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ABSTRACT Estimation for motion elements is one of the core functional components of the multiple targets
tracking system. Aiming at estimation for motion elements of multiple underwater targets, a Clustering
Statistic Hough Transform (CSHT) method is proposed in order to overcome the false alarm and missing
detection effects as well as positioning errors of the sonar data and improve the accuracy and reliability of
feature extraction. First, the distance-direction data from the multi-beam forward-looking sonar mounted on
the unmanned underwater vehicle are transformed to position curves of multiple targets in the earth-fixed
frame, and the position curves appear to be sampling points that form the data space. Second, parameter
space is constructed by applying Hough transform to the sampling points in the data space, and then the votes
of each cell in the rasterized parameter space are accumulated. Finally, fuzzy iterative self organizing data
analysis techniques algorithm clusteringmethod is exploited for extraction of multiple peaks in the parameter
space to realize estimation for motion elements. The application of CSHTmethod in the underwater multiple
targets tracking system is further explained in this paper. Simulation results demonstrate that CSHT method
is insensitive to environment noise, false alarm andmissing detection effects of the sonar and offers favorable
estimation accuracy and tracking performance, indicating engineering reliability.

INDEX TERMS Clustering statistic, estimation for motion elements, Hough transform, multiple targets
tracking, multiple underwater targets, unmanned underwater vehicle.

I. INTRODUCTION
Unmanned underwater vehicle (UUV) is an important strate-
gic equipment to explore and develop the ocean, and it
increasingly arouses research interests amongmarine powers.
As UUV steps towards deeper and farther in the ocean, its
ability of safe autonomous navigation faces higher demands.
Besides comprehension of the nearby static environment,
correct perception of the surrounding maneuvering targets
is an essential factor that provides effective guidance for
movements in view of safety. Consequently, it is of practical
engineering significance to study the estimation method for
motion elements of multiple underwater targets [1]–[3].

The sonar is an essential instrument for UUV to obtain
information about underwater environment [4], [5]. Esti-
mation for motion elements of multiple underwater targets
means to analyze and process the distance-direction data

from the forward-looking sonar for resolving the states of
the maneuvering targets, including estimation of the target
number as well as the position and velocity of each tar-
get. Estimation for motion elements would be further used
for multiple targets tracking jointly with data association
technology in order to ensure grasp of motion states of the
surrounding targets for UUV throughout the voyage.

Various filteringmethods have been applied tomultiple tar-
gets tracking problem for improvement of accuracy and reli-
ability, including Kalman filter [6], [7], particle filter [8], [9]
and probability hypothesis density (PHD) filter [10], [11].
In the marine environment, the continuity and reliability of
sonar signals are greatly reduced resulting from reverbera-
tion, internal wave and multi-path effect [12]. Consequently,
underwater multiple targets tracking is more difficult in com-
parison with aerial and terrestrial environments. Although the
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above filtering methods have been intensively investigated
and some research results have been applied to engineering
practice, the application in the complex underwater environ-
ment still faces various limitations.

The detected data accumulate with time and form an image,
so some researchers apply image processing methods to mul-
tiple targets tracking. Hough transform is a typical image
processing method proposed by Hough [13] in 1962. This
method exploits the mapping between curves in the image
space and points in the parameter space, recognizing basic
shapes by extracting the peaks in the parameter space. Line
detection is most widely applied [14].

Hough transform has aroused widespread concern among
the scholars since it was proposed, and several variants have
been put forward against the problems of high computa-
tional cost and low accuracy in cluttered condition. Typi-
cal variants are Hierarchical Hough Transform (HHT) [15],
Fast Hough Transform (FHT) [16], Random Hough Trans-
form (RHT) [17], Probabilistic Hough transform (PHT) [18],
Dynamic Combinatorial Hough Transform (DCHT) [19], and
Connective Hough Transform (CHT) [20].

Recently the standard Hough transform(SHT) and its vari-
ants have been combined with other methods for improve-
ment in computing efficiency and accuracy, and part of
the research results have been applied to multiple targets
tracking.

Some researchers firstly use other time-domain or
frequency-domain methods to pre-process the data for
denoising, and then exploit Hough transform for estima-
tion. Aiming at detecting moving targets from Infrared (IR)
imagery sequences, Huber-Shalem et al. [21] introduces a
parametric temporal compression incorporating Gaussian fit
and polynomial fit with possibly simplest representation for
the original sample data. The compression method is eval-
uated by using the variance estimation ratio score (VERS),
which is a signal-to-noise ratio (SNR) based measure for
point target detection that scores each pixel and yields an
SNR scores image. The target location is extracted from the
SNR scores image by Hough transform with high detec-
tion probability and low false alarm probability. Islam and
Chong [22] applies Hough transform to radar signals that
has been processed by an improved wavelet threshold func-
tion for denoising, which effectively detects moving targets
in strong noise condition. Lei and Huang [23] applies the
entropy weighted coherent integration (EWCI) algorithm to
the data collected from a radar system, which suppresses the
time-varying clutter due to multi-path effects in the foliage-
penetration environment. Based on the obtained image with
high visual quality, the radial velocity of a moving human
target is accurately estimated by Hough transform, and then
the target trajectory is detected.

Another group of researchers firstly use Hough trans-
form to pre-process data or estimate some parameters, and
then exploit other methods for state estimation for targets.
In order to track multiple moving targets by dual-frequency
continuous-wave through-wall radar (DF-CW TWR),

Ding et al. [24] uses Hough transform to decompose the
echo with a progressive geometrical model and applies a
modified high-order ambiguous function (MHAF) method to
the estimation of target instantaneous frequency. The target
trajectories are synthesized based on the estimation results.
In order to focus moving targets by single-antenna synthetic
aperture radar, Yang et al. [25] uses Hough transform to
estimate the slope of the range walk trajectory, and then the
cross-track velocities are obtained and the Doppler ambiguity
problem is solved. Polynomial Fourier transform is further
used for estimation of motion parameters of the moving
targets.

