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ABSTRACT Reversible bimolecular chemical reactions are elementary chemical reactions. This paper
investigated this reaction type based on DNA strand displacement, and proposed degradation, catalysis,
and annihilation reactions along with the synchronization reaction modules. DNA reaction modules were
compared with ideal reaction modules, and relative reaction rates analyzed using the Lotka–Volterra
oscillator as an example to demonstrate the validity of these reaction modules. An arbitrary chemical reaction
network was employed to numerically simulate and predict synchronization between two Lotka–Volterra
oscillators.

INDEX TERMS DNA strand displacement, Lotka–Volterra oscillator, reaction networks, projective
synchronization.

I. INTRODUCTION
Digital and analog DNA circuits based on DNA strand dis-
placement (DSD) have advanced significantly due to their
modularity, programmability, and versatility, but their design
and control is difficult due to nonlinearities and uncertainties
in reaction networks. Reaction modules are useful for DNA
circuit control. Current DNA reaction modules incorporate
degradation, annihilation, catalysis, integration, gain, and
summation reaction modules. Oishi et al. investigated DNA
reaction modules for biomolecular implementation of linear
I/O systems [12]. Yordanov et al. proposed a computational
design of nucleic acid feedback control circuits through DNA
reaction modules [13]. Soloveichik et al. used DNA reac-
tion modules to realize many classical models, including
Lotka-Volterra oscillators, oregonators, and Rössler chaotic
systems [14].

Synchronization as an important dynamical behavior, and
has attracted considerable attention due to potential applica-
tions in secure communication, image encryption, chemical
reaction networks (CRNs), etc. [15]–[23]. Synchronization
is closely relevant for biomedical engineering. For example,
Zhou et al. applied synchronization to build responsive DNA
nanostructures [24], and Halicka utilized cell synchronization
for DNA damage response [25].

Projective synchronization is extension of complete syn-
chronization [27]–[30], and several extended projective

synchronization methods have been proposed recently,
including function projective synchronization, modified
function projective synchronization, and modified projec-
tive synchronization. In projective synchronization, drive and
response systems are synchronize up to a scaling factor, and
the scaling factor is represented the proportionality between
the drive (or master) and the response (or slave) system.
Potential of projective synchronization in secure communi-
cations due to its faster communication, projective synchro-
nization can be used to extend binary digital to M-nary digital
communication.

This paper introduces synchronization and projective
synchronization to DNA CRNs, because synchronization
may offer the replication of DNA strand a new tech-
nical means [26], and the realization of synchronization
and projective synchronization in digital and analog DNA
circuits is of more extensive application potential. Further-
more, the application of synchronization in CRNs is mean-
ingful for investigation of relationship between ideal formal
CRNs and DNA CRNs, and complexity and nonlinearity of
DNA CRNs.

In this article, we have firstly proved the error degradation
of two species by ideal formal or proposed DNA reversible
reaction, and investigated influencing factors of speed of
degradation. We then introduced this proposed reversible
reaction to synchronize two species, extending CRN
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synchronization to indirect and multiple synchronizations,
and applied this strategy to projective synchronization.

Degradation, catalysis, annihilation reactions and synchro-
nization reaction modules are proposed in our design, and
the relationship of reaction rates between DNA and ideal
formal CRNs is analyzed. An arbitrary CRN was employed
to numerically simulate synchronization and projective syn-
chronization of a Lotka-Volterra oscillator to validate the
proposed method.

II. CHEMICAL REACTION MECHANISM
OF SYNCHRONIZATION
A. ERROR DEGRADATION OF TWO CHEMICAL SPECIES
Reaction (1a) is a reversible, bimolecular reaction, the DSD
implementation of Reaction (1a) is shown by Fig. 1. Let
chemical reactants X and Y be two chemical species from
different CRNs, and chemical species A and B are auxiliary
species, that participate in a reversible, bimolecular reaction,

X + A
k1
−→
←−
k2
Y + B, (1a)

with corresponding ideal formal chemical reaction

X
λ1
−→
←−
λ2
Y , (1b)

where k1 and λ1 denote the forward, and k2 and λ2 denote the
backward reaction rate, satisfying

λ1 = Cmk1

and

λ2 = Cmk2.

Let [X]0, [Y]0, [A]0, and [B]0 represent the initial concen-
trations of X, Y, A, and B respectively, where

Cm = [A]0 = [B]0 � [X ]0, [Y ]0.

