
Received February 24, 2018, accepted March 28, 2018, date of publication April 9, 2018, date of current version May 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2823299

Performance and Power Efficient Massive
Parallel Computational Model for HPC
Heterogeneous Exascale Systems
M. USMAN ASHRAF , FATHY ALBURAEI EASSA, AIIAD AHMAD ALBESHRI,
AND ABDULLAH ALGARNI
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Corresponding author: M. Usman Ashraf (m.usmanashraf@yahoo.com)

This work was supported in part by the Deanship of Scientific Research at King Abdulaziz University, Jeddah, under Grant RG-3-611-38.

ABSTRACT The emerging high-performance computing Exascale supercomputing system, which is
anticipated to be available in 2020, will unravel many scientific mysteries. This extraordinary processing
framework will accomplish a thousand-folds increment in figuring power contrasted with the current
Petascale framework. The prospective framework will help development communities and researchers in
exploring from conventional homogeneous to the heterogeneous frameworks that will be joined into energy
efficient GPU devices along with traditional CPUs. For accomplishing ExaFlops execution through the
Ultrascale framework, the present innovations are confronting several challenges. Huge parallelism is one
of these challenges, which requires a novel low power consuming parallel programming approach for
attaining massive performance. This paper introduced a new parallel programming model that achieves
massive parallelism by combining coarse-grained and fine-grained parallelism over inter-node and intra-
node computation respectively. The proposed framework is tri-hybrid ofMPI, OpenMP, and compute unified
device architecture (MOC) that compute input data over heterogeneous framework. We implemented the
proposed model in linear algebraic dense matrix multiplication application, and compared the quantified
metrics with well-known basic linear algebra subroutine libraries such as CUDA basic linear algebra
subroutines library and KAUST basic linear algebra subprograms. MOC outperformed to all implemented
methods and achieved massive performance by consuming less power. The proposed MOC approach can be
considered an initial and leading model to deal emerging Exascale computing systems.

INDEX TERMS Exascale computing, HPC, massive parallelism, super computing, energy efficiency, hybrid
programming, CUDA, OpenMP, MPI.

I. INTRODUCTION
High Performance Computing (HPC) generally refers to the
practice of aggregating computing power in a way that deliv-
ers much higher performance than one could get out of a
typical desktop computer or workstation in order to solve
large problems in science, engineering, or business [1], [2].
Supercomputing and parallel computing are the similar terms
to HPC.

The fundamental idea behind the HPC is that, for instance,
a single compute takes 100 hours to complete a job, and we
can solve the same task by using 100 computers in 1 hour.
A single node in a supercomputer may not be amore powerful
but it can be when using all the resources together.

Initially, the utilization of HPC was limited to some par-
ticular applications such as simple simulations, engineering,

oil and gas due to massive cost of HPC systems. However,
now a day HPC is being utilized in various areas such as
data mining, social media services, education sectors and
industries. From recent past, Many HPC applications such
as climate and environmental modelling, computation fluid
dynamics (CFD) molecular nanotechnology [3], intelligent
planetary spacecraft [4] and many other big data applications
demand for an extreme powerful computing system to deal
such applications. TheHPC pioneers and researchers asserted
that the emerging supercomputing systems ‘‘Exascale
systems’’ will be presented till start of next decade [5], [6].
This heterogeneous architecture based HPC supercomputer
framework will give a thousand-overlay increase in perfor-
mance over existing Petascale systems. Such massive per-
forming HPC system will enable the unscrambling of many

