively. As a result of P12 having one token, indicating
that the translation process in the mutated DNA strand is
terminated in advance, so the type of mutation occurred in
the 11th base is nonsense mutation.

3) EXAMPLE 4.2
As shown in Fig. 7, assume there are two DNA sequences
and both of them have 16 bases. Compared to the coding
DNA strand, the 5th base C is removed from the mutated
DNA strand. It can be easily found that both the bases on
the mutated DNA strand and the amino acid sequence along
the produced polypeptide chains are greatly changed due
to the base deletion.
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TABLE 9. State changes of the mutation type determination CPN model in Example 4.2.

FIGURE 7. DNA coding strand, mutated DNA strand, and corresponding
polypeptide chain in Example 4.2.

The state changes and alignment analysis operations of the
model in Example 4.2 are demonstrated in Table 9. Besides,
the distribution of tokens in all places and the transitions

that could be enabled or fired in 29 steps are shown in the
table. In the final state, both P1 and P′1 have one token with
the color Null. Place P4 stores one token with the color
{0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1}, where 1 stands for the
base is altered in that position, and 0 denotes the base keeps
the same. We can obtain that there are 9 bases altered on
the mutated DNA sequence, and calculate the base mutation
rate by R = 9/16 = 56.25%, denoting that these two DNA
sequences have many base changes. The meaning and expla-
nation of the tokens stored in P8 (P′8), P10 (P

′

10) and P11(P
′

11)
are similar to the analysis result of the previous Example 4.1.

As the 5th base A is deleted from the mutated DNA
sequence, this mutation alters the gene read frame during the
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translation process, resulting in produce a group of different
amino acids. There is a token with color {AAG,AAA} stored
in P′12, indicating that translation is still going on because of
no stop codon showing up. P13 owns four colored tokens,
including {AUG, 0}, {AGG, 1}, {GAC, 1}, and {AGU, 1}.
The base judgment result si = 1 and codon alignment result
k = 1 appears continuously, indicating that this type of
mutation gives rise to a group of amino acids (Met, Arg, Asp,
Ser, and Lys) different from the normal ones (Met, Gln, Gly,
and Gln). On the basis of above analysis, we can determinate
the type of mutation is frameshift mutation by the mutation
type determining rules.

V. CONCLUSION AND DISCUSSION
Protein synthesis is a fundamental biological process that
characterizes the flow of genetic information from DNA
to protein. To more intuitively display the inherent interac-
tions among the various components, such as nucleobases,
amino acids, and polypeptide chain, a CPN-based model
was designed to describe this complex biological process.
The modeling method not only provides an intuitive and vivid
description of the detailed state changes in the process of pro-
tein synthesis, but also establishes a theoretical foundation for
intuitively modeling and analyzing other essential biological
processes.

Varying alternations in DNA sequences cause different
types of mutations that lead to the genetic changes and the
potential to cause the diseases. Identifying the type of
the mutation is beneficial for analyzing whether it affects
the structure or function of the produced protein. Based
on the proposed model of protein synthesis, we designed a
CPN model to judge the mutation’s type by aligning and
analyzing the differences between the normal and themutated
DNA strand together with the changes of the amino acids
in the synthesized polypeptide chain. Some biological muta-
tions examples illustrated the effectiveness and accuracy of
the proposed model.

This work provides a useful model for the study of whether
gene mutation changes the structure and function of the pro-
tein synthesis. An interesting work to be considered in the
future is to extend the functions of the proposed model by
adding some analysis and control operations. If some simple
control approaches can be added to the model to make it as a
controllable systematic model, a multi-step induction control
model of gene mutation can be further established. It will
provide new research ideas and model basis for studying
the genetic stability and induction control strategies for gene
mutations from the perspective of system science.
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