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ABSTRACT Vehicular ad hoc networks (VANETs) represent a very promising research area because of their
ever increasing demand, especially for public safety applications. In VANETs, vehicles communicate with
each other to exchange road maps and traffic information. In many applications, location-based services are
the main service, and localization accuracy is the main problem. The VANETs also require accurate vehicle
location information in real time. To fulfill this requirement, a number of algorithms have been proposed;
however, the location accuracy required for public safety applications in the VANETs has not been achieved.
In this paper, an improved subspace algorithm is proposed for time of arrival measurements in VANETs
localization. The proposed method gives a closed-form solution, and it is robust for large measurement
noise, as it is based on the eigen form of a scalar product and dimensionality. Furthermore, we developed the
Cramér–Rao Lower Bound (CRLB) to evaluate the performance of the proposed 3-D VANETs localization
method. The performance of the proposed method was evaluated by comparison with the CRLB and other
localization algorithms available in the literature through numerous simulations. Simulation results show
that the proposed 3-D VANETs localization method is better than the literature methods, especially for fewer
anchors at road side units and large noise variance.

INDEX TERMS Vehicular ad hoc networks (VANETs), localization, time of arrival (TOA), Cramer-Rao
lower bound (CRLB).

I. INTRODUCTION
Vehicular ad-hoc networks (VANETs) has become a remark-
able research area for the automotive and communica-
tion industry. The driving force behind the innovations in
VANETs is the advances in communication and information
technology. In the past two decades, wireless communica-
tions have influenced our lifestyles such that everyone wants
to be connected to the internet at any time and anywhere.
Recently the concept of mobile connected vehicles is getting
more attention, which leads to enable new areas of appli-
cations such as driver assistance, traffic flow, public safety,
and infotainment [1]. Currently, most of thework onVANETs
is to make the vehicles and roads capable to carry out secure
transportation. The secure transportation means to provide
the information about accidents, road conditions, weather
conditions, traffic conditions and location-based services to
the user [2], [3]. VANETs should also provide efficient

transportation where efficient means short and predictable
transportation time, reducing congestion and fuel saving [4],
lower cost and better management of the public transport net-
work [5]. VANETs can also collect and share the information
about an area of interest [6] in different applications such
as pollution control, public surveillance (photos taken of a
violent act in progress) and traffic planning. VANETs will
provide more enjoyable means to the user by giving access to
the Internet, on road social media, tourist information, games
and use of social applications [7].

VANETs is a special case of mobile ad-hoc network where
vehicles are equipped with the capabilities of wireless com-
munication and data processing. The direct communication
from one vehicle to the other vehicle makes it possible
to exchange information even without the communication
infrastructure. The advances in wireless communications and
user trends allow different deployment strategies for VANETs
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FIGURE 1. Different deployment strategies for VANETs.

in rural and urban environments. The deployment of VANETs
is to provide communication between vehicles and with
the roadside units. There are three major possibilities for
VANETs architecture as shown in Fig. 1.
• Vehicle to Infrastructure (V2I): This infrastructure
allows the vehicle to communicate with the roadside
units for data exchange and location-based services.

• Vehicle to Vehicle (V2V): It allows the vehicles to
communicate directly with each other without the com-
munication infrastructure. V2V is deployed mainly for
security and safety applications.

• Hybrid: It combines both V2V and V2I infrastructure
to get benefit from both nearby vehicles and roadside
units. This strategy enables long distance communica-
tion through multi-hop fashion.

In hybrid architecture of VANETs, vehicles can communi-
cate with roadside units and with each other. VANETs is an
important tool in trafficmanagement systems. Recently, it has
become the major element of intelligent transport systems.
The goal of such systems is to provide a safe and pleasant
journey to drivers and passengers. Safety applications are
essential to vehicular to vehicular (V2V) communication as
they can greatly reduce the chance of an accident. Public
safety applications need real-time accurate vehicle position
information. Therefore, it is important to accurately locate
vehicles in VANETs.