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23095

https://orcid.org/0000-0001-7341-8625

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

scientific mysteries by achieving ExaFlops number of cal-
culations within secs [7]. According to development toward
Exascale computing systems, it has been anticipated that it
will be comprised of a huge number of heterogeneous nodes
where each node will be configured with conventional multi-
core CPUs and many core accelerated GPU devices [8], [9].
The arising of heterogeneity of HPC systems is leading in
growingly complex platforms at a time when the demand
for greater computing power continues to expand. Leading
supercomputing systems, the key challenge is the massive
power consumption during HPC data processing. According
to current HPC supercomputing system architectures, up
to 10 million number of cores are resided per node that
consume about 25 to 60 MW power. Applying this power
consuming ratio, Exascale computing systems will demand
up to 130 MW power consumption to achieve Exaflops
which is not affordable for maximum countries. However,
HPC pioneers such as United States Department of Energy
(US DoE), Intel, IBM and AMD defined some limitations for
Exascale systems such as energy consumption≈ 25-30 MW,
capital cost ≈ 200 M USD, targeted time of delivery ≈
2020-2022 and system cores should be up to 100million [10].
It is very challenging for current HPC systems to achieve
ExaFlops level performance under these hard limitations.
However, a key element of the strategy as we move forward
is the co-design of the applications, programming environ-
ments, frameworks and architectures. In addition, hardware
breakthrough under the power consumption limitations is also
required.

A. EXASCALE CHALLENGES
The primary challenge for the Exascale system is that it
does not exist yet. However, in trying to achieve ExaFlops
level performance under the defined strict limitations, cur-
rent technologies are facing several fundamental challenges.
At a broad level, these challenges can be categorized in
following themes in Table 1 [6].

One conventional approach to upgrade an HPC system
framework is to enhance the clock speed. Due to extraordi-
nary heat dissipation, this approach will be fixed at 1 GHz
and alternative approach to increase the number of cores will
be adopted [12]. According to above indicated restrictions
for Exascale systems, we cannot increase the number of
cores more than one hundred million. Ultimately, increase
in number cores can provide targeted performance level but
with massive power consumption. An alternate solution is
‘massive parallelism’, which required improving the pro-
gramming environment. According to Jacobsen et al. [13],
the performance of multi-level parallelism in tri-hierarchy
model can be promising for Exascale computing systems.
However, it should be implemented and investigated on larger
clusters with more than two GPUs and different domain
decomposition strategies.

This paper introduces hybrid of MPI+OMP+CUDA
(MOC), a new massive parallel programming model for
largescale heterogeneous cluster systems. In this article,

TABLE 1. Exascale computing challenges.

we adopt the term tri-hybrid of ‘‘MPI+OMP+CUDA’’
abbreviated as ‘‘MOC’’. MOC provides three level of
parallelism such as coarse grain, fine grain and finer granu-
larity parallelism by computing data over inter-node, intra-
node and accelerated NVIDIA GPUs devices respectively.
The authors and HPC pioneers build over previous work and
introduced CuBLAS (CUDA Basic Linear Algebra Subrou-
tines library) [14] and KBAS (KAUST Basic Linear Algebra
Subprograms) [15] the more performance tuning knobs that
could maintain decent throughput across previous and current
accelerated GPUs hardware generations, without code rewrit-
ing. Although these models provides a decent performance
but cannot be considered for emerging Exascale computing
systems due to massive power consumption. As discussed
above the characteristics of Exascale systems that will deal
with big data HPC applications. However, with respect to
two fundamental HPC metrics ‘‘performance and power con-
sumption’’, MOC outperformed to existing state-of-the-art
on larger dataset computations. MOC attains asymptotically
up to 30% and 40% speedup against the best implementa-
tions on heterogeneous multiprocessor CPUs and accelerated
NVIDA GPUs.

Further, the paper is organized in such way that section II
carried out a detailed background of parallel program-
ming models used in MOC proposed model. In addition,

23096 VOLUME 6, 2018

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

we have accomplished a comprehensive literature review
of these models with different hierarchies and reported the
HPC facing challenges for today and future Exascale com-
puting systems. Section III highlights our contribution in
current study. Section IV demonstrates the MOC model
in detail and presents the features and functionalities of
inter-node, intra-node and GPU computations in MOC.
Section V describes the experimental setup including plat-
form, HPC metrics and measurement mechanism of these
metrics. Furthermore, section VI shows the experimental
results of MOC and compared with existing state-of-the-art
implementations. Section VII describes the critical parame-
ters necessary to tune the MOC model for Exascale comput-
ing systems. In addition, this section presents an anticipated
configuration model for Exascale system and we conclude
in section VIII.