It is obvious that, the reaction effect on concentration
of A and B can be ignorable. In this article, it is assumed as

[A]0 = [A]t = [A]

[B]0 = [B]t = [B]

The absolute error among X and Y is defined as

|[e]t | = |[X ]t − [Y ]t |, (2)

Definition 1: Error of two different chemical species will
be degradative, if following are satisfied{
k1 [X ]0 [A]− k2 [Y ]0 [B] ≥ 0 ≥ k1[A]−k2[B], [X ]0 ≥ [Y ]0
k1 [X ]0 [A]− k2 [Y ]0 [B] < 0 < k1[A]−k2[B], [Y]0 > [X ]0

(3)

Proof 1:When [X]0 > [Y]0,
d[X ]t
dt
= k2 [Y ]t [B]− k1 [X ]t [A] < 0

d[Y ]t
dt
= k1[X ]t[A]− k2 [Y ]t [B] > 0

(4)

FIGURE 1. The arrow in a DNA strand indicates the 3′ end. The domain
a2 is 12 nucleotides, and the toehold domain is usually less than 10
nucleotides, so the toehold binding reaction is reversible.

The forward reaction trend is stronger than the back reac-
tion trend in (1), and X reacts with A to produce Y and B, and
time derivative of absolute error is

d |[e]t |
dt
=

d([X ]t − [Y ]t )
dt

= 2k2 [Y ]t [B]− 2k1[X ]t [A]

≤ 2k2 [Y ]∞ [B]− 2k1 [X ]∞ [A] = 0 (5)

As shown in Figs. 2(a) and 2(c), if curves of X and Y
approach equilibrium before intersection, the error among X
and Y can be degradative, we have [X]∞ > ([X]0 + [Y]0)/2
and [Y]∞ < ([X]0 + [Y]0)/2; otherwise curves of X and Y
approach equilibrium after intersection, and the error among
X and Y can’t be degradative as Fig. 2(b) shown.

Thus, in the case as Figs. 2(a) and 2(c) shown, exist

d | [e]∞|
dt

= 2k2 [Y ]∞ [B]− 2k1[X ]∞[A]

≤ 2k2
[X ]0 + [Y ]0

2
[B]−2k1

[X ]0 + [Y ]0
2

[A]

= 2
[X ]0 + [Y ]0

2
(k2[B]− k1[A]) (6)

i.e.,

k1 [A]−k2[B] ≤ 0 (7)

where k1 [A] is crucial to error degradation speed, as shown
in Fig. 2. Error degradation in Fig. 2(a) is faster than Fig. 2(b),
but concentration of X in Fig. 2(b) is closer to Y than
in Fig. 2(a), due to the longer degradation interval.

When [X ]0 > [Y ]0, the proof is similar to proof 1, and
k2 [B] is crucial to the error degradation speed.

B. COMPLETE SYNCHRONIZATION OF TWO
CHEMICAL SPECIES
Complete synchronization of two CRNs is a special case of
degradation as shown by Fig. 3. To show synchronization
of two different chemical species, the error between two
chemical species is defined as

[e]t = [X ]t − [Y ]t , (8)

Definition 2. If k1[A] = k2[B] exists, complete syn-
chronization between two different chemical species can be
achieved,

where

[X ]∞ = [Y ]∞ = ([X ]0 + [Y ]0) /2. (9)
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FIGURE 2. Evolution of X and Y (a) With error degradation: [X ]0 = 3nM,
[Y ]0 = 10nM; [A]0 = 103nM, [B]0 = 103nM; k1 = 2.3× 10−5/nM/s,
k2 = 1× 10−5/nM/s. (b) Without error degradation: [X ]0 = 3nM,
[Y ]0 = 10nM; [A]0 = 103nM, [B]0 = 35nM; k1 = 2× 10−5/nM/s,
k2 = 2.5× 10−5/nM/s. (c) With error degradation: [X ]0 = 3nM,
[Y ]0 = 10nM; [A]0 = 103nM, [B]0 = 103nM; k1 = 1.4× 10−5/nM/s,
k2 = 1.2× 10−5/nM/s.

Proof 2: Error evolution can be expressed as

d[e]t
dt
=

d[X ]t
dt
−

d[Y ]t
dt

= 2 (k2[B][Y ]t − k1[A][X ]t)

= −2k1 [A]
(
[X ]t −

k2 [B]
k1 [A]

[Y ]t

)
(10)

If k1[A] = k2[B] is satisfied, we can obtain

k2 [B]0
k1 [A]0

= 1 (11)

and Eq. (11) can be simplified to

d[e]t
dt
= −2k1[A] ([X ]t − [Y ]t) = −2k1[A][e]t (12)

FIGURE 3. Synchronization for X and Y where [X ]0 = 2nM, [Y ]0 = 10nM;
[A]0 = 103nM, [B]0 = 103nM; k1 = 10−5/nM/s, k2 = 10−5/nM/s.

Thus, from the Lyapunov theorem, complete synchroniza-
tion of two different chemical species with different initial
concentrations is realized.

When (1) reaches dynamic equilibrium,

[X ]∞ = [Y ]∞ =
[X ]0 + [Y ]0

2
, (13)

since [X ]t − [X ]0 = [Y ]0 − [Y ]t , and 2k1 [A] is crucial to
the synchronization speed.