Track initialization is crucial to multiple targets tracking
problem, and Hough transform is selected as a satisfying
method to accomplish this task for its insensitivity to noise.
Xu et al. [26] proposes an ant colony optimization (ACO)
based algorithm for the initiation of bearing only multiple
targets tracking process, where the cost function is derived
from the thought of Hough transform. A satisfying perfor-
mance of track initiation is achieved against a heavy clut-
ter environment with computing time effectively reduced.
Hadjira et al. [27] proposes a Real Time Hough Transform
(RTHT) towards real time automatic initiation of tracks in
clutter by radar signals, where only the measurements that
satisfy the velocity and acceleration tests are transformed.
As a result, the processing time is significantly reduced.

Extension of Hough transform into multiple dimen-
sions proves efficient in the state estimation process.
Moyer et al. [28] proposes a multi-dimensional Hough trans-
form (MHT) technique for the track-before-detect (TBD)
processing, where the data dimensions can be the target
position, its range, range rate and the first-threshold crossing
times. The detection of the moving targets are efficiently
enhanced by combining multiple first-threshold crossings.
Moqiseh and Nayebi [29] extends the SHT to a 3-D data
space, where information of planar positions and time is
involved. The data space is constructed from surveillance
radar signal using the distance and direction information of
several successive scans. The proposed 3-D Hough detector
is then used to detect the existent targets in the 3-D data space,
which effectively improves the detection performance.

The application of Hough transform theory in the multiple
targets tracking system has been improving, whereas the
majority of the methods are radar signal oriented, infrared
signal oriented, or video image oriented. Hough transform
usually only works in the track initiation stage. Few of the
Hough transform based multiple targets tracking solutions
process sonar signal that severely suffers from ambient noise.

When Hough transform is used in estimation for motion
elements of multiple underwater targets, the target number
is unknown, and the sonar data are affected by measurement
noise as well as false alarm and missing detection prob-
lems, so the votes in the parameter space do not appear
as isolated peaks. A cluster of peaks are distributed near
the cell corresponding to a certain pair of parameters. It is
difficult to accomplish parameter extraction by simply setting

23748 VOLUME 6, 2018



Z. Yan et al.: CSHT Based Estimation Method for Motion Elements of Multiple Underwater Targets

FIGURE 1. Diagrammatic sketch of sonar detection. (a) Original sonar image. (b) Detected targets by sonar.

a threshold, because an improper threshold may lead to sev-
eral false targets or missing targets.

Clustering analysis is an unsupervised learning process
that divides a set of abstract objects into classes comprise
of similar objects. The purpose of clustering is to emphasize
the similarity within the same class as well as the diversity
between different classes. Without training data in the imple-
mentation procedure, classification is realized by exploiting
the inherent characteristics of the data and the similarity
relation. In explorative data analysis and data mining, the
clustering is often exploited to discover part or all of the
patterns hidden in the data [30]. The clustering algorithm
applies to recognition of peaks in the parameter space for
Hough transform. Clustering methods have been widely
applied in the engineering field with the rapid development
of machine learning technology. Fuzzy ISODATA is a typical
and effective clustering method, which starts from an ini-
tial classification and updates the fuzzy membership matrix
by iterative computation until the terminating condition is
satisfied [31].

Aiming at underwater target detection by multi-beam
forward looking sonar, a Clustering Statistic Hough trans-
form (CSHT) method is proposed in order to improve the
accuracy and reliability of extraction for multiple peaks in
the parameter space. The distance-direction data from the
forward-looking sonar are mapped to sampling points in the
earth-fixed frame, which are further mapped to parameter
space by Hough transform. The votes of each cell in the
parameter space are accumulated, and the clustering sam-
ple data are obtained according to the vote matrix. Fuzzy
ISODATA algorithm is used for clustering of parameters to
estimate motion elements because of its class adjustment
function, which makes it appropriate for the condition of
unknown target number. CSHT method is further exploited
in the underwater multiple targets tracking system, and it

continuously works for restraint of false alarm and missing
detection effects in the whole tracking process rather than
merely in the track initiation stage.

The remainder of this paper is organized as follows.
In Section 2, The mathematical model of sonar vision field
is established, and the coordinate conversion mechanism of
sonar data is introduced; In Section 3, the principle of the
CSHTmethod is explained, including Hough transform, clus-
tering statistic and spatial correlation; In Section 4, the appli-
cation of CSHT method in the underwater multiple targets
tracking system is explained; Simulation results on different
methods are compared and discussed in Section 5; Finally,
conclusions are drawn in Section 6.

II. MATHEMATICAL MODEL OF SONAR VISION FIELD
So far in underwater environment, sound wave is the only car-
rier that can remotely transmit information, and thus sonar is
an ideal instrument for underwater detection and perception.
The studied UUV in this paper uses an active multi-beam
forward-looking sonar for target detection.

Sound beams are sent and received by phased array and
the echo intensity signals form a sonar image. The function
of image processing is integrated in the studied sonar. The dis-
tance and direction information of the targets can be obtained
by applying a series of image processing techniques like
segmentation, interpolation and enhancement, as is shown
in Fig. 1. The distance and direction information are used to
calculate northern and eastern coordinates of the targets that
act as the input data for motion elements estimation.

The key parameters of the forward-looking sonar are listed
in Table 1.

The forward looking sonar is horizontally mounted in the
front of the UUV. The vertical beam width of the sonar is
only 6◦, and it is reasonable to assume that the detected
objects exist in the same plane with the UUV.
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TABLE 1. Parameters of the multi-beam forward-looking sonar.

FIGURE 2. The multi-beam forward looking sonar.

The sonar comprises of 90 ceramic receivers that form
90 beams corresponding to 90 directions. If a target is
detected at one beam, the sonar provides the distance of the
target, which would be combined with the corresponding
direction in order to locate the target. The sonar sends the
detection information to the UUV at 1 Hz.

The detection space of the multi-beam forward-looking
sonar is a polar coordinate system that provides distance
and direction information of multiple targets. The sonar is
mounted in the front of the UUV. A polar frame is estab-
lished to describe the sonar detection information, where
the origin is the mount point of the sonar, and the polar
axis direction accords with the longitudinal direction of
the body fixed frame of UUV. The sonar detection infor-
mation is expressed as a distance-direction mode, namely
[ρ, α]T, where ρ and α respectively represent the distance
and direction from the sonar to the target in the sonar
frame. The direction pointing to the starboard of the UUV is
positive.