Many methods have been proposed to meet the require-
ments of VANETs localization such as global positioning
system (GPS) methods, geographical information system
methods, cellular phone technology, and dead reckoning.
However, these techniques have accuracy and reliability
problems and they are not cost-effective. Besides cost,
GPS signals are weak and can easily be blocked by different
obstacles such as forests, buildings, etc. In the proposed
method, the location of a vehicle is estimated by using anchor

vehicles (AVs), i.e., vehicles which know their exact location.
A few antennas are installed on roadside units, which act
as AVs, as shown in Fig. 2. Location information can be
updated regularly by allowing vehicles to share messages.
Thesemessages contain the time at which themessage is sent,
as this information is necessary for the time of arrival (TOA)
method. The contributions of this paper are summarized as
follows:

FIGURE 2. System model.

1) We propose a novel three-dimensional (3D) localiza-
tion method for VANETs that allows us to accurately
estimate the positions of multiple vehicles. The pro-
posed method mainly relies on a subspace principle,
but the co-variance matrix does not require any decom-
position. Thus, the requirement of a pseudo-signal
subspace vanishes, and we can avoid the main prob-
lem of eigen decomposition encountered in subspace
methods.

2) The CRLB is analytically derived for the proposed
algorithm, which gives a lower bound on the variance
of an unbiased estimator [8].

3) The theoretical minimum square logarithmic error
(MSLE) for the proposed algorithm is computed.
Numerical results show that the proposed method out-
performs several other popular localization algorithms.
The effects of different system parameters such as mea-
surement noise, density of AVs, and the number of sim-
ulations were investigated to evaluate the performance
of the proposed algorithm.

Rest of the paper is organized as follows: Section II con-
sists of related work, section III describes the system model.
Proposed VANETs localization algorithm and its numerical
results are described in section IV and V respectively. Finally
the proposed work is concluded in section VI.

II. RELATED WORK
Depending on the range measurement technique used,
localization techniques can be subdivided into two main
categories: the true range-based techniques and range-
free techniques. Range-based techniques use range mea-
surements calculated by each node to estimate location.
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However, connectivity information is used instead of true
ranging for location estimation in range-free techniques.
Ranging for localization is performed using different rang-
ing techniques such as the received signal strength indica-
tor (RSSI), the time difference of arrival (TDOA), the time
of arrival (TOA) and the angle of arrival (AOA). In range-
free approaches, locations of sensor nodes are estimated
from simple connectivity information or the number of hops
between each pair of sensor nodes [9]. RSSI computes the
strength of the received signal, and the propagation loss is
calculated based on RSSI. The RSSI technique is a cost-
efficient solution for ranging as it does not require any extra
hardware. However, its performance is often not satisfactory
compared to other ranging techniques due to channel fading
and multipath problems [10]. TOA measurement considers
speed, wavelength and time for the radio signal to travel
between two nodes [11]. The TDOA technique considers
the time difference between two different kinds of signals
arriving at the receiver. In the TDOA approach, the nodes
need to be equipped with two kinds of extra devices, which
can detect both kinds of signals. A receiver calculates the time
difference between the two different signals and the distance
information is estimated from the calculated time difference
between the two nodes [12]. AOA ranging measurements
are based on the angle of received signal at the receiver [13].
Usually TOA, TDOA and AOA are suitable for applications
that require high accuracy, but they require more cost for the
measurements.

Range-free techniques are regarded as a cost and energy
efficient solution for locating nodes in wireless sensor net-
works. To find the actual coordinates of nodes without
distance information, range-free techniques need a proper
scaling factor because it strongly depends on hop count. Most
of the range-free techniques compute the scaling from the
ratio of the distance to the hop count [14] or based on the
anchor locations [15]. Range-free schemes are easy to imple-
ment with low cost but these have the drawback of limited
accuracy, particularly in practical applications [16]–[18].