C. INDIRECT SYNCHRONIZATION OF TWO
DIFFERENT CHEMICAL SPECIES
If chemical specie X cannot react with A to produce Y
reversibly, we can realize synchronization through the follow-
ing CRNs

X + A1
k1
−→
←−
k2
W1 + B1 (14)

Y + A2
k3
−→
←−
k4
W2 + B2 (15)

so that

W1 + A3
k5
−→
←−
k6
W2 + B3 (16)

where [e]t = [X ]t − [Y ]t .
Definition 3: If Eq. (17) is satisfied, complete synchroniza-

tion between X and Y can be realized
k2 [B1]0 = k1 [A1]0
k4 [B2]0 = k3 [A2]0
k6 [B3]0 = k5 [A3]0

(17)

where 
Cm = [A1]0= [B1]0 � [X ]0 , [W1]0
Cm = [A2]0= [B2]0 � [Y ]0 , [W2]0
Cm = [A3]0= [B3]0 � [W1]0, [W2]0

(18)

The proof is similar to proof 2. Based on (14) and (15),
X andW1 are synchronized, Y andW2 are synchronized, it is
obvious that the synchronization between X and Y can be
realized, becauseW1 andW2 are also synchronized according
to (16).
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D. SYNCHRONIZATION OF MULTIPLE DIFFERENT
CHEMICAL SPECIES
We synchronize multiple CRNs as follows,

X + A1
k1
−→
←−
k2
Y1 + B1 (19)

X + A2
k3
−→
←−
k4
Y2 + B2 (20)

...

X + An
k2n−1
−→
←−
k2n

Yn + Bn, n ≥ 1 (21)

Definition 4: The synchronization between X and
Yi(i = 1, · · · ,n) can be obtained, if exist

k2 [B1]0 = k1 [A1]0
k4 [B2]0 = k3 [A2]0

...

k2n [Bn]0 = k2n−1 [An]0

(22)

where 
Cm = [A1]0= [B1]0 � [X ]0, [Y1]0
Cm = [A2]0= [B2]0 � [X ]0, [Y2]0

...

Cm = [An]0 = [Bn]0 � [X ]0, [Yn]0

(23)

The proof is similar to proof 2.

E. PROJECTIVE SYNCHRONIZATION
For projective synchronization, error between two different
chemical species is defined as

[e]t = n× [X ]t − [Y ]t , (24)

Definition 5: If k1 = nk2, exist [e]∞ = 0, where n ∈ R is
scaling factor.

Proof 3:

d[e]t
dt
=

d(n [X ]t )
dt

−
d[Y ]t
dt

= 2 (k2[B][Y ]t − k1[A][X ]t)

= 2k2([B] [Y ]t − n[A][X ]t ) (25)

Since[A] = [B] = Cm, (25) can be simplified to

d[e]t
dt
=

d(n [X ]t )
dt

−
d[Y ]t
dt

= −2k2[A](n[X ]t− [Y ]t )

= −2k2[A][e]t . (26)

When (1) reaches dynamic equilibrium, since [X ]t −
[X ]0 = [Y ]0 − [Y ]t and [Y ]∞ = [X ]∞, exist

[X ]∞ =
[X ]0 + [Y ]0

n+ 1

[Y ]∞ =
n([X ]0 + [Y ]0)

n+ 1
.

(27)

FIGURE 4. Projective synchronization for X and Y where [X ]0 = 2nM,
[Y ]0 = 10nM;[A]0 = 104nM, [B]0 = 104nM; k1 = 10−5/nM/s,
k2 = 10−5/nM/s, n = 2.

FIGURE 5. Degradation of X where [X ]0 = 3nM, [Y ]0 = 10nM;
[A]0 = 102nM, [B]0 = 102nM;k1 = 10−5/nM/s, k2 = 10−3/nM/s.

As Fig. 4 shown, [Y ]∞ = 2[X ]∞, because n = 2. Under
the premise of projective synchronization of two different
chemical species, the concentration of X will approach zero,
as shown in Fig. 5, when [Y ]0 � [X ]0, n � 1. Thus,
we realize degradation of X .

III. CRN MODULES
Approximation of ideal formal CRNs (30) can be realized
by Visual DSD software [16]. Figure 6(a) shows the DSD
implementation of catalysis reaction module 1. The auxiliary
specieA±i is displaced by single strand (ss) DNAX±1 at rate qi,
producing the intermediate complex L±i and ss DNA H±i ,
which reacts with auxiliary specie C±i to release two ss
DNA X±1 . Figure 6(b) shows that the catalysis processes of
X±1 in DNA CRNs coincide with those of X±1 in ideal formal
CRNs, which means that ideal formal CRNs (30) are suitable
as corresponding DNA CRNs.

Fig. 7(a) shows the DSD implementation of catalysis reac-
tion module 2. The reaction is initiated when ss DNA X±1
displaces auxiliary species B±i reversibly, producing complex
DNA strand T±i and releasing ssDNA strand F±i at rate qm;
F±i reacts with complex G±i releasing two ss DNA X±2 .
Fig. 7(b) shows that the catalysis processes of X±1 and X±2
in DNA CRNs coincide with in ideal formal CRNs, which
means that ideal formal CRNs (34) is equivalent to corre-
sponding DNA CRNs.
Fig. 8(a) shows the degradation reaction module imple-

mented by DSD, X±2 is reversibly consumed by complex
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FIGURE 6. Catalysis reaction module 1: X±1 → 2X±1 (a) DNA reactions; (b) concentration evolution of X±1 in DNA CRNs and ideal formal CRNs
respectively, where Cm = 2× 104nM and [X±1 ]0 = 3nM; qi = 10−7/nM/s and qm = 10−3/nM/s. where qm represents a maximum strand
displacement rate constant under the assumption of equal binding strength for all full toeholds; Cmax is the initial concentration of auxiliary
complex strands A±i and C±i ; qi and ki are satisfied qi ≤ qm, ki ≤ qmCm. The DNA reactions of Catalysis reaction module 1are adapted
from [14].

FIGURE 7. Catalysis reaction module 2: X±1 + X±2
ki
−→ 2X±2 (a) DNA reactions; (b) concentration evolutions of X±1 and X±2 in DNA CRNs and

ideal formal CRNs respectively, where Cm = 2× 104nM, [X±1 ]0 = 3nM, and [X±2 ]0 = 6nM; qi = 10−4/nM/s and qm = 10−2/nM/s, Cmax is the
initial concentration of auxiliary complex strands B±i , E±i and G±i . The DNA reactions of Catalysis reaction module 1are adapted from [14].

M±i to produce inert waste. Fig. 8(b) shows that degradation
processes of X±2 in DNA CRNs do not coincide with those
of X±2 in ideal formal CRNs, because the reversible reaction
cannot completely consume X±2 .
Fig. 9(a) shows the DSD implementation of the annihi-

lation reaction module, ss DNA X+1 and X−1 are reversibly

consumed by auxiliary species Fai and Fbi respectively, pro-
ducing ss DNA Dt i and complex Msi. Dt i reacts with Msi
producing inert waste. Fig. 9(b) shows that the annihilation
processes of X±1 and X±2 in DNA CRNs coincide with in
ideal CRNs, which means that ideal formal CRNs (40) are
equivalent to corresponding DNA CRNs.
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FIGURE 8. Degradation reaction module X±2 → ∅: DNA reactions are listed in (a); (b) represents evolution of degradation of X2 in DNA
CRNs and ideal formal CRNs respectively, where Cm = 102nM and [X±2 ]0 = 3nM, qd i = 10−3/nM/s and qsi = 10−5/nM/s, Cmax is the
initial concentration of auxiliary complex strands Mi and Ni .

FIGURE 9. Annihilation reaction module X+1 + X−1 → ∅: DNA reactions are listed in (a); (b) represents evolution of annihilation of X+1 and X−1
in DNA CRNs and ideal formal CRNs respectively, where Cm = 2× 104nM, [X+1 ]0 = 3nM and [X−1 ]0 = 6nM, qi = 10−4/nM/s and
qm = 10−2/nM/s, Cmax is the initial concentration of auxiliary complex strands Fai , Fbi and Msi .

Fig. 10(a) shows the DNA reaction list for the synchroniza-
tion or projective synchronization reaction module. Complex
DNA strands Dx±i and Dy±i are displaced by X±1 and Y±1 ,
respectively and reversibly, Wx±i and Wy±i are displaced by
Dz±i and Jz±i respectively. Figs. 10(b) and (c) show that the
synchronization and projective synchronization processes of
X±1 and Y±1 in DNA CRNs are coincide with those of X±1 and
Y±1 in ideal formal CRNs, which means that ideal CRNs (44)
are suitable as corresponding DNA CRNs.

IV. RESULTS
A. LOTKA-VOLTERRA OSCILLATOR
The Lotka-Volterra oscillator is an ecological food
chain oscillator, and a famous mathematical principle to
describe predator-prey dynamics. The basic Lotka-Volterra

oscillator [14] can be described as ideal formal CRNs

X1
k1
−→ 2X1 (45a)

X1 + X2
k2
−→ 2X2 (45b)

X2
k3
−→ φ (45c)

From (45a), the product of X1 increases the product of X2,
and (45b) is catalyzed by X2. Thus, increasing X2 consumes
more X1, which slows (45b), and consequently decreases X2.
Therefore, concentrations of X1 and X2 fluctuate.

The CRNs (45) were converted to a DNA strand dis-
placement system, but X1 and X2 are positive, because they
represented the concentrations of X1 and X2, respectively, and
the concentration is positive, as shown in Fig. 11(a). To extend
the range of X1 and X2, the basic Lotka-Volterra oscillator
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FIGURE 10. Synchronization or projective synchronization reaction module X±1 Y±1 : DNA reactions are listed in (a); (b) represents evolution of
synchronization among X±1 and Y±1 in DNA CRNs and ideal formal CRNs respectively, where Cm = 1× 104nM, [X1]0 = 16nM and [Y1]0 = 4nM;
qi = 10−3/nM/s, qsi = 10−5/nM/s, qr i = 10−5/nM/s and qm = 2× 10−3/nM/s. (c) represents evolution of projective synchronization among
X±1 and Y±1 in DNA CRNs and idea CRNs respectively, where Cm = 1× 104nM, [X1]0 = 16nM and [Y1]0 = 4nM; qi = 10−3/nM/s,
qsi = 2× 10−5/nM/s, qr i = 10−5/nM/s and qm = 2× 10−3/nM/s. Cmax is the initial concentration of auxiliary complex strands Dx±i ,
Dy±i , Dz±i , Jx±i , Jy±i and Jz±i .

FIGURE 11. (a), (b): Evolution of concentrations of X1 and X2 for the basic Lotka-Volterra oscillator in
ideal CRNs and DNA CRNs, where [X1]0 = 10nM and [X2]0 = 40nM; k1 = 1.334× 10−2/nM/s,
k2 = 10−3/nM/s and k3 = 2× 10−3/nM/s. Cm = 2× 104nM; q1 = 10−4/nM/s and qm = 10−2/nM/s.

model (45) can be modified as ideal CRNs (46)

X±1
k1
−→ 2X±1 (46a)

X±1 + X
±

2
k2
−→ 2X±2 (46b)

X±2
k3
−→ ∅ (46c)

X+1 + X
−

1
k4
−→ ∅ (46d)

X+2 + X
−

2
k4
−→ ∅ (46e)

where the species X+i (i = 1, 2) and X−i are referred to repre-
sent the positive and negative component of value of Xi, with
annihilation reaction (46d) and (46e), so that Xi = X+i −X

−

i .
CRNs (46) can also be described byDNA reactionmodules

as follows:

X±1 + A
±

1
q1
−→ H±1 + L

±

1 (47a)

H±1 + C
±

1
qm
−→ 2X±1 + waste (47b)

X±1 + B
±

1

q2
−→
←−
qm
T±1 + E

±

1 (48a)
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X±2 + T
±

1
qm
−→ waste+ F±1 (48b)

F±1 + G
±

1
qm
−→ waste+ 2X±2 (48c)

X±2 +M
±

1

q3
−→
←−
q4
P±1 + N

±

1 (49)

X+1 + Fa1
q5
−→
←−
qm
Ds1 +Ms1, (50a)

X−1 + Fa2
q5
−→
←−
qm
Ds2 +Ms2 (50b)

Ds1 +Ms2
qm
−→ waste (50c)

X+2 + Fa3
q5
−→
←−
qm
Ds3 +Ms3 (51a)

X−2 + Fa4
q5
−→
←−
qm
Ds4 +Ms4, (51b)

Ds3 +Ms4
qm
−→ waste. (51c)

Fig. 11 shows the evolution of X and Y for the basic Lotka-
Volterra oscillator in DNA and ideal formal CRNs.

B. SYNCHRONIZATION OF TWO PROPOSED
LOTKA-VOLTERRA OSCILLATORS
Ideal formal CRNs (46) are assumed as the target system, and
the response system is defined as

Y±1
k1
−→ 2Y±1 (52a)

Y±1 + Y
±

2
k2
−→ 2Y±2 (52b)

Y±2
k3
−→ ∅ (52c)

Y+1 + Y
−

1
k4
−→ ∅ (52d)

Y+2 + Y
−

2
k4
−→ ∅ (52e)

Then, we add the synchronization reaction module to the
target and response systems as (53)

X±1
ks
−→
←−
ks

Y±1 (53a)

X±2
ks
−→
←−
ks

Y±2 (53b)

The dynamics of X+1 and X−1 are then
dX+1
dt
= k1X

+

1 −k2X
+

1 X
+

2 − ks
(
Y+1 − X

+

1

)
− k4X

+

1 X
−

1

dX−1
dt
= k1X

−

1 −k2X
−

1 X
−

2 − ks
(
Y−1 − X

−

1

)
− k4X

+

1 X
−

1

(54)

Therefor

dX1
dt
=

dX+1
dt
−

dX−1
dt

= k1X
+

1 − k2X
+

1 X
+

2 + ks
(
Y+1 − X

+

1

)
− k4X

+

1 X
−

1

−
(
k1X
−

1 − k2X
−

1 X
−

2 + ks
(
Y−1 − X

−

1

)
− k4X

+

1 X
−

1

)
= k1

(
X+1 − X

−

1

)
− k2

(
(X1X2)+ − (X1X2)−

)
+ ks(Y

+

1 − Y
−

1 )− ks(X
+

1 − X
−

1 ) (55)

where (X1X2)+ = X+1 X
+

2 and (X1X2)− = X−1 X
−

2 , and
Eq. (55) can be further simplified as

dX1
dt
= k1X1 − k2X1X2 + ks(Y1 − X1) (56)

Similarly dynamics of X2, Y1 and Y2 can be obtained as

dX2
dt
= k2X1X2 − k3X2 + ks(Y2 − X2) (57)

dY1
dt
= k1Y1 − k2Y1Y2 + ks(X1 − Y1) (58)

dY2
dt
= k2Y1Y2 − k3Y2 + ks(X2 − Y2) (59)

Define the error state as ei = Yi − Xi (i = 1, 2), and the
dynamics of error can be described as

de1
dt
= (k1 − 2ks)e1 +81(X1)−82(Y1)

de2
dt
= −(k3 + 2ks)e2 +92(Y2)−91(X2)

(60)

where 81 (X1) = k2X1X2, 82 (Y1) = k2Y1Y2, 91(X2) =
k2X1X2, 92 (Y2) = k2Y1Y2.
Definition 6: The complete synchronization between the

CRNs (46) and the CRNs (52) can be realized by adding
synchronization reactionmodule, if the inequalities ε1 + k1−
2ks < 0 and ε2 − k3 − 2ks < 0 are satisfied.

Proof 4: Considering the following Lyapunov function:

V (t) =
2∑
i=1

1
2
eTi (t) ei (t) (61)

The time derivative of V (t) is

dV (t)
dt
=

2∑
i=1

1
2
eTi (t)ėi(t)

= e1 ((k1 − 2ks)e1 +81(X1)−82(Y1))

+ e2 (−(k3 + 2ks)e2 +92(Y2)−91(X2)) (62)

For the real number ε1, ε2 > 0, the following relationships
are set up through utilizing of Lipschitz condition:

‖81(X1)−82(Y1)‖ ≤ ε1 ‖X1 − Y1‖ (63)

‖91(X2)−92(Y2)‖ ≤ ε2 ‖X2 − Y2‖ (64)

and Eq. (61) can be simplified as follow:

dV (t)
dt
≤ (ε1 + k1 − 2ks) e21 + (ε2 − k3 − 2ks) e22 (65)

If the inequalities ε1 + k1 − 2ks < 0 and ε2 − k3 −
2ks < 0 are hold, it is easy to obtain dV (t)/dt < 0. Based
on Lyapunov stability, the errors of two CRNs systems are
asymptotically stable, and the Theorem 5 is proved.

The ideal formal CRNs (52) and reaction (53) can be
approximated as DNA reaction modules

Y±1 + A
±

2
q1
−→ H±2 + L

±

2 (66a)

H±2 + C
±

2
qm
−→ 2Y±1 + waste (66b)

Y±1 + B
±

2

q2
−→
←−
qm
T±2 + E

±

2 (67a)
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Y±2 + T
±

2
qm
−→ waste+ F±2 (67b)

F±2 + G
±

2
qm
−→ waste+ 2Y±2 (67c)

Y±2 +M
±

2

q3
−→
←−
q4
P±2 + N

±

2 (68)

Y+1 + Fa5
q5
−→
←−
qm
Ds5 +Ms5 (69a)

Y−1 + Fa6
q5
−→
←−
qm
Ds6 +Ms6 (69b)

Ds5 +Ms6
qm
−→ waste (69c)

Y+2 + Fa7
q5
−→
←−
qm
Ds7 +Ms7 (70a)

Y−2 + Fa8
q5
−→
←−
qm
Ds8 +Ms8 (70b)

Ds7 +Ms8
qm
−→ waste (70c)

X±1 + D
±

1

q6
−→
←−
qm
W±1 + J

±

1

Y±1 + D
±

2

q6
−→
←−
qm
W±2 + J

±

2

W±1 + D
±

3

q7
−→
←−
q7
W±2 + J

±

3

(71a)


X±2 + D

±

4

q6
−→
←−
qm
W±3 + J

±

4

Y±2 + D
±

5

q6
−→
←−
qm
W±4 + J

±

5

W±3 + D
±

6

q7
−→
←−
q7
W±4 + J

±

6

(71b)

Visual DSD software can realize approximations of the
ideal formal CRNs (46) and (52). The catalysis reactions
(47) and (66) are realized by catalysis module 1 as shown
in Fig. 6. The DSD implementation of the catalysis reactions
(48) and (67) are shown in Fig. 7. The DSD implementation
of reactions (47) and (66) can be realized by degradation
reaction module, as shown in Fig. 8. Reactions (50), (51),
(69) and (70) are annihilation reactions, which can be real-
ized by the annihilation reaction module. Finally, the DSD
implementation of reaction (71) can be obtained by the syn-
chronization or projective synchronization reaction modules.