The coordinate systems describing the movement of the
targets are shown in Fig. 3. The axes of the earth-fixed frame
represent north and east directions.

The target coordinates in the body-fixed frame are:[
x
y

]
= ρ

[
cosα
sinα

]
+

[
xS
yS

]
(1)

where [xs, ys]T are the coordinates of the sonarmount pointPs
in the body-fixed frame. The target coordinates in the earth-
fixed frame are:

η =

[
n
e

]
= S

[
x
y

]
+

[
nV
eV

]
(2)

FIGURE 3. Coordinate systems and sonar detection space.

where [nv, ev]T are the coordinates of the UUV in the earth-
fixed frame, and S ∈ R2×2 is the transformation matrix:

S =
[
cosψ − sinψ
sinψ cosψ

]
(3)

where 9 is the heading of the UUV. A set of target position
data with time-stamp are obtained over time:(

ti,
{
ηi
})
, i ∈ N (4)

where {ηi} is the set of coordinates in the earth-fixed frame
of the targets that are calculated from the sonar data at the
moment of ti.

The state space model of a single target is:

X(i) = φX(i− 1)+ ΓW (i)

Y (i) = ΨX(i)+ V (i) (5)

where X(i) =
[
ηTi η̇Ti

]T
, Y (i) is the observation value of

X(i).

φ =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

, Γ =


1
2
T 2
s 0

0
1
2
T 2
s

Ts 0
0 Ts

,

Ψ =

[
1 0 0 0
0 0 1 0

]
W (i) ∈ R2 is the process noise and V (i) ∈ R2 is the
observation noise. QW and QV are the covariance matrices
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FIGURE 4. Fundamental principle of Hough Transform for straight line.

ofW (i) and V (i) respectively.

QW =
[
σ 2
W 0
0 σ 2

W

]
, QV =

[
σ 2
V 0
0 σ 2

V

]
III. ESTIMATION FOR MOTION ELEMENTS OF
MULTIPLE UNDERWATER TARGETS
Northern and eastern position-time sampling points of the
targets are obtained by coordinate conversion of the sonar
data, which form binary images. Typical underwater targets
like suspended materials and other cruising UUVs move at
relatively low velocities, and the motion curve of a given
target usually appears as a straight line. Consequently, Hough
transform for lines detection applies to the position-time
curves of the multiple targets for estimation of velocity
components at each degree of freedom (DOF). Although
the function of image processing is integrated in the studied
forward-looking sonar, the performances of the sonar are sen-
sitive to hydrologic conditions like temperature, salinity and
depth. Consequently, the false alarm and missing detection
effects as well as positioning errors still exist in the sonar data.
In order to overcome these defects, clustering statistic mech-
anism is introduced for SHT to realize parameter extraction.

In the implementation process, Hough transform is applied
to the sampling data of the latest W instants for estimation
of motion elements of multiple targets, including initial posi-
tions, velocities and current positions. W is the width of the
time window. Motion elements at one DOF of the multiple
targets are estimated at first, and that of other DOFs could
be obtained by exploiting the spatial correlation of sonar
data and single line extraction for each DOF. Without loss of
generality, when the principle of CSHT method is explained,
northern motion elements are estimated at first.

A. HOUGH TRANSFORM FOR BINARY SONAR IMAGE
The slope intercept form for lines is adopted in this paper,
where the slope indicates the velocity, and the intercept

indicates the initial position. The target velocities in discuss
are finite values, so the problem of infinite slope is avoided.
Take the northern movement as an example, the target motion
equation is:

n = n0 + vnt (6)

where t is the time variable, n indicates the northern position,
n0 indicates the northern initial position, vn indicates northern
velocity. The straight line in (6) is defined by the parameters
n0 and vn. Accordingly, the detection data (ti, ni) define a
straight line in the parameter space:

n0 = −t1vn + n1 (7)

The parameter space is discretized into cells, and a cell cor-
responds to a set of parameters representing image features.
One curve in the parameter space contributes votes to the
cells it passes by. After transformed, the collinear detection
points in the data space form a cluster of straight lines that
intersect at one point in the parameter space. Each straight
line contributes one vote to the cell corresponding to the
crossover point, and the crossover point corresponds to the
parameters of the straight line, as is shown in Fig. 4. Conse-
quently, parameter extraction for lines in the data space could
be realized by votes statistics of the cells in the parameter
space.

The parameter space is discretized at a certain resolution:

vn ∈
{
vin
}
, vin=v

min
n +hvn (i−1), i=1, 2, · · · ,Nvn (8)

n0 ∈
{
ni0
}
, ni0=n

min
0 +hn0 (i−1), i=1, 2, · · · ,Nn0 (9)

The above symbols are defined as:

hvn : step length of parameter vn;
Nvn : number of discretized values of

parameter vn;
vin : the ith value of parameter vn;
vmin
n = v1n : the minimum value of parameter vn;
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FIGURE 5. Cluttered sampling data in the data space and the corresponding Hough transformed lines in the parameter space.

vmax
n = v

Nvn
n : the maximum value of parameter vn;

hn0 : step length of parameter n0;
Nn0 : number of discretized values of

parameter n0;
ni0 : the ith value of parameter n0;
nmin
0 = n10 : the minimum value of parameter n0;

nmax
0 = n

Nn0
0 : the maximum value of parameter n0.

The velocity vn is discretized into Nvn values at the resolu-
tion of hvn, ranging from vmin

n = v1n to v
max
n = v

Nvn
n ; The initial

position n0 is discretized into Nn0 values at the resolution of

hn0 , ranging from nmin
0 = n10 to n

max
0 = n

Nn0
0 . The parameter

space is divided into Nvn × Nn0 cells, and it corresponds to
a Nvn × Nn0 matrix V , whose vij element corresponds to the
parameter pair (vin, n

j
0).