II. BACKGROUND MATERIAL AND LITERATURE REVIEW
We now give a brief background of parallel programming
models including MPI, OpenMP and CUDA that has been
used in MOC model followed by a comprehensive literature
review in section 2.2.

A. TECHNOLOGY BACKGROUND
1) MPI
MPI is a notable autonomous library that has been utilized
for correspondence among the explicit procedures in dis-
tributed framework. Basically, the standard version MPI was
introduced in 1994 [16]. Later on, number of modifications
were in made to provide new features in different versions.
In recent past, some challenges including environmental
layouts, message passing in heterogeneous cluster systems,
blocking/non-blocking data distribution and receiving were
addressed in MPI 3.0 version [17]. Although the original
development in MPI was not for Exascale consideration but
a progressive improvement made it the promising consider-
ation for emerging HPC systems. In the light of Exascale
computing systems, it still requires several considerations
such as low power consuming strategies in message pass-
ing among the heterogeneous cores, synchronization han-
dling in non-blocking strategy and memory management
mechanisms [18], [19].

2) OPENMP
Open Specification for Multi-Processing (OpenMP) single
instruction multiple data (SIMD) based a new model was
introduced for CPU thread level parallelism in 1997 [20].
OpenMP parallelize the code over CPU threads using differ-
ent directives, library routines and clauses. Throughout the
OpenMP development, these shared memory standards are
available in C++ and FORTRAN languages. In OpenMP 4.0
version, a number of new features were introduced. These
features includes ‘‘new atomic operations’’ that are used
for fine grain synchronization [21]. It also contained many
tasks extensions and error handling clauses that maintain the

program execution. According to latest build OpenMP 4.5,
OMP also facilitate the programmer to run application code
on accelerated GPU devices. Along with GPU computation,
synchronization between host CPUs and GPU cores was
improved that is capable to run multiple task in a group
format using ‘taskgroup’ construct. In addition, load balanc-
ing in during loop parallelization was also improved using
‘taskloop’ directive [22]. Although OpenMP has become a
very famous model to deal parallel programming merely
it is implementable only for single node architectures but
cannot be used for cluster systems having multiple nodes.
By future perspectives, it has been observed that OpenMP can
be used in hybrid withMPI for future comping systems where
OpenMP will perform intra-node execution.

3) CUDA
In the light of accelerated NVIDIA GPU programming,
NVIDIA presented Compute Unified Device Architec-
ture (CUDA) a remarkable model that achieve massive par-
allelism by running user input data over accelerated GPUs
cores. CUDA architecture is also available in C++ and
FORTRAN programming languages [23]. The recent stable
CUDA release 8.0 introduced a new optimization schemes
that improve the performance in the system. Accordingly,
we can make grid and block level optimization by creating
multiple stream-processors for each SM on GPU. Further
new CUDA release 9.1 was presented that contained the
new profiling mechanisms. This new build was supportive
for multiple GPU architectures including pascal and lambda
compilers [24]. In CUDA model, sequential code is paral-
lelized by executing through CUDA kernel.

According to basic structure of CUDA programming,
before calling CUDA kernel, some pre-processing are per-
formed where firstly memory allocation is performed for
GPU devices with equal number of variables used at host side.
Further, data is transferred from host to GPU devices using
particular methods provided by CUDA. Once data transfor-
mation is confirmed, CUDA kernel is called for GPU compu-
tation. At this stage, we can usemultiple CUDAkernels to run
over multiple accelerated NVIDIA GPU devices. A detailed
overview has been presented in figure 1 [25].