Zhang et al. [19] proposed a landscape 3D localization
method with the help of mobile anchors. The main draw-
back of [19] is that the accuracy of their proposed method
depends on the expensive mobile anchors. Range-free local-
ization algorithms 3D DVHOP [20], 3D MDS-MAP [21]
and 3D centroid are proposed in [22]. These range-free
methods are complex as well as their localization accuracy
is comparatively low. However, one method to increase the
accuracy of 3D localization algorithm is to convert the cost
function into a optimization problem. Particle swarm opti-
mization algorithm, intelligent optimization algorithms e.g
genetic algorithm and least squares support vector machine
algorithm are applied in 3D space localization [23]–[25].

A number of localization methods for VANETs are
introduced in [26] including cellular localization, image
processing, relative localization, map matching and global
positioning systems. In [27], the proposed localization
method measures the inter-user radio distances using

directional antennas, and then every user tries to locate itself
with respect to the anchor node. Yan et al. [28] proposed
a grid-based vehicle localization algorithm, which tries to
minimize propagation error in the network by using the
geometrical locations of the vehicles. Yan et al. [28] pro-
posed that the grid-based schemes are less prone to error
compared to non-grid based schemes. Ou [29] proposed a
VANETs localization scheme that strongly relies on road-
side units. Every vehicle passing in the range of a road-side
unit communicates with it through beacon signals and its
position is estimated using TOA or TDOA measurements.
Obst et al. [30] and Mattern et al. [31] proposed coopera-
tive vehicle localization in which different types of local-
ization schemes were discussed for VANETs localization.
The weighted localization method for VANETs was pro-
posed in [32], where different weights have been assigned to
the measurements based on the signal to interference noise
ratio (SINR), where the closer vehicles have a high SINR and
larger weights, while far away vehicles have a low SINR and
smaller weights. Cruz et al. [33] assume that vehicles have
IEEE.802.11p interfaces, and the localization performance
can be improved by combining vehicular communications
and smartphone sensors.

III. SYSTEM MODEL
A fully connected hybrid network is considered in our work,
as this is the most frequently used assumption [34], [35].
To estimate the unknown vehicle (UV) position ρ0 =

[x0, y0, z0]T using a TOA ranging technique, we first assume
that the AV’s coordinates are {ρk}

L
k=1, where L > 4 is the

number of AVs in theVANETs. However, to obtain the unique
position of the UV, the four AVs should not be coplanar
with one another [36]. In [37] and [38], mobility models for
vehicles are classified into two major categories macroscopic
and microscopic. Macroscopic models are based on fluid
dynamics which considers the density of vehicles average
velocity and vehicular traffic. Microscopic mobility models
are more precise which consider every vehicle as a separate
entity and modeling its nature. Microscopic models are more
accurate but computationally more expensive. In this paper
we considered a unidirectional urban traffic scenario where
the vehicles are moving with low velocity. The vehicles that
are added to the network follows Poisson Point Process (PPP)
with intensity of λ, i.e. number of vehicles entering the
network at time T . After the arrival of each vehicle i, it is
assigned an independent uniformly distributed speed Vi, with
probability distribution function of

f (Vi/s) =
1

βm − βn
, βm > s > βn, (1)

where βm is the maximum velocity and βn is the minimum
velocity of vehicle i. In unidirectional traffic flow where the
vehicles coming into the range of AVs are localized whether
the traffic flow is in a single lane or in two parallel lanes.
Any vehicle i that is in the range of four AVs, is localized.
Initially, we do not consider the direction of the vehicle at
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FIGURE 3. An overview of a unidirectional traffic flow in VANETs.

time instant T , but once the network is re-localized at time T̂ ,
the direction of the vehicle is also predicted. In order to
clarify the scenario, Fig. 3 shows an overview of unidirec-
tional VANETs, where the vehicles that come within the
direct ormulti-hop range of AVs (blue) are localized. Vehicles
that are moving away from the transmission range of the
network, become independent and further do not take any
part in the formation of the network. In this paper, we have
considered unit disk model for ranging. According to unit
disk model, two vehicles can communicate with each other
directly if and only if their Euclidean distance is less than
their transmitting range. The actual distance between the UV
and the kth AV is represented by