I pairs of position sampling data are obtained within W
instants: (

ti, ηi
)
, i = 1, 2, · · · , I (10)

where ηi = [ni, ei]T is the position coordinates of a target at
the moment of ti. Northern sampling data are:

(ti,ni), i = 1, 2, · · · , I (11)

and eastern sampling data are:

(ti,ei), i = 1, 2, · · · , I (12)

Data matrix D is defined from northern sampling data for
estimation of northern motion elements:

D =
[
t1 t2 · · · tI
n1 n2 · · · nI

]
(13)

Transform matrix H is defined from discretized velocity
values:

H =


−v1n 1
−v2n 1
...

...

−v
Nvn
n 1

 (14)

The product of H and D form a Nvn × I matrix R:

R = HD =


r11 r12 · · · r1I
r21 r22 · · · r2I
...

...
. . .

...

rNvn ,1 rNvn ,2 · · · rNvn ,I

 (15)

rij ∈
[
nj
′

0,n
j′+1
0

)
(16)

The elements in R are values of the parameter n0 in the
parameter space. The element rij corresponds to the param-
eter pair (vin, n

j
0), namely rij contributes one vote to the vij′

element of the vote matrix V . The vote matrix V is computed
according to the matrixR, and is further used for extraction of
image features from which the motion elements are obtained.

B. CLUSTERING STATISTIC FOR EXTRACTION
OF PARAMETERS
Parameters of straight lines could be extracted through peak
detection by setting a threshold according to the vote matrix
in the condition of accurate and adequate sensor information
as well as weak noise. However, in the problem of estimation
for motion elements of multiple underwater targets, because
of the relatively low accuracy, the position-time curves of the
targets provided by sonar appear as broken lines instead of
standard straight lines. The straight lines in the parameter
space transformed from the points in the broken lines in the
data space form a cluster of points distributed in a certain
area, rather than intersect at one point, as is shown in Fig. 5.
In addition, the number of the targets is unknown, and the
false alarm andmissing detection effects are prominent, so the
data space suffers from severe noise pollution and infor-
mation loss. Several false targets might appear by simply
setting a threshold for straight line parameter extraction. The
votes belonging to a true target may be assigned to several
neighboring cells and the true target may be submerged by
noise. Failure may occur in the parameter extraction even if
Hough Transform is adopted despite its robustness and fault
tolerance.
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The peaks corresponding to a target are closely distributed
in the parameter space, so clustering method is considered
for recognition of peaks in the parameter space corresponding
to the multiple targets. The combination, division and delete
operations of ISODATA clustering method could effectively
overcome the adverse effects resulting from noise pollu-
tion and loss of information, and the unsupervised cluster-
ing mode solves the problem of unknown target number.
In contrast with the widely used K-means method, ISODATA
method could dynamically adjust the clustering centers and
automatically correct the class number, which would restrain
the noise to some extent. ISODATA method would improve
its performance in objectivity, flexibility and simplicity if
combined with fuzzy logic.

One curve in the parameter space contributes one vote to
each of the cells it passes by. Many cells irrelevant to motion
parameters of the targets have some votes that would not work
for parameter extraction. Consequently, it is necessary to set a
relatively low threshold for rejection of irrelevant votes before
applying the Fuzzy ISODATA clustering method, which
would also improve the efficiency of parameter extraction.
A new vote matrixV ′ is obtained by truncating the initial vote
matrix V with the primary threshold λ:

v′ij =

{
vij, vij>λ
0, vij≤λ,

i = 1, 2, · · · ,Nvn , j = 1, 2, · · · ,Nn0

(17)

The clustering sample data are obtained from the vote
matrix V ′. The number of clustering sample data is:

N =
Nvn∑
i=1

Nn0∑
j=1

v′ij (18)

The dimension of the sample data is n = 2. The element
v′ij of matrix V ′ provides v′ij sample data:

xkij =
[
vin
nj0

]
, k = 1, 2, · · · , v′ij (19)

For convenience, the clustering sample data are rewritten
as:

sxi =
[ svin
sni0

]
, i = 1, 2, · · · ,N (20)

where the left superscript s denotes sample data. Symbols
related to the Fuzzy ISODATA clustering algorithm are
defined as follows:

N : Number of sample data;
K ∈ N∗ : Number of patterns, K < N ;
Pi : The ith pattern, i = 1, 2, · · · ,K ;
Zi ∈ Rn×1 : The center of the ith pattern,

i = 1, 2, · · · ,K ;
U ∈ RK×N : Fuzzy membership matrix, and the

element µij indicates the membership
degree of the sample xj belonging to the
pattern Pi, i=1, 2, · · · ,K , j = 1, 2, · · · ,N .

In the Fuzzy ISODATA method, a fuzzy membership
matrix is established to indicate the membership between
the sample data and the patterns. The fuzzy membership
matrix is iteratively updated, and the combination, division
and delete operations are performed for class adjustment until
the convergence condition is satisfied.

Clustering criterion function measures the similarity and
difference between the patterns, and it is a function of sam-
pling data and patterns, which is the basis to realize the
clustering process:

J =
K∑
i=1

N∑
j=1

µmij

∥∥xj − Zi∥∥ (21)

For optimization of clustering criterion function, the ele-
ments of the fuzzy membership matrix are calculated as:

µij(niter) =
1

K (niter)∑
k=1

( dijdkj )
2/(m−1)

, i = 1, 2, · · · ,K (niter);

j = 1, 2, · · · ,N (niter) (22)

where dij denotes the distance from the sample xj to the
clustering center Zi. The center of each pattern is updated as:

Zi(niter)=

N (niter)∑
j=1

µij(niter)mxj

N (niter)∑
j=1

µij(niter)m
, i=1, 2, · · · ,K (niter) (23)

Fuzzy ISODATA method combines the advantages of
fuzzy logic and ISODATA clustering algorithm, and the core
of this method is the function of class adjustment, namely
combination, division and delete operations are applied to the
patterns. The number of patterns is variable in the clustering
process. The function of class adjustment improves the clus-
tering performance, especially for severely noisy sample data.