B. LITERATURE REVIEW
Parallelism has brought about a great revolution to enhance
the performance in the computer. Parallelism was intro-
duced firstly in the 90s and still being explored to deal
targeted Exascale computing systems. The primary objective
of Exascale systems is to deal big data HPC applications
such as climate and environmental modelling, computation
fluid dynamics (CFD), molecular nanotechnology, intelligent
planetary spacecraft and many other applications that are
required to run on HPC systems. In order to deal these HPC
applications, a variety of PPMs such as High-Performance
FORTRAN (HPF) [26] and an explicit message-passing inter-
face (MPI) were introduced to attain TFlops. Terascale com-
puting systems were based on coarse-grained parallelism that

VOLUME 6, 2018 23097

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

FIGURE 1. Processing flow on CUDA.

was accomplished at the inter-node level through single-
hierarchy models such as MPI. To increase the performance
in Terascale systems, many new approaches were intro-
duced, such as pure parallelism, in situ processing [27], and
out-of-core and multi-resolution techniques. However, pure
parallelism was conceived as a suitable paradigm. These sug-
gested models were not able to address the challenges of the
higher-order CFD applications and required thread-level par-
allel computing in a cluster system. Later on, dual-hierarchy
model (MPI+X) was introduced for Petascale supercomput-
ing systems [28]. The objective of the Petascale system was
to achieve both coarse-grained and fine-grained parallelism
through inter-node and intra-node processing. Therefore,
a hybrid model of MPI (to parallelize data at the inter-node
level) and OpenMP (to parallelize at the intra-node level) was
proposed byDong et al. [29]. This hybrid technique enhanced
the performance in solving HPC applications. The hybrid
model of MPI and OpenMP [30] for coarse-grained paral-
lelism shows good scalability compared to single-hierarchy-
level parallelism (pure MPI and pure OpenMP 3.0) with
respect to both the problem size and the number of pro-
cessors for a fixed problem size. Nevertheless, the use of
multiple threading in a hybrid paradigm increases the thread
management overhead in thread creation/destruction and syn-
chronization considerably with the increase in the number
of threads [31]. To update the thread-level parallelism and
address the overhead in thread creation/destruction and syn-
chronization, OpenMP 4.0 was released in 2013 as discussed
in last section. This new version was equipped with new fea-
tures for error handling, tasking extensions, atomics and sup-
port for accelerated computation. The primary challenge with
this hybridmodel wasmassive power consumptionwhile data
transferring and communication among CPU processors [32].
However, new hybrid PPM approaches and hardware devices
were required for localizing the work from the distributed

FIGURE 2. Hierarchy Navigation in the Programming Model.

system in the spectral element method and performing effi-
cient computations using multiple threads.

Since a decade ago, a sensational change happened
in hardware advancements in IT. Many-cores architecture
based new energy-efficient and powerful devices has been
introduced such as Graphical Processing Unit (GPU) by
NVIDIA [33], Many Integrated Cores (MIC) by Intel [36].
These GPUs devices were also introduced by different
pioneers such as ADM-GPU [34], ARM [35]. These Single-
Instruction Multiple-Data (SIMD)-architecture-based many-
cores devices contained thousands of cores in single chip that
are much powerful than conventional CPUs. The legacy GPU
deviceswere applicable only for graphical processing but new
GPU models called General-Purpose Graphical Processing
Unit (GPGPU) are available to compute general purpose data
processing in HPC applications along with graphical com-
putation. These GPGPUs can be programmed using several
accelerated programming models such as OpenCL [37], [38],
OpenACC [39], CUDAandOpenMP that can programGPUs.
According to different experiences and consequences,
CUDA is most promising model for accelerated program-
ming which is optimizable at thread level.

The previous hybrid models could deal only homogenous
systems but not heterogeneous cluster systems. However
by software perspectives, new hybrid programming models
were required that could utilize these energy-efficient accel-
erated devices along with traditional CPUs [40], [41].
Pennycook et al. [42] proposed a new hybrid (MPI +
CUDA) approach to implement in NAS LU benchmark.
Rakić et al. [43] introduced the similar MPI + CUDA
parallelization of a finite strip program for geometric non-
linear analysis. The hybrid of MPI+CUDA is applica-
ble on heterogeneous cluster system where multiple CPU
processors are configured along with accelerated NVIDIA
GPU devices. Likely, another hybrid of OpenMP + CUDA
approach was introduced to achieve massive performance
by computing data over single node having heterogeneous
processors [44]–[46]. The similar functionally was achieved
by Howison et al. [47] through hybrid of MPI+ PThread.
These hybrid approaches could achieve coarse grain and
fine-grain parallelism through MPI and GPU computa-
tions respectively. To achieve massive parallelism in the
system, the hierarchy level in PPMs was shifted from
dual- to tri-level by adding another layer of parallelism.
Figure 2 demonstrates the increasing hierarchy in parallel