ζ0k = ‖ρ0 − ρk‖, k = 1, 2, . . . ,L. (2)

The travel time by signal to move from the UV to the kth AV
(in the absence of measurement noise) is denoted by t0k and
is given by

t0k =
ζ0k

c
, k = 1, 2, . . . ,L. (3)

Here, c is a constant i.e., the speed of light. Then, the TOA
measurement can be written as [16]

χ0k = ζ0k + ω0k , k = 1, 2, . . . ,L, (4)

where ω0k is the additive zero mean white Gaussian having a
variance of σ 2

0k , which is given by [39]

σ 2
0k = ϕζ

ν
0k , (5)

where ϕ is a constant related to the AVs and ν is a path loss
exponent. (4) can be written in vector form as

χ = ζ + ω, (6)

where ζ = [ζ01, . . . , ζ0L]T and ω = [ω01, . . . , ω0L]T .

IV. PROPOSED ALGORITHM
First, we define a K × 3 matrix 3 i.e.,

3 = [ρ1 − ρ0, ρ2 − ρ0, . . . , ρL − ρ0]
T , (7)

where K = 3 for 3D and 3 is parameterized by ρ0. The
multidimensional similarity matrix can be defined as [40]

ϒ = 33T , (8)

which is a positive semi-definite matrix [41], (m, n) and the
value of ϒ is

[ϒ]mn =
(ζ 20m − ζ

2
mn + ζ

2
0n)

2
, (9)

where ζmn = ζnm = ‖ρm − ρn‖ is the estimated distance
between the mth UV and the nth AV. In fact, the exact value
ofϒ is not available. But, at sufficiently low noise conditions,
we can consider its approximate value represented by ϒ̂,
with the use of estimated {χ0m} and actual {ζmn} ranging
measurements [40].

[ϒ̂]mn =
(χ2

0m − ζ
2
mn + χ

2
0n)

2
. (10)

We decompose the symmetric matrix ϒ̂ with the help of eigen
decomposition to obtain [42]

ϒ̂ = 0s9s0
T
s + 0n9n0

T
n , (11)

where 9s = diag(λ1, λ2, λ3) � 0, 9n = diag(λ4, λ5,
. . . , λM ) with λ4 = λ5 = . . . = λM = 0 are the Eigen-
values of ϒ̂, and 0s and 0n are the Eigenvectors. Ideally,
rank(ϒ) = 3, we have

ϒ̂ = 0s9s0
T
s , (12)

which can also be re-written as

3p
= 0s9

0.5
s . (13)

The relationship between the principle axis result and the
actual global locations is

3 = 3p�, (14)

where � is an unknown transformation that needs to be
determined. The estimate of � in the least square sense
is [43]

�̂ = (3pT3p)−13pT3. (15)

However, it is not possible to calculate ρ0 from (14), as ρ0 is
unknown in 3. Alternatively, (14) is simplified as

3 = 0s0
T
s3. (16)

by utilizing the property IL −0s0
T
s = 0n0

T
n [42], where IL

is the L × L identity matrix. Now (16) becomes

0n0
T
n3 = κ, (17)

where κ represents a matrix with all zeros in the L × 3
dimension. By re-arranging (17), we get

0n0
T
nςLρ

T
0 ≈ 0n0

T
n2, (18)

where2 = [ρ1, ρ2, . . . , ρL]
T and ςL is a column unity vec-

tor with a dimension of L × 1. The final location estimation,
i.e., the solution of (18), is given by

ρ̂0 =
2T0n0

T
nςL

ςTL0n0
T
nςL

. (19)

It is clear from (19)that the proposed solution does not
need an a priori initial location estimation of the UV’s, thus
the proposed algorithm provides improved accuracy for UV
localization in VANETs.
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A. ANALYSIS
The probability density function for χ0k , conditioned on
ρ0 and ρk can be written as

f(χ0k |ρ0, ρk ) =
1√

2πσ 2
0k

e

(
−

1
2σ20k

(χ0k−ζ0k )2
)
. (20)

The likelihood ratio of (20) is then given by

lij = −0.5
{
log 2πϕ + 0.5ν log(‖ρ0 − ρk‖

2)

+
1
ϕ

(χ0k − ‖ρ0 − ρk‖)
2

(‖ρ0 − ρk‖2)ν/2

}
, (21)

and the joint log-likelihood is

80k =
∑
k∈L

log f(χ0k |ρ0, ρk . (22)

Now, putting (21) in (22), we get

80k = −0.5
∑
k∈L

{
log 2πϕ + 0.5ν log(‖ρ0 − ρk‖

2)

+
1
ϕ

(χ0k − ‖ρ0 − ρk‖)
2

(‖ρ0 − ρk‖2)ν/2

}
. (23)

The CRLB sets a lower bound on the variance of any unbiased
estimator. CRLB for ρ0 can be developed from a Fisher
information matrix (FIM), 4(ρ0), [8], which is defined as

4(ρ0) = E[−4ρ0,ρ080k ]. (24)

Here, E and 4ρ0,ρ0 , OT
ρ0,ρ0

are the expected value and
the second order derivative operators, respectively. 4(ρ0) in
the form of submatrices can be written as

4(ρ0) =

4xx 4xy 4xz
4T
xy 4yy 4yz

4T
xz 4T

yz 4zz

, (25)

where subscripts xx, yy and zz in (25) indicate the diagonal
elements, while, xy, xz and yz show the non-diagonal elements
of 4(ρ0). Each element of 4(ρ0) is given by

4xx =
∑
k∈L

1

σ 2
0k

ϑ0k (x0 − xk )2

‖ρ0 − ρk‖
2 , (26a)

4xy =
∑
k∈L

1

σ 2
0k

ϑ0k (x0 − xk )(y0 − yk )
‖ρ0 − ρk‖

2 , (26b)

4xz =
∑
k∈L

1

σ 2
0k

ϑ0k (x0 − xk )(z0 − zk )
‖ρ0 − ρk‖

2 , (26c)

4yy =
∑
k∈L

1

σ 2
0k

ϑ0k (y0 − yk )2

‖ρ0 − ρk‖
2 , (26d)

4yz =
∑
k∈L

1

σ 2
0k

ϑ0k (y0 − yk )(z0 − zk )
‖ρ0 − ρk‖

2 , (26e)

4zz =
∑
k∈L

1

σ 2
0k

ϑ0k (z0 − zk )2

‖ρ0 − ρk‖
2 , (26f)

where ϑ0k = 1 + 0.5ν2ϕζ ν−20k is the scaling factor, which
depends on distance. The CRLB(ρ0) is given by [8]

CLB(ρ0) = [4−1(ρ0)]1,1 + [4−1(ρ0)]2,2 + [4−1(ρ0)]3,3.

(27)

Finally, the CRLB for the proposed algorithm is
√
5 ≥ CRLB, (28)

where MSLE (5) is

5 = E[(ρ̂0 − ρ0)T (ρ̂0 − ρ0)], (29)

ρ0 and ρ̂0 are the actual and estimated positions of UV,
respectively.

V. NUMERICAL EXAMPLES
A. SIMULATION SETUP
Numerous simulations were performed to analyze the pro-
posed localization algorithm performance by comparing it
with the existing literature [18], [26], [28] and CRLB.
The following parameters are taken for simulation purposes.
A 30 × 30 × 30 m3 volume was assumed. 20 UVs were
generated randomly moving with velocity of 5m/s and 4 AVs
at [30; 0; 0]T , [0; 30; 0]T , [0; 0; 30]T and [30; 30; 30]T loca-
tions were considered. The ranging error ω0K was a zero-
mean white Gaussian process having a variance of σ 2

0K . The
simulation parameters are given in Table 1.

TABLE 1. Simulation parameters.

B. MONTE CARLO SIMULATIONS
The following four different setups were simulated to evalu-
ate the performance of the method.
• Setup 1: This is the same setup as described in
Section V-A, such that the locations of the AVs form a
convex hull around 20 UVs at time instant t = t1. Fig. 4
illustrates this setup for the given simulation scenario,
where the circles show the actual location of UVs, stars
represent the estimated locations and squares show the
location of AVs. We assumed that all UVs are moving
at constant speed i.e, 5 m/s. After a certain time, i.e., at
time instant t = t2, 5 more UVs join the network as
shown in Fig. 5. As the number of UVs is increased from
20 to 25 theMSLE of the network also increases because
the 5 new UVs have extra localization error.

• Setup 2a: In this setup, the impact of fewer Monte Carlo
simulations onMSLEwas studied. However, theUV and
AV configurations are the same as discussed in Setup 1.
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FIGURE 4. Localization of UVs in 3D with 20 UVs.

FIGURE 5. Localization of UVs in 3D with 25 UVs.

FIGURE 6. MSLE performance vs range error variance in VANETs with
20 runs.

The range error variance was kept in the range of
10 − 50 dBm2. It is clear from Fig. 6 that the pro-
posed technique outperforms the literature, but there

are some fluctuations in the MSLE due to a smaller
number of Monte Carlo simulations. Noted that for the
proposed localization method each simulation generates
independent and identically distributed results. There-
fore the variance of MSLE is modeled as Bernoulli trail
p(1 − p)/n ≤ 1/4n, where p is the true probability and
n is the number of Monte Carlo simulations. The vari-
ance of the simulation results shrinks with an increase
in the number of simulations. Generally, in order to
investigate the properties of a localization estimator,
the number of simulations is chosen to achieve a certain
accuracy. It is shown in Fig. 6 that for a small value of
n there is large error variance in the results. In the next
setup, we show that increasing the value of n improves
the results by reducing the fluctuations.

FIGURE 7. MSLE performance vs range error variance in VANETs with
5000 runs.

• Setup 2b: In this scenario, the number of Monte Carlo
simulations n is increased from 20 to 5000. However,
vehicle geometries (i.e., AVs and UVs) are the same as
in Setup 1. It is clear from Fig. 7 that the proposed algo-
rithm is less sensitive to noise than the literature for a
high ranging error. Specifically, the proposed algorithm
achieves about 30.76%-79.67% improvement in terms
of MSLE. Moreover, Fig. 7 shows that the proposed
method can reach the CRLB with a low range error
variance. Furthermore, the irregularity that was present
in Fig. 6 was also removed by increasing the number of
Monte Carlo simulations.

• Setup 3: In this setup, the geometry of vehicles in a
network (i.e., AVs and UVs) remained the same as
discussed in Setup 1. The effect of additional AVs on
the performance of the proposed algorithm is shown
in Fig. 8. Here range error variance is assumed to be
20 dBm2. As the number of AVs increased in the net-
work, the localization error was reduced. Due to the fact
that in this case, each UV has the reference information
from more AVs. It is also shown in Fig. 8 that the
performance of each algorithm is improved when AVs
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FIGURE 8. MSLE performance vs number of additional AVs in VANETs.

are increased from 4 to 9, but increasing the AVs further
from 9 does not improve the localization performance
because the network is saturated with anchors. Thus,
from Fig. 8 the optimal number of AVs can be chosen
for a specific scenario.

VI. CONCLUSION
In this paper, we proposed an accurate localization algo-
rithm for public safety applications for vehicular ad-hoc net-
works (VANETs) with time of arrival (TOA) measurements.
Cramer Rao lower bound (CRLB) is also derived for the pro-
posed VANETs localization algorithm because CRLB is the
benchmark to evaluate the performance of any localization
algorithm. Furthermore, numerous simulations are conducted
to investigate the performance of the proposed algorithm.
The simulations showed that the performance of the proposed
algorithm is better than those in the literature especially for
fewer anchor vehicles (AVs) and at a high noise variance.
Future work will focus on improving the mean square local-
ization error (MSLE) of the proposed method by changing
the value of ζ0k , although values of σ 2

0k remain the same in a
rank reduction method or by obtaining a better estimate of 3
from ϒ̂ by utilizing a proper weighting matrix.
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