1) COMBINATION OPERATION
If the distance between the two clustering centers Zi and Zj
is less than the combination thresholdMind, Zi and Zj will be
combined and a new clustering center Z∗ is obtained:

Z∗ =

N (niter)∑
k=1

µik (niter)Zi +
N (niter)∑
k=1

µjk (niter)Zj

N (niter)∑
k=1

µik (niter)+
N (niter)∑
k=1

µjk (niter)

(24)

The combination threshold is:

Mind = D[1− F(K )] (25)

where D is the average distance between the clustering cen-
ters. F(K ) ∈ [0, 1] is an artificially constructed decreasing
function of K , and is usually set as:

F(K ) =
1
Kαc

(26)

where αc is a parameter that could be designed.
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2) DIVISION OPERATION
The Fuzzy variance of the jth feature of Pi is:

S2ij =
1

N − 1

N∑
k=1

µik (xkj − zij)2, i = 1, 2, · · · ,K ,

j = 1, 2, · · · , n (27)

where xkj and zij respectively denote the jth feature of the sam-
ple data xk and the clustering center Zi. The fuzzy variance
threshold is:

Fstd = S [1+ G(K )] (28)

where S is the mean of the fuzzy variances and G(K ) is
an artificially constructed increasing function of K that is
usually set as:

G(K ) =
1
K γ

(29)

where γ is a parameter that could be designed to adjust the
decomposition sensitivity. For check of aggregation degree of
each pattern, Ci is calculated for Pi:

Ci = Qi/Ti (30)

Qi =
N∑
k=1

tikµik (31)

tik =

{
0, µik ≤ θ

1, µik > θ
(32)

Ti =
N∑
k=1

tik (33)

where θ and A are parameters. If Ci > A, division
operation is unnecessary because it implies the aggrega-
tion degree of Pi is high. Otherwise division operation is
needed.

If Sij > Fstd, it needs to respectively add and minus
Sij on the jth feature of the clustering center Zi of the pat-
tern Pi, and two new clustering centers Z+i and Z−i are
obtained:

Z+ij = Zij + λdSij (34)

Z−ij = Zij − λdSij (35)

where λd is a division coefficient.

3) DELETE OPERATION
If the ith pattern satisfies either of the following conditions,
it would be deleted:

Delete condition1:

Ti ≤ δ ·
N
K

(36)

This condition indicates that there are little sample
data with high membership belonging to the pattern Pi.
The parameter δ could be designed to adjust the deletion
sensitivity.

Delete Condition2:

Ci ≤ A, and Sij ≤ Fstd, ∀j = 1, 2, · · · , n (37)

This condition indicates that some sample data exist near
the clustering center Zi, while the aggregation degree is rela-
tively low, namely Zi is not an ideal clustering center.

By finishing the clustering algorithm, ∗K clustering cen-
ters are obtained that correspond to the velocities and initial
positions of the ∗K targets:

∗Zi =
[
∗vin
∗ni0

]
, i = 1, 2, · · · , ∗K (38)

The northern motion equations of the targets obtained from
CSHT method are:

ni = ∗ni0 +
∗vint, i = 1, 2, · · · , ∗K (39)

The current northern positions of the targets are obtained
by substituting the current time ∗t into (39):

∗ni = ∗ni0 +
∗vin
∗t, i = 1, 2, · · · , ∗K (40)

Spatial correlation is performed to assign eastern sampling
data to the targets according to the shortest distance principle
by calculating the errors between northern sample data and
estimated northern positions:(
tj,ej

)
∈Di, s.t.

∥∥∥nj − ∗ni∥∥∥
= min

{∥∥∥nj−∗nk∥∥∥, k=1, 2, · · · , ∗K}, j=1, 2,· · ·, I

(41)

Di is the eastern sampling data set of the ith target that forms
a binary sonar image. CSHT is exploited for extraction of
a single line to estimate the eastern motion elements of the
ith target, including the velocity ∗vie, initial position

∗ei0 and
current position ∗ei.

The CSHT based estimation method for motion elements
of multiple underwater targets is described in Algorithm 1.

IV. CSHT BASED UNDERWATER MULTIPLE TARGETS
TACKING SYSTEM
Estimation for motion elements of multiple underwater tar-
gets could be realized by CSHT method at every moment.
The voyage of the UUV is a continuous process, and CSHT
based estimation for motion elements would be further used
for multiple targets tracking jointly with data association
technology in order to ensure grasp of motion states of the
surrounding targets in real time in view of safe route planning
[32], [33]. The estimation results of CSHT method involve
not only the current positions of the targets, but also the veloc-
ities and the initial positions, which would be considered in
the data association process for improvement of robustness
and accuracy of the association results. However, certain
errors still exist in the estimation results of CSHT method,
and the errors at different moments are independent of each
other. The tracking errors would increase if the position esti-
mation results at different moments are simply connected.
Consequently, a smoothing procedure is needed.
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Algorithm 1 CSHT Based Estimation Method for Motion Elements of Multiple Underwater Targets
Given: The target detection data in the earth-fixed frame as is expressed in (11) and (12).
1. Hough transform.
• Define the data matrix D from the sampling data of one DOF, as is expressed in (13);
• Define the transformmatrixH from the discretized velocity values, as is expressed in (14), and apply theHough transform
by multiplying the data matrix D with the transform matrix H to obtain the initial position matrix R as is expressed by
(15);

• Compute the discretized initial position parameter corresponding to each element in the matrix R;
• Compute the vote matrix V according to the matrix R.

2. Clustering statistic.
• Obtain the clustering sample data according to the vote matrix V , as is expressed in (20);
• Apply the fuzzy ISODATA algorithm to the clustering sample data to achieve the target number and velocities, initial
positions and current positions of one DOF.

3. Spatial correlation.
• Assign the sampling data of other DOFs to the targets according to the shortest distance principle;
• Estimate the motion elements of other DOFs for each target by single line extraction through CSHT.

Output: The target number ∗K , northern velocities ∗vin, eastern velocities ∗vie, northern initial positions ∗ni0, eastern initial
positions ∗ei0, northern current positions ∗ni and eastern current positions ∗ei of the targets, i = 1, 2, · · · ,∗ K .

FIGURE 6. Functional block diagram of the CSHT based underwater multiple targets tacking system.

The functional block diagram of CSHT based underwater
multiple targets tacking system is shown in Fig. 6. Firstly,
sampling data in the earth-fixed frame are obtained from the
sonar data by coordinate transform. Secondly, CSHT method
is applied to the sampling data for estimation of motion
elements of the multiple targets. Thirdly, data association is
performed to incorporate the states of the targets into the
set of existing targets, new targets or false targets. Fourthly,
the associated trajectories of the targets are smoothened
and the association rules are corrected according to the
updated states of the targets. Fifthly, trajectorymanagement is
performed according to the motion elements and the
smoothened states of the targets, including initiation, termi-
nation and quality of the trajectories, which would guide the
subsequent data association. Finally, the motion states of the
targets are output.

V. SIMULATION RESULTS AND DISCUSSION
Simulation of estimation for motion elements of multiple
underwater targets is performed to verify the effectiveness of
the proposed CSHTmethod. In order to verify the practicabil-
ity of the CSHT method, simulation of underwater multiple

targets tracking is performed as a further application of this
method.

In the process of estimation for motion elements and tar-
gets tracking, for comprehensive evaluation of the effective-
ness of target number estimation and target states estima-
tion, Optimal Sub-Pattern Assignment (OSPA) distance is
adopted as the evaluation criterion [34]. Assuming that X =
{x1, x2, · · · , xm} andY = {y1, y2, · · · , yn} are two finite sets,
and m, n ∈ N are the element numbers of X and Y . If m ≤ n,
OSPA distance is defined as:

d̄ (c)p (X,Y )=

(
1
n
·

(
min
π∈5n

m∑
i=1

d (c)
(
xi, yπi

)p
+cp(n−m)

))1/p

(42)

If m > n:

d̄ (c)p (X,Y ) = d̄ (c)p (Y ,X) (43)

where d (c) is defined as:

d (c)(x, y) = min (c, d (x, y)) (44)

VOLUME 6, 2018 23755



Z. Yan et al.: CSHT Based Estimation Method for Motion Elements of Multiple Underwater Targets

In the context of motion elements estimation and tracking
of multiple targets, assuming that X,Y ⊂ RK , K ∈ N∗ and
d(·) is a metric defined in RK , typically the Euclidean metric
is adopted. 5k is the set of permutations on {1, 2,· · · , k} for
any k ∈ N∗. c and p are cardinality and localization error
sensitive parameters. d̄ (c)p is called the OSPA metric of order
pwith cut-off c, where p stands for the order of the metric and
c determines the weighting of how the metric penalizes cardi-
nality errors as opposed to localization errors. The parameters
are set as c = 20, p = 2 in the simulations. OSPA distance
comprises of cardinality error ē(c)p,card and localization error

ē(c)p,loc that respectively indicate the estimation effectiveness
of target number and target states:

ē(c)p,card(X,Y ) =
(
1
n
· cp(n− m)

)1/p

(45)

ē(c)p,loc(X,Y ) =

(
1
n
· min
π∈5n

m∑
i=1

d (c)
(
xi, yπi

)p)1/p

(46)

In the simulation process, several moving targets are set.
UUV sails along the scheduled route. The sonar provides the
distance and direction information of the targets that appear
in the detection scope in theory. Northern and eastern coor-
dinates of the targets are calculated according to (1) and (2),
which further act as the input data for motion elements esti-
mation.

In order to accord with the actual environmental condi-
tions, false alarm and missing detection effects as well as
positioning errors are considered in the generation of sonar
data. The detection result of one beam at a certain instant is
one of the following situations:

1) When some target exists, the sonar feeds back one
target, which is correct. This situation is expressed as
Detection, and is denoted as event ED.

2) When some target exists, the sonar feeds back no tar-
gets, which is incorrect. This situation is expressed as
Missing Detection, and is denoted as event EM.

3) When no target exists, the sonar feeds back no targets,
which is correct. This situation is expressed as None
Detection, and is denoted as event EN.

4) When no target exists, the sonar feeds back one target,
which is incorrect. This situation is expressed as False
Alarm, and is denoted as event EF.

ED, EM, EN, EF are mutually exclusive random events, and
the occurrence probabilities are P(ED), P(EM), P(EN), P(EF):

P (ED)+ P (EM )+ P (EN )+ P (EF ) = 1 (47)

Note that P(EM) is missing detection rate, and P(EF) is
false alarm rate, namely P(EM) = PM, P(EF) = PF.

Aiming at one beam at a certain instant: when some target
exists in the detection scope, one and only one of ED and
EM will happen. If ED happens, the sonar provides the target
distance including positioning errors. The positioning error is
white Gaussian noise with the mean of zero and the variance
of σ 2. If EM happens, no valid target distance will be feed

FIGURE 7. Simulation of sonar detection.

FIGURE 8. Northern position sampling data.

back. When no target exists in the detection scope, one and
only one of EN and EF will happen. If EN happens, no valid
target distance will be feed back. If EF happens, the feedback
target distance ρ obeys uniform distribution in the interval
(0, ρD), namely ρ ∼U(0,ρD).

Fig. 7 shows the simulation of sonar detection.
The simulations are performed under the platform of Mat-

lab 2016a on a computer with 4GB running memory and a
2.3 GHz processor.

A. SIMULATION OF FEATURE EXTRACTION
At each moment in the voyage of the UUV, motion elements
of multiple targets could be estimated by CSHT method
according to the sonar data of the latest W moments. The
number of surrounding maneuvering targets and their veloc-
ities and initial positions as well as their current positions
could be obtained.
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FIGURE 9. Vote distribution and its plane view in the parameter space. (a) Vote distribution. (b) Plane view of vote distribution.

In the simulation of estimation for motion elements,
3 targets moving at constant velocities along straight lines
are set. The motion parameters of the UUV and the targets
are shown in Table 2.

TABLE 2. Motion parameters of the UUV and the targets.

The false alarm rate and missing detection rate of the sonar
are respectively set as PF = 0.3 and PM = 0.3, the standard
deviation of the positioning error is as σ = 3 m, the sampling
time is set as Ts = 0.5 s, and the width of the time window
is set as W = 20. Without loss of generality, the sonar data
of the firstW instants are selected for estimation. During the
first W instants, the targets exist within the detection scope
of the forward looking sonar. CSHT method is exploited for
estimation of northern velocities and initial positions of the
targets as well as their positions at the W th instant. Further-
more, spatial correlation is performed and then the eastern
velocity and initial position as well as current position of each
target are obtained by single straight line extraction through
CSHT.

The northern position sampling data of the targets are
shown in Fig. 8. The vote distribution in the parameter space
and the corresponding plane view are shown in Fig. 9. The
estimation results of SHT method are shown in Fig. 10. The
clustering results in the parameter space are shown in Fig. 11.
The estimation results of CSHTmethod are shown in Fig. 12.
The eastern position sampling data of the targets are shown
in Fig. 13. The eastern estimation results of SHT and CSHT
methods are respectively shown in Fig. 14 and Fig. 15.

FIGURE 10. Estimation results by SHT.

FIGURE 11. Clustering results in the parameter space.

It can be drawn from the simulation results that recognition
for motion curves of the targets can be hardly accomplished
according to the sonar data affected by false alarm and
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FIGURE 12. Estimation results by CSHT.

FIGURE 13. Eastern position sampling data.

FIGURE 14. Eastern estimation results by SHT.

missing detection problems. Because of the massive clutter
and measurement errors, even if Hough transform is applied,
it is difficult to extract motion elements of the targets by

FIGURE 15. Eastern estimation results by CSHT.

simply setting a threshold for the vote matrix. Although the
northern estimation results of SHT method contain the true
targets, a large number of false targets also exist. The errors of
eastern estimation results of SHTmethod are relatively small,
because Hough transform is applied for single line detection
for each target, which could be achieved by peak extraction.
But redundancy is serious due to the false alarm problem
of the northern estimation results. In contrast, the motion
elements of the targets could be accurately extracted from
the parameter space by CSHT method, including both the
target number and the target states. The estimation results
coincide with the actual situation, indicating that estimation
for motion elements of multiple underwater targets could be
accomplished by CSHT method in false alarm and missing
detection condition.

For adaptability analysis against different false alarm and
missing detection conditions as well as positioning errors,
comparative simulations of CSHT and SHT methods are
performed. The motion parameters of the targets are the same
as Table 2. Firstly, the standard deviation of the positioning
error is set at a medium level, σ = 3 m. The false alarm
rate PF and missing detection rate PM respectively vary from
0.1 to 0.7, and 100 Monte Carlo simulations are performed
for each condition. The velocity OSPA distances and position
OSPA distances of the twomethods in different conditions are
shown in Table 3 and Table 4.

Accordingly, the variation tendency of velocity OSPA dis-
tances and position OSPA distances of the two methods are
shown in Fig. 16 and Fig. 17.Secondly, the false alarm rate PF
and missing detection rate PM are both set at medium levels,
PF = 0.3 and PM = 0.3. The standard deviation of the posi-
tioning error σ varies from 1m to 5m. 100Monte Carlo simu-
lations are performed for each condition. The velocity OSPA
distances and position OSPA distances of the two methods
in different conditions are shown in Table 5 and Table 6.
Accordingly, the variation tendency of velocity OSPA dis-
tances and position OSPA distances of the two methods are
shown in Fig. 18 and Fig. 19.
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TABLE 3. Velocity OSPA distances of motion elements estimation for multiple underwater targets in different false alarm and missing detection
conditions.

TABLE 4. Position OSPA distances of motion elements estimation for multiple underwater targets in different false alarm and missing detection
conditions.

TABLE 5. Velocity OSPA distances of motion elements estimation for multiple underwater targets in different positioning error conditions.

TABLE 6. Position OSPA distances of motion elements estimation for multiple underwater targets in different positioning error conditions.

The simulation results show that the estimation per-
formance of SHT are satisfactory by properly selecting
a threshold in low-noise condition, because the peaks corre-
sponding to the true targets in the parameter space are concen-
tratively distributed. However, noise points in the data space
increase as the environmental condition becomes worse, and
the votes corresponding to the true targets in the parameter
space appear to be relatively scattered. Setting a threshold
cannot guarantee to filter out all false alarm targets, and
a number of redundant targets appear near a true target,
which results in an inaccurately estimated target number and
degrades the estimation performance. In contrast, CSHT is
more adaptable to positioning errors, false alarm and missing
detection problems. The estimated target number is correct,
and the accuracy of the estimation results is barely degraded
with the growing positioning errors, false alarm rate and
missing detection rate. The velocity OSPA distances are
lower than 0.5 m/s and the position OSPA distances are lower
than 5 m.

B. SIMULATION OF UNDERWATER MULTIPLE
TARGETS TRACKING
The proposed CSHT method and the widely used Kalman
filter are applied to underwater multiple targets tracking prob-
lem along with data association technology for comparative
simulations. Kalman filter for each target works according to
the state space model expressed by (5). σW is set as 2σ/T 2

s ,
and σV is set as σ . The initial state for each target is set as
X0 =

[
0 0 0 0

]T, the initial covariance is set as:
P0|0 =


52 0 0 0
0 52 0 0
0 0 22 0
0 0 0 22


5 targets moving at constant velocities are set, and the

simulation process lasts for 100 s. The targets are not always
visible throughout the simulation process because of the lim-
itation of detection distance of the forward looking sonar.
Each target appears and disappears at two certain moments.
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TABLE 7. Motion parameters of the UUV and the targets

FIGURE 16. Velocity OSPA distances in different false alarm and missing
detection conditions.

FIGURE 17. Position OSPA distances in different false alarm and missing
detection conditions.

The motion parameters of the UUV and the targets are shown
in Table 7.

The false alarm rate and missing detection rate of the sonar
are respectively set as PF = 0.5 and PM = 0.5, the standard
deviation of the positioning error is as σ = 3 m, the sampling
time is set as Ts = 0.5 s, and the width of the time window is
set as W = 20. The target position curves of CSHT method
andKalmanmethod are shown in Fig. 20. The tracking results
of CSHT method and Kalman method are shown in Fig. 21.
The cardinality and localization errors as well as the OSPA
distances of the two methods are compared in Fig. 22.

FIGURE 18. Velocity OSPA distances in different positioning error
conditions.

FIGURE 19. Position OSPA distances in different positioning error
conditions.

Obviously, when CSHT method is applied to the multiple
targets tracking problem, the OSPA distances are relatively
large within the first 10 seconds or so since a new target
appears. Once the targets are locked, the cardinality errors
remain zero and the targets are consistently and stably tracked
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FIGURE 20. The target position curves. (a) CSHT method. (b) Kalman method.

TABLE 8. Cardinality errors of multiple targets tracking in different false alarm and missing detection conditions.

TABLE 9. Localization errors of multiple targets tracking in different false alarm and missing detection conditions.

with low localization errors. The average OSPA distance is
lower than 3.5 m, which is lower than 50% of that of Kalman
method. When Kalman method is applied, the localization
errors are relatively low owning to the intrinsic practicability
and effectiveness of Kalman method. But the cardinality
errors are large due to the severe false tracking and missing
tracking that are caused by the clutter. The tracking trajec-
tories appear to be incoherent and the OSPA distances are
relatively large. As to time consumption, the average com-
puting time for each instant of CSHT method and Kalman

method are 0.1537 s and 0.0110 s. So CSHTmethod improves
the estimation performance at the cost of great time con-
sumption. However, the computational efficiency of CSHT
method is sufficient to meet the application requirement
of 0.5 s sampling time. Moreover, a more effective pro-
gramming language would be selected to realize the algo-
rithm in practical engineering applications, which would
further reduce the computing time. Consequently, computa-
tional efficiency would not limit the application of CSHT
method.
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FIGURE 21. The tracking results. (a) CSHT method. (b) Kalman method.

TABLE 10. OSPA distances of multiple targets tracking in different false alarm and missing detection conditions.

TABLE 11. Cardinality errors of multiple targets tracking in different positioning error conditions.

To capture the adaptability against different positioning
errors, false alarm and missing detection conditions, CSHT
method and Kalman method are applied to the multiple

targets tracking problem in different conditions. The motion
parameters of the targets are the same as Table 7. Firstly,
the standard deviation of the positioning error is set at
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TABLE 12. Localization errors of multiple targets tracking in different positioning error conditions

TABLE 13. OSPA distances of multiple targets tracking in different positioning error conditions.

FIGURE 22. The cardinality errors, localization errors and OSPA distances.

FIGURE 23. Cardinality errors in different false alarm and missing
detection conditions.

a medium level, σ = 3 m. The false alarm rate PF and
missing detection rate PM respectively vary from 0.1 to 0.7,
and 100 Monte Carlo simulations are performed for each
method in each condition. The cardinality errors, localization
errors and OSPA distances in different scenarios are listed
in Table 8, Table 9 and Table 10. Accordingly, the varia-
tion tendency of cardinality errors, localization errors and
OSPA distances of the two methods are shown in Fig. 23,
Fig. 24 and Fig. 25. Secondly, the false alarm rate PF and
missing detection rate PM are both set at medium levels,
PF = 0.3 and PM = 0.3. The standard deviation of the
positioning error σ varies from 1 m to 5 m. 100 Monte Carlo
simulations are performed for each method in each condition.

FIGURE 24. Localization errors in different false alarm and missing
detection conditions.

FIGURE 25. OSPA distances in different false alarm and missing detection
conditions.

The cardinality errors, localization errors andOSPA distances
in different scenarios are listed in Table 11, Table 12 and
Table 13. Accordingly, the variation tendency of cardinality
errors, localization errors and OSPA distances are shown
in Fig. 26, Fig. 27 and Fig. 28.

The simulation results show that CSHT method provides
satisfactory tracking performances in different positioning
errors, false alarm and missing detection conditions. The
cardinality errors and localization errors are lower than that
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FIGURE 26. Cardinality errors in different positioning error conditions.

FIGURE 27. Localization errors in different positioning error conditions.

FIGURE 28. OSPA distances in different positioning error conditions.

of Kalman method, and the advantage of cardinality errors is
particularly obvious. The OSPA distances remain below 5 m,
indicating excellent adaptability to environment. Kalman
method performs well in multiple targets tracking in favor-
able environment conditions. However, the false tracking and
missing tracking problem become more and more promi-
nent as the positioning errors, false alarm rate and missing
detection rate increase. The OSPA distances increase and
the tracking performances are degraded obviously, indicating
poor adaptability to environment.

VI. CONCLUSIONS
In this paperwe have presented the Clustering Statistic Hough
Transform (CSHT) method for estimation of motion ele-
ments of multiple underwater targets in order to overcome the

positioning errors, false alarm and missing detection effects
of the sonar data and improve the accuracy and reliability
of the estimation results. The data from the forward-looking
sonar mounted on the UUV are used. Firstly themathematical
model of sonar vision field as well as the processing method
of sonar data is introduced; secondly the principle of CSHT is
elaborated, which applies fuzzy ISODATA clustering method
to feature extraction in the Hough space; and then the appli-
cation of CSHT method in the underwater multiple targets
tracking system is explained. Simulation results show that
CSHT method could accurately estimate motion elements of
multiple underwater targets in noisy and incomplete infor-
mation conditions, indicating insensitiveness to positioning
errors, false alarm and missing detection effects of sonar.
Furthermore, when applying CSHT method to underwater
multiple targets tracking, the false and missing tracking
phenomena are significantly reduced in contrast with the
widely used Kalman filter method. The OSPA distances in
the tracking process by CSHT method are lower than 5 m
even in a severe condition, indicating high positioning and
tracking accuracy. The computational efficiency of CSHT
method meets the application requirement, so it is applicable
in engineering practice. The method presented in this paper
would contribute to enhancement of situation assessment
capability of the UUV towards the surrounding environment
and provide basis for further decision-making behaviors like
collision avoidance and path planning.

It is assumed in this paper that underwater targets move
at constant velocities, which is reasonable and accords with
the actual underwater environment condition to some extent.
However, maneuvering underwater targets with accelerations
indeed exist. In order to guarantee situation assessment capa-
bility of the UUV, future studies will focus on motion ele-
ments estimation of maneuvering underwater targets with
accelerations.
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