23098 VOLUME 6, 2018

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

programming models. Toward massive parallel computing
using tri-hierarchy level, symmetric multiprocessor (SMP)
based new model was introduced to run on larger clus-
ter systems in [48]. In this model, communication among
SMP nodes was made using message passing interface.
Further second level of parallel computing starts over
CPU threads within the node that was accomplished by
OpenMP. Continuing parallel computing it starts third level
of parallelism by vectorization for each processing ele-
ment. The primary aim of this approach was to achieve
massive parallelism by combining coarse and fine grains
within each SMP. Hybrid approach doesn’t allow the mes-
sage passing in SMP nodes which was the main advantage
over flat MPI. Further this tri-hybrid model was used to
solve several three dimensional linear elastic problems and
achieved 3.80 TFlops. From smaller executions, both tri-
hybrid and flat MPI achieve better performance but hybrid
model outperformed to flat MPI for larger systems with
multiple SMP nodes. Although the performance in tri-hybrid
model was good enough but huge power consumption was
the biggest challenge for HPC technologies. According to
Amarasinghe et al. [50], unanimous implementation of exist-
ing models and powerful GPU devices for better perfor-
mance of the system should be reinvestigated. On the road
toward Exascale computing systems, it has been antici-
pated that in tri-hybrid third level of parallel computing
model X will be replaced by accelerated processing through
energy efficient GPU computations. In order to decide this
X model, several models were recommended in different
studies [51]–[54]. These studies recommended OpenACC,
CUDA at top consideration where OpenACC exceeded the
performance of the Compute Unified Device Architecture
(CUDA) by approximately 50%. Moreover, it exceeded
CUDA’s performance by up to 98%. Conversely, metrics such
as optimization and program flexibility, thread synchroniza-
tion and other advanced features are attainable in CUDA
but not in OpenACC. Under these metrics, HPC hetero-
geneous systems prevents unnecessary usage of resources.
Eventually, we finalized the X model as CUDA to com-
pute accelerated GPU devices in current studies, which
is expected the promising model for Exascale computing
system.

III. CONTRIBUTIONS
Our contribution in this paper can be summarized as
follows:

- Proposed a new tri-hybrid MPI + OpenMP + CUDA
(MOC) massive parallel computing model for Exascale
computing system that combine coarse-grain, fine grain
and finer granularity through inter-node, intra-node and
accelerated GPU computations.

- We proposed a tri-hybrid algorithm and theoretical
model to evaluate MOC model complexity.

- We implemented MOC in linear algebra dense
matrix multiplication using different kernel sizes and

evaluated HPC metrics including performance and
power consumption.

- We implemented the same problem in CuBLAS and
KAUST basic linear algebra subprograms (KBLAS) the
most famous Linear Algebra Subroutines libraries. Fur-
thermore, we compare the results with MOC suggested
model.

- Based on MOC consequences, anticipated configura-
tions and predictive performance and power consump-
tion have been presented for future Exascale computing
system.

IV. TRI-HYBRID MPI+OPENMP+CUDA (MOC)
PARALLEL PROGRAMMING MODEL
In this section, we have presented the proposed tri-
hybrid parallel programming model for Exascale comput-
ing system. Based on the hierarchy navigation in previous
parallel programming models, the proposed approach is a
hybrid of MPI, OpenMP and CUDA and abbreviated as
MOC. MOC contains three major level of computations such
as inter-node, intra-node and accelerated GPU devices. The
detailed workflow of these three parallel computing level has
been illustrated in Figure 3. Each computation level has been
discussed in detail as follows:

A. INTER-NODE COMPUTATION
Before interacting with MOC model, some prerequisites are
necessary to determine about targeