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ABSTRACT Synthetic aperture radar (SAR) images have been widely used for ship monitoring. The
traditional methods of SAR ship detection are difficult to detect small scale ships and avoid the interference
of inshore complex background. Deep learning detection methods have shown great performance on various
object detection tasks recently but using deep learning methods for SAR ship detection does not show an
excellent performance it should have. One of the important reasons is that there is no effective model to
handle the detection of multiscale ships in multiresolution SAR images. Another important reason is it
is difficult to handle multiscene SAR ship detection including offshore and inshore, especially it cannot
effectively distinguish between inshore complex background and ships. In this paper, we propose a densely
connected multiscale neural network based on faster-RCNN framework to solve multiscale and multiscene
SAR ship detection. Instead of using a single feature map to generate proposals, we densely connect one
feature map to every other feature maps from top to down and generate proposals from each fused feature
map. In addition, we propose a training strategy to reduce the weight of easy examples in the loss function,
so that the training process more focus on the hard examples to reduce false alarm. Experiments on expanded
public SAR ship detection dataset, verify the proposed method can achieve an excellent performance on
multiscale SAR ship detection in multiscene.

INDEX TERMS Ship detection, multiscale, neural network, synthetic aperture radar (SAR).

I. INTRODUCTION
Ship detection has been playing an increasingly essential
role in marine monitoring and maritime traffic supervi-
sion [1]–[4]. Due to its independence on the solar illumination
and all-weather capability, Synthetic Aperture Radar (SAR)
such as TerraSAR-X, RADARSAT-2, and Sentinel-1 has
developed rapidly recently and it greatly promotes SAR ship
detection [5]–[7]. Many algorithms for ship detection in SAR
images among which constant false alarm rate (CFAR) and
its variations are widely used [8], [9]. They can automatically
adapt the threshold to the varying sea backgroundwhilemain-
taining the expected performance. However, it is difficult for
CFARs to exhibit good performance for small scale ships and
inshore complex scenes. To deal with the inshore SAR ship
detection, Zhao et al. [10] proposed a method through fea-
ture recognition and adaptive background window to detect

inshore ships in SAR images. Liang et al. [11] presented
an approach via saliency and context information to deal
with inshore SAR ship detection. However, these methods of
inshore SAR ship detection require post-processing to deal
with many false alarms, they are not end-to-end [12], [13].

With the development of computer hardware and deep
learning, convolutional neural network (CNN) has become
the dominate approach for object detection, classification,
and segmentation [14]–[17]. Features extracted by neural net-
work have great performance than those by hand [18]–[20].
In recent years, many detection algorithms based on deep
learning have developed rapidly [21]–[31]. RCNN uses CNN
to extract a fixed length feature vector from each region
proposal before a set of class specific linear SVMs [21].
Then the object detection methods based on region with CNN
are intensively investigated. Fast-RCNN [22] processes the
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whole image with CNN to produce a feature map, each object
proposal is mapped to the feature map before (region of
interesting) RoI pooling then generates two output vectors:
softmax probabilities and bounding-box regression offsets
with sharing computation. Faster-RCNN [23] introduces a
Region Proposal Network (RPN) that shares convolutional
features of full image with detection network to generate high
quality region proposals, which are used by Fast-RCNN to
refine the result of detection. Inspired by the developments of
deep leaning, SAR ship detection based on deep learning is
an inevitable trend in the future [32]–[35]. However, it does
not show the great performance as expected when applying
deep learning methods in SAR ship detection. One of the
important reasons is that the current deep learning methods
used in SAR ship detection have weak ability to deal with
multiscale SAR ship detection. It is mainly because they
generate region and classification score from a single high-
level convolutional feature map. The high-level feature map
has more semantic information but lower resolution which is
insufficient to show the characteristic of multiscale objects.
However, ships always have different scales in different res-
olution images as shown in Fig. 1. Moreover, SAR images of
different resolutions have different effects on ship detection,
low resolution SAR images are suitable for wide range detec-
tion, high resolution SAR images can achieve more accurate
position. Therefore, solving the multiscale ship detection in
multiresolution SAR images is of great significance. This
paper proposes a network which generates RoIs from each
fused feature maps with dense connection to solve multiscale
SAR ship detection.

FIGURE 1. Showing two clips of SAR images.

The other important problem of using deep learning to
detect ships in SAR images is the inference of inshore com-
plex background which leads to a high false alarm. It is
mainly due to the imbalance of easy and hard examples during
the training of deep learning. The class imbalance of object
detection always addressed via sampling heuristic [36], boot-
strapping [37] and online hard examplemining (OHEM) [38].
Sample heuristic usually guarantees a fixed foreground-to-
background ratio. Bootstrapping in MSCNN [29] ranks the
negative examples according to their classification scores and
then collects top-N negative examples. In OHEM examples
of training are sampled according to the current loss of
each example under consideration. However, when aforemen-
tioned methods of solving class imbalance are used in SAR

ship detection, theywill have problems. Sample heuristic [36]
is only used to balance positive and negative examples rather
than easy and hard examples. Bootstrapping and OHEM are
no guarantee that the negative examples of choice include
the inshore complex objects which are highly like ships
completely. To avoid the inference of inshore complex back-
ground, we propose amechanism to reduce the weight of easy
examples in the loss function and focus on the hard examples
during training.

FIGURE 2. The architecture of DCMSNN which consists of RPN
subnetwork and detection subnetwork.

This paper proposed a densely connected multiscale neu-
ral network (DCMSNN) based on Faster-RCNN as shown
in Fig. 2 to achieve multiscale and multiscene SAR ship
detection. Due to different layers of CNN feature maps have
different spatial resolution and semantic information. Specif-
ically, the lower feature maps of CNN have a higher spa-
tial resolution but more coarse features which are suitable
for small-scale object detection. The higher features maps
have more semantic information but they are more abstract
which are suitable for large-scale object detection. To address
multiscale SAR ship detection both inshore and offshore,
firstly, we densely connect feature map with other feature
maps from top to down and generate proposals from each
fused feature map. Secondly, we propose an improved loss
function during training to avoid the inference of inshore
complex background. Finally, we map RoIs to the lowest
fused feature maps with most abundant information to get
RoI pooling features which imported to the detection subnet-
work to refine the detection results. Experiments on expanded
public multiresolution SAR Ship Detection Dataset (SSDD)
verify that the proposed method can achieve an excel-
lent performance on multiscale and multiscene SAR ship
detection.

The rest of this paper is organized as follows. Section 2
states our proposed network DCMSNN. Section 3 intro-
duces the dataset used by our experiments. Section 4
describes the experimental results. Section 5 gives our
discussion.
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II. METHODS
Our proposed network consists of two subnetworks as shown
in Fig. 2, one is the region proposal subnetwork (RPN)
and the other is the detection subnetwork. Two subnetworks
share the convolutional features of the images. The RPN
is used to generate proposals which are used by detection
subnetwork to achieve more refined detection results. In this
paper, we use ResNet101 as backbone, feature maps have
the same size in ResNet101 are called a stage. Due to
the deepest layer of each stage has the strongest features,
we use the feature activations output by the last residual
block of each stage as our reference set of feature maps.
We define the outputs of the last residual block in each
stage conv2, conv3, conv4, conv5 as C2,C3,C4,C5. The rest
of this section will introduce the details of the proposed
method.

A. FUSING FEATURE MAP
For the outputs of the last residual block at each stage, from
top to down there is fewer and fewer semantic information
but there is more location information as they are subsampled
fewer times. Although deeper featuremaps havemore seman-
tic information, their resolution are lower and small-scale
objects hardly have response on the deeper layers, so deeper
feature maps are not adapted to small-scale object detec-
tion. However, lower feature maps have higher resolution
but semantic information are rare. To make low-level high-
resolution feature maps have more semantic information, we
densely connect feature maps from top to down as shown
in Fig. 2. Specifically, from top to down the feature map
undergoes a 1 × 1 convolutional layer to reduce channel
dimension and we use nearest neighbor up sampling to up
sample the fused feature maps higher than it to its size. Then
the up sampled feature maps are merged to the corresponding
feature map. Finally, to reduce the aliasing effect of up sam-
pling, we append a 3× 3 convolution on each merged feature
maps to generate the final fused feature maps. Specially, there
is no higher feature map than C5, we simply attach a 1 × 1
convolutional layer on C5 to produce the coarsest resolution
map. In order to be more intuitive, the above process is
summarized as the following formula:

Pi = Conv3×3[
5∑

j=i+1

Upsample(Pj)+ Conv1×1(Ci)] (1)

P5 = Conv1×1(C5), i = 4, 3, 2 (2)

The formula is an iteration calculation until the lowest fused
feature map is generated where P is the fused feature map
corresponding to C .Conv1×1(.) is a convolutional to reduce
the dimensions of channels to 256, Upsample(.) is nearest
neighbor up sampling to up sample P to the same scale as
C before merging. Finally, a convolutional Conv3×3(.) on
each fused feature maps to generate the final feature map
P and reduce the dimensions of channels to 256. The fused
featuremaps will naturally providemore detailed information
for the following bounding box prediction and classification,

it is more conducive to multiscale and multiscene SAR ship
detection.

B. RPN SUBNETWORK
We design a RPN subnetwork is realized by a 3× 3 convolu-
tional layer followed by two siblings 1× 1 convolutional for
classification and regression as shown in RPN subnetwork of
Fig. 2. According to the characteristics of low-level feature
maps have high resolution, high-level featuremaps havemore
semantic information, feature maps of different layers adapt
to object detection of different scales. low-level feature maps
are adapted to small-scale object detection, whereas high-
level feature maps are adapted to large-scale object detec-
tion, the RPN subnetwork is attached to each fused feature
map to achieve multiscale SAR ship detection. The criterion
of object or non-object and the bounding box regression
of objects are defined with respect to a set of reference
boxes called anchors. The anchors are of multiple predefined
scales and aspect ratios to cover objects of different scales.
We assign anchors of a single scale to each level, formally,
we assign five scales {322, 642, 1282, 2562, 5122} anchors
to {P2,P3,P4,P5,P6} respectively (P6 is a stride two max-
pooling of P5). Anchors of each level have tree aspect ratios
{1:1, 1:2, 2:1}, so in total there are k = 3 anchors at each
sliding position for each P. The classification layer outputs
2K scores that estimate probability of object or not object for
each proposal, the regression layer has 4K outputs encoding
the coordinates of boxes. While generating the proposals,
we assign label to each anchor based on their Intersection-
over-Union (IoU) with ground-truth. Specifically, an anchor
is labeled positive if it has the highest IoUwith a ground-truth
box or an IoU over 0.5 with any ground-truth box and labeled
negative if it has IoU lower than 0.4 with all ground-truth
box, the remaining anchors are ignored [23]. For an image
we sample 512 anchors to train where the sampled positive
and negative anchors have a ratio of 1:1, whereas the ignored
anchors do not be sampled to train. In the experimental part,
we discuss the impact of sampling heuristic.

C. TRAINING
This paper minimizes multi-task loss function as Faster-
RCNN [23], for an anchor box i, its loss function is defined:

L(pi, ti) = Lcls(pi, p∗i )+ λp
∗
i Lreg(ti, t

∗
i ) (3)

The classification loss Lcls is the softmax loss of two classes
(object or not object). The Lreg is the loss of bounding box
regression. In the Faster-RCNN Lcls is the cross-entropy loss
for binary classification:

Lcls = − log(pt ) (4)

where:

pt =

{
p if y = 1
1− p otherwise

(5)

p is the model’s estimated probability for the class with label
y = 1. The cross-entropy loss is shown as the blue curves
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FIGURE 3. The modified loss function is the cross-entropy multiplied a
modulating factor (1− pt )γ , when γ = 0 the improved loss is degenerated
into cross-entropy. With the modified loss function the weight of easy
examples is reduced a ratio during training.

in Fig. 3. As can be seen, even examples that are easily
classifiedwill have a relatively large loss.When summed over
many easy examples, the training process will be dominated
by the easy examples [30]. The model will not distinguish
hard exampleswell. In the SAR ship detection, there aremany
inshore complex background that are highly like the ships.
To make the model have good performance on multiscene
SAR ship detection, we need to solve the problem of the train-
ing is dominated by easy examples. In this paper, we multiply
a modulating factor (1− pt )γ to the cross-entropy. We define
the modified loss as:

Lcls = −(1− pt )γ log(pt ) (6)

Fig. 3 shows the modified loss curves for different val-
ues of γ . For easy examples, pt tends to 1, (1 − pt ) goes
to 0, the loss is reduced. For hard examples, pt tends to 0,
(1−pt ) goes to 1, the loss is unaffected. The γ is an adjustable
parameter that adjusts the ratio of reduced weight for easy
examples. When γ = 0 the improved loss degenerated into
cross-entropy loss function.

D. DETECTION SUBNETWORK
The detection subnetwork as shown in detection subnetwork
of Fig. 2 consists of two hidden 1024-d fully-connected layers
followed by final classification and bounding box regression
layers. The RoIs generated by RPN highly overlap with
each other. We take top-N (in this paper N is 12000) RoIs
according to the classification scores. After that, we apply
non-maximum suppression (NMS) threshold of 0.5 on the
top-N RoIs based on their classification scores, which leaves
us about 1000 high quality RoIs for each image. Due to
the lowest fused feature maps has the highest resolution and
merge the most semantic information, we use RoI pooling
to extract 7 × 7 feature from p2. We attach the detection
subnetwork to all feature maps extracted by RoI pooling to

achieve the refined detection result. For an image we sample
256RoIs where the sampled positive and negative RoIs have a
ratio of 1:1 to train the detection subnetwork. To illustrate that
RoIs mapped to p2 is best, in the experiment section, we will
mapRoIs to other fused featuremaps for comparison.We also
use the modified loss to train the detection subnetwork.

III. DATESET
The public SSDD dataset have a similar procedure as
PASCAL VOC are provided by [35]. It includes SAR
images of resolution from 1m to 15m which are collected
from RadarSat-2, TerraSAR-X and Sentinel-1. In addition,
it includes the ships of inshore and offshore, ships of differ-
ent sizes so on. The specific information of ships in SSDD
is shown in Table 1. As some small ships only have very
few pixels in low resolution, sometimes it is hard to decide
whether it is a ship or not, the SSDD dataset only anno-
tates ships which the number of pixels are more than three.
In addition, [35] utilize feature fusion, transfer learning,
hard negative mining, and other implementation details to
improve the AP from 70.1% to 78.8% compared to Faster in
SSDD.To make the neural network of detection more robust,
we expand SSDD dataset with 20 annotated multiresolution
SAR images. We cut the 20 SAR images into 512 × 512
sized subimages without overlap and the coordinates of the
annotated bounding boxes were transformed into the location
of the corresponding subimages.

The supplemental dataset is also in the PASCAL VOC for-
mat. We add the subimages have annotated ships into SSDD.
In the expanded SSDD dataset, there are totally 2246 subim-
ages which were divided into train, test sets with ratio (7:3).

TABLE 1. The details of SSDD.

IV. EXPERIMENTS
In this section experiments are carried out to evaluate the per-
formance of proposed method. Firstly, four experiments are
designed to explore the effect of dense connection, the impor-
tance of RPN attached to each fused feature maps, the influ-
ence of RoIs mapped to different fused feature maps and the
significance of modified loss. Then, we illustrate the role of
sample heuristic and detection subnetwork. Besides, the com-
parison with other methods indicates the outperformance of
the proposed method.

A. SETTING
All experiments are implemented in the Tensorflow frame-
work and executed on a NVIDIA K80 GPU. The architecture
in Fig. 2 is trained end to end. As is common practice,
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we use the pre-trained ResNet101 on the ImageNet dataset
to initialize the model. The adjustable parameter of modified
loss γ changes between 0 and 5.We adopt synchronized SGD
to train model. A mini-batch involves 1 images, 512 anchors,
and 256 RoIs per images on GPU. We use a weight decay
of 0.0001 and a momentum of 0.9. The iterations of training
are 50k. Initial learning rate is 0.001 every 20k decrease
10 times.

B. THE STANDARD OF EVALUATION
To evaluate the quality of the model we apply the evaluation
criteria mentioned below. We defined the target detection
accuracy as:

p =
Ntp

Ntotal target
(7)

recall as:

r =
Ntp

Nground truth
(8)

To evaluate the overall performance of detector, F1 score
which is defined as:

F1 =
2× p× r
p+ r

(9)

where Ntp is the number of correct detected objects,
Ntotal target denotes the number of detected ships, Nground truth
is the number of ground-truth. We define the bounding box is
correct when it has IoU greater 0.5 with a single ground-truth.

C. EXPERIMENTS ON SSDD
1) THE EFFECT OF DENSE CONNECTION
As mentioned above, different feature maps have different
characteristic, the low-level feature maps have high resolu-
tion but less semantic information, whereas the high-level
feature maps have low resolution but more semantic infor-
mation. To make feature maps with high resolution have
more semantic information, we densely connect feature maps
from top to down. To identify the effect of dense connection,
comparison experiments with dense connection and without
dense connection in the proposed network are conducted
in this section. In the network without dense connection,
RPN generates RoIs from each featuremapsC , mapping RoIs
to the lowest feature map C2. In the network with dense con-
nection, RPN generates RoIs from each fused feature maps P,
mapping RoIs to the lowest fused feature map P2. The two
models are the same except for the different of connection,
the modulating factor γ of modified loss is set to 0 which
degenerates into cross-entropy loss function. The confidence
score of all models is set to 0.9. Table 2 displays the detection
accuracy, detection recall and F1 scores of networks with
dense connection and without dense connection.

It can be seen from the Table 2 that the model with
dense connection and the model without dense connection
are similar in accuracy, but the model with dense connec-
tion has higher recall and F1 score. So, the model with

TABLE 2. Detection performance of model with dense connection and
without dense connection.

dense connection has the better performance. As shown
in Fig. 4, (a) is the ground truth, (b) is the detection result of
model without dense connection, (c) is the detection result of
model with dense connection. It is clear the model with dense
connection can detect SAR ships which the model without
dense connection cannot detect whether large or small ship.
It is important to use dense connection to fuse the feature
maps with different characteristic.

2) THE INFLUENCE OF RPN ATTACHED TO
EACH FUSED FEATURE MAPS
To adapt to multiscale ships detection, in our proposed
method, we attach RPN to each fused feature map P, which
has different resolution and semantic information from differ-
ent layer. Feature maps from different layers adapt to objects
of different scales, to cover objects of different scales the
anchors have multiple predefined scales and aspect ratios.
The anchors with single scale has three aspect ratios are
assigned to the corresponding level. To prove RPN attached
to different fused feature maps is more suitable to multiscale
SAR ship detection, in this section, in addition to attach PRN
to each fused feature maps, we also attach RPN to only
one fused feature map from {P2,P3,P4,P5} respectively in
different experiments. When attaching RPN to a single fused
feature map, to ensure the same number of anchors, we use
five scales anchors of {322, 642, 1282, 2562, 5122} with three
ratios {1:1, 1:2, 2:1} to a single featuremaps. The same detec-
tion network is attached to the feature maps of RoI pooling
the modulating factor γ of modified loss is set to 0 which
degenerates into cross entropy loss function. The confidence
score of all models is set to 0.9. The detection performance
of abovementioned experiments is displayed in the Table 3.
Attaching RPN to multi layers has the best performance in
accuracy, recall and F1. Attaching RPN to {P2,P3,P4} have
the similar performance. Attaching RPN to P5 has the higher
accuracy than attaching RPN to {P2,P3,P4}, but has the
lowest recall.

TABLE 3. Detection performance of model with RPN is attached to
different fused feature maps.

Fig. 5 shows the test result of RPN is attached to different
fused feature maps in SSDD. (a) is the ground truth. (b) to (e)
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FIGURE 4. (a) is the ground truth, (b) is the detection result of model without dense connection, (c) is the detection result of model with dense
connection. The model with dense connection can detect SAR ships which the model without densely connection cannot detect whether large or small
ship.

is the RPN is attached to the P2,P3,P4,P5 respectively. (f) is
the PRN is attached to multi fused feature maps. Attaching
RPN to lower fused feature maps such as P2 is suitable to
detect small-scale ships, but the large-scale ships will be
missed as shown in Fig. 6(b). Attaching RPN to higher fused
feature maps such as P5 is suitable to detect large-scale ships,
but the small-scale ships will be missed as shown in Fig. 5(e).
Attaching RPN to each fused feature maps can achieve the
best test result as shown in Fig. 5(f).

3) THE INFLUENCE OF ROIS ARE MAPPED TO
DIFFERENT FUSED FEATURE MAPS
As mentioned before, fused feature maps from different
layers have different resolution and semantic information.
Mapping RoIs to different fused feature maps to get the RoI
features for the same detection network will have different
performance. In this section, four models with mapping RoIs

TABLE 4. Detection performance of model with ROIS are mapped to
different fused feature maps.

to P2,P3,P4,P5 respectively are trained for exploring the
influence of mapping RoIs to different fused feature maps.
All models use dense connection with the same detection
network, RPN generates RoIs from each fused feature maps,
the modulating factor γ of modified loss is set to 0 which
degenerates into cross entropy. The confidence score of all
models is set to 0.9. Table 4 displays the detection accuracy,
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FIGURE 5. The test result of RPN is attached to different fused feature maps in SSDD. (a) is the ground truth. (b) to (e) is the RPN is attached to
P2,P3,P4,P5 respectively. (f) is the PRN is attached to the multi fused feature maps.

detection recall and F1 scores of mapping RoIs to different
fused feature maps. Mapping RoIs to P2 has the highest
value either in accuracy, recall and F1 score. In contrast,
mapping RoIs to P5 has the lowest value either in accuracy,
recall or F1 score. Mapping RoIs to P3 and mapping RoIs
to P4 are similar in accuracy, mapping RoIs to P4 has a
2.5 higher than mapping RoIs to P3 in recall.

As shown in Fig. 6, (a) is the ground truth, (b) to (e) is the
RoIs are mapped to the P2,P3,P4,P5. Mapping RoIs to P2
has the best performance in both large-scale and small-scale
object detection. In summary, mapping RoIs to the feature

maps with higher resolution fusedmore semantic information
can improve the performance of network.

4) THE INFLUENCE OF THE ADJUSTABLE PARAMETER IN
MODIFIED LOSS FUNCTION
To avoid easy examples dominating the training process,
we multiply a modulation factor (1 − pt )γ to cross-entropy
loss function. To explore the influence of the modulation
factor γ , in this section we change the from 0 to 5, when
γ = 0, the modified loss function degenerated into
cross-entropy. The models use dense connection, the RPN
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FIGURE 6. The test result of RoIs are mapping to different fused feature maps in SSDD (a) is the ground truth, (b) to (e) is the RoIs are mapped to the
P2,P3,P4,P5.

subnetwork is attached to each fused feature maps, RoIs are
mapped to the lowest fused feature maps, the same detection
subnetwork is used, all models have the same experiment
settings. Table 5 shows the performance of models with
different γ . When γ = 3, the model has the same recall as
γ = 0 but it has higher accuracy than γ = 0 and reduce the
false alarm effectively.

5) THE INFLUENCE OF OTHER FACTORS
As mentioned earlier, when train the neural network, for an
image we sample 512 anchors and 256 proposals where the
sampled positive and negative anchors have a ratio of 1:1.
It can ensure the balance of positive and negative examples

TABLE 5. Detection performance of model with different modulation
factor.

during the training. If cancel the sample heuristic, the perfor-
mance of model will be reduced a lot as shown in Table 6.
In addition, as can be seen in Table 6, when cancel detection
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TABLE 6. Detection performance of different models.

FIGURE 7. The detection result of Gaofen3 SAR images, (a) uses Faster-RCNN, (b) uses DCMSNN. The red, yellow, and green rectangles represent the
correct detection ships, the missing ships, and the false alarms respectively. The blue rectangles represent multiple vertical ships next to each other are
detected as one ship.

FIGURE 8. The detection result of Sentinel-1 SAR images, (a) uses Faster-RCNN, (b) uses DCMSNN. The red, yellow, and green rectangles represent the
correct detection ships, the missing ships, and the false alarms respectively. The blue rectangles represent multiple vertical ships next to each other are
detected as one ship.

subnetwork will get the highest recall but the accuracy is low,
there will be a lot of false alarms in the test image. So, using
the detection subnetwork to refine the proposals will improve

the performance of model. While using the modified loss,
the γ is 3, otherwise the γ is 0. The modified loss can
decrease false alarm by distinguishing the objects are highly
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FIGURE 9. The detection result of test SAR images in SSDD with our proposed method, (a) and (c) are ground truth, (b) and (d) are the
corresponding results.

like ships well. In this section, the base model is the same,
using dense connection, attaching RPN to each fused feature
maps, mapping RoIs to the lowest fused feature map, using
the same detection subnetwork and experiment settings.

6) COMPARISON WITH OTHER METHODS
To validate the effectiveness of the proposed method, Faster
RCNN and SSD is applied to SSDD, Table 7 displays the per-
formance of the three methods. With densely connecting the
feature maps from top to down, attaching RPN to each fused
feature maps, mapping RoIs to the lowest fused feature map
and training with the modified loss function, the proposed

TABLE 7. Detection performance of proposed method and faster-RCNN.

method increases detection accuracy by 4% and increases
the detection recall from 70.8% to 83.4% compared with
Faster-RCNN. Compared to the SSD, the F1 score of our
proposed method has been increased from 75.6% to 89.6%.
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By changing the confidence score threshold of detection
results on one testing SAR images can get different values
of accuracy and recall.

Fig. 7 and Fig. 8 show the detection result of Gaofen3 and
Sentinel-1 SAR images. (a) shows the detection result with
Faster-RCNN. (b) shows the detection result with our pro-
posed method DCMSNN. The red, yellow, and green rectan-
gles represent the correct detection ships, the missing ships,
and the false alarms respectively. The blue rectangles repre-
sent multiple vertical ships next to each other are detected
as one ship. It loses many small ships and appears many
false alarms on the shore while using Faster-RCNN to detect.
In addition, Faster-RCNN detects the multiple vertical ships
next to each other as one ship. While using the DSMSNN,
it effectively alleviates the above problems.

V. DISCUSSION
Experiments on expanded pubic SSDD verify the effective-
ness of our proposed method DCMSNN in multiscale and
multiscene SAR ship detection. Using dense connection can
merge the feature maps have more semantic information with
the high-resolution feature maps. The lower-level feature
maps are suitable to detect small-scale ships while the higher-
level feature maps are suitable to detect large-scale ships.
Attaching RPN to each fused feature maps makes the model
more suitable for multiscale SAR ship detection. According
to the (1) and (2), the lowest fused feature map not only has
higher resolution but also incorporates more semantic infor-
mation, mapping the RoIs to the lowest fused feature maps
can achieve the best performance. Using the modified loss
function can solve the problem of easy examples dominate
the training process which alleviate the inference of inshore
complex background to get higher detection accuracy. When
γ = 3, the model has the best performance. Fig. 9 shows
the detection results of test SAR images with our proposed
method (a) and (c) are ground truth, (b) and (d) are the corre-
sponding results. Multiscale SAR ship detection both inshore
and offshore have a better performance, but false alarms and
missing ships also exist as shown in fourth and fifth lines in
the Fig. 9. This is because there are still cases where objects
like ships are misclassified. Due to accuracy and recall are
mutual restraint, we can adjust the confidence score threshold
to get the best performance. In addition, ships side by side
will be detected one ship with our proposed method, this may
be caused by the ships are relatively close, only leaving one
proposal at NMS. It can be solved by modifying the method
of NMS, but it is beyond the scope of this paper, it will be
carried out in the future. In summary, this paper proposes an
end-to-end method of multiscale and multiscene SAR ship
detectionwhich does not need land-sea segmentation, in addi-
tion, the features extracted by neural network are better than
the features selected by hand. However, using deep learning
to detect ships of SAR images needs plenty of annotated SAR
data. The quality of the data is important for network, it is
hoped that many high-quality datasets for SAR ship detection
will be provided by research scholars in the future.
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