C. PROJECTIVE SYNCHRONIZATION OF TWO PROPOSED
LOTKA-VOLTERRA OSCILLATORS
To realize projective synchronization of two proposed Lotka-
Volterra oscillators, we add the projective synchronization
reaction module to the target and response systems as:

X±1
ks
−→
←−
kr

Y±1 (72a)

X±2
ks
−→
←−
kr

Y±2 (72b)

And dynamics of X2, Y1 and Y2 can be written as
dX1
dt
= k1X1 − k2X1X2 + ksY1 − krX1

dX2
dt
= k

2
X1X2 − k3X2 + ksY2 − krX2

(73)

{
dY1
dt = k1Y1 − k2Y1Y2 + ksX1 − krY1
dY2
dt = k2Y1Y2 − k3Y2 + ksX2 − krY2

(74)

In order to show the projective synchronization of two
CRNs systems, the error between state variables of system
is defined as e

′

i = Yi − αXi (i = 1, 2), and the dynamics of
error can be described as

de
′

1

dt
= (k1 − 2kr )e1 +31(X1)−32(Y1)

de
′

2

dt
= −(k3 + 2kr )e2 + K2(Y2)− K1(X2)

(75)

where 31 (X1) = k2X1X2 + k1(ks/kr − 1)X1,32 (Y1) =
k2Y1Y2, K1(X2) = k2X1X2−k3(ks/kr − 1)X2,K2 (Y2) =
k2Y1Y2, α = ks/kr .
Definition 7: The projective synchronization between the

CRNs (46) and the CRNs (52) can be realized by adding pro-
jective synchronization reaction module, if the inequalities
ξ1 + k1 − 2kr < 0 and ξ2 − k3 − 2kr < 0 are satisfied.

Proof 5: The time derivative of V
′

(t) is

dV
′

(t)
dt
=

2∑
i=1

1
2
e
′T
i (t)ė

′

i(t)

= e
′

1

(
(k1 − 2kr )e

′

1 +31(X1)−32(Y1)
)

+ e
′

2 (−(k3 + 2kr + K2(Y2)− K1(X2)) (76)

For the real number ξ1, ξ2 > 0, the following relationships
are set up through utilizing of Lipschitz condition:

‖31(X1)−32(Y1)‖ ≤ ξ1 ‖X1 − Y1‖ (77)

‖K1(X2)− K2(Y2)‖ ≤ ξ2 ‖X2 − Y2‖ (78)

and Eq. (76) can be simplified as follow:

dV
′

(t)
dt
≤ (ξ1 + k1 − 2kr ) e21 +

(
ξ2 − k3 − 2kr

)
e22 (79)

If the inequalities ξ1 + k1−2ks < 0 and ξ2 − k3−2ks < 0
are hold, it is easy to obtain dV

′

(t)/dt < 0. Based on Lya-
punov stability, projective synchronization of the CRNs (46)
and the CRNs (52) can be achieved.

The ideal formal reaction (72) can be approximated as
X±1 + D

±

7

q6
−→
←−
qm
W±6 + J

±

7

Y±1 + D
±

8

q6
−→
←−
qm
W±7 + J

±

8

W±6 + D
±

9

q7
−→
←−
q8
W±7 + J

±

9

(80)

and 
X±2 + D

±

10

q6
−→
←−
qm
W±8 + J

±

10

Y±2 + D
±

11

q6
−→
←−
qm
W±9 + J

±

11

W±8 + D
±

12

q7
−→
←−
q8
W±9 + J

±

12

(81)
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FIGURE 12. Concentration evolution of X+1 − X−1 and Y+1 − Y−1 for the
proposed Lotka-Volterra oscillator.

FIGURE 13. Concentration evolution of X+2 − X−2 and Y+2 − Y−2 for the
proposed Lotka-Volterra oscillator.

FIGURE 14. Error evolution for the proposed Lotka-Volterra oscillator.

V. SIMULATION RESULTS
A. SYNCHRONIZATION OF PROPOSED
LOTKA-VOLTERRA OSCILLATOR
Table 1 shows the Lotka-Volterra oscillator parameters,
where [X+1 ]0, [X

−

1 ]0, [X
+

2 ]0, [Y
+

1 ]0, [Y
−

1 ]0, [Y
=

2 ]0, and [Y
−

2 ]0
represent the initial value of species X+1 , X−1 , X+2 , X−2 ,
Y+1 , Y−1 , Y+2 and Y−2 respectively, where [X+1 ]0 = 30nM,
[X−1 ]0 = 20nM, [X+2 ]0 = 4nM, [X−2 ]0 = 10nM, [Y+1 ]0 =
30nM, [Y−1 ]0 = 30nM, [Y+2 ]0 = 20nM, and [Y−2 ]0 = 15nM.
Initial concentrations of the auxiliary species A±1 , C

±

1 , B±1 ,
E±1 , G±1 , M

±

1 , N±1 , Fa1, Fa2, Ms1, Ds2, Fa3, Ms3, Fa4, Ds4,
A±2 , C

±

2 , B±2 , E
±

2 , G±2 , M
±

2 , N±2 , Fa5, Fa6, Ds6, Ms5, Fa7,
Ms7, Fa8, Ds8, D

±

i , and J
±

i (i = 1, · · · , 6) were set to Cm,

TABLE 1. Proposed Lotka-Volterra oscillator parameter values

FIGURE 15. Concentration evolution of X+1 − X−1 and Y+1 − Y−1 for the
proposed Lotka-Volterra oscillator added synchronization reaction.

and initial concentration of the auxiliary species P±1 and P±2
were fixed as 0.1 nM.
Fig. 12 shows the concentration evolution of X+1 −X

−

1 and
Y+1 − Y

−

1 , and Fig. 13 shows the concentration evolution of
X+2 −X

−

2 , Y+2 −Y
−

2 for the proposed Lotka-Volterra oscillator.
Fig. 14 shows the error evolution for{

e1 = [X+1 ]t − [X−1 ]t −
(
[Y+1 ]t − [Y−1 ]t

)
e2 = [X+2 ]t − [X−2 ]t −

(
[Y+2 ]t − [Y−2 ]t

) (82)

From Figure 12–14, concentration evolution of X+1 − X
−

1
(or X+2 − X−2 ), Y+1 − Y−1 (or Y+2 − Y−2 ), and errors of the
proposed Lotka-Volterra oscillator in DNA CRNs is similar
to those for ideal formal CRNs, which demonstrates that the
synchronization strategy in ideal formal CRNs is equivalent
to corresponding DNA CRNs.

B. PROJECTIVE SYNCHRONIZATION OF PROPOSED
LOTKA-VOLTERRA OSCILLATOR
Table 2 shows the projective synchronization reactionmodule
parameters, where [X+1 ]0 = 10nM, [X−1 ]0 = 1nM, [X+2 ]0 =
3nM, [X−2 ]0 = 2nM, [Y+1 ]0 = 6nM, [Y−1 ]0 = 20nM,
[Y+2 ]0 = 3nM, and [Y−2 ]0 = 5nM. Initial concentrations of
the auxiliary species D±i and J±i (i = 7, · · · , 12) were set
to Cm.
Fig 15 shows the concentration evolution of X+1 − X−1 ,

Y+1 −Y
−

1 , and Fig. 16 of X+2 −X
−

2 , Y+2 −Y
−

2 for the proposed
Lotka-Volterra oscillator. Figure 17 shows the error evolution
for {

e
′

1 = 2
(
[X+1 ]t − [X−1 ]t

)
−
(
[Y+1 ]t − [Y−1 ]t

)
e
′

2 = 2
(
[X+2 ]t − [X−2 ]t

)
−
(
[Y+2 ]t − [Y−2 ]t

) (83)
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FIGURE 16. Concentration evolution of X+2 − X−2 and Y+2 − Y−2 for the
proposed Lotka-Volterra oscillator added synchronization reaction.

FIGURE 17. Error evolution for the proposed Lotka-Volterra oscillator.

TABLE 2. Proposed Lotka-Volterra oscillator parameter values

From Figs. 15–17, concentration evolution of X+1 − X−1
(or X+2 − X−2 ), Y+1 − Y−1 (or Y+2 − Y−2 ), when we added
synchronization reaction to CRNs, and errors of the proposed
Lotka-Volterra oscillator in DNA CRNs are similar to those
for ideal formal CRNs, which means that projective syn-
chronization strategy in ideal formal CRNs is equivalent to
corresponding DNA CRNs.

VI. CONCLUSIONS
Reversible chemical reactions in error degradation of two
chemical species, and synchronization or projective synchro-
nization of two chemical species are investigated in this
article.

We realized degradation reactions by reversible chemical
reactions, and proposed two types of catalysis, degradation,
and annihilation reactions; as well as synchronization and

projective synchronization reaction modules implemented by
DNA CRNs.

Relationships between ideal formal CRNs and DNACRNs
for these modules were analyzed by using a proposed Lotka-
Volterra oscillator as example to validate the effectiveness
of the proposed strategies for synchronization or projective
synchronization in ideal formal CRNs and DNA CRNs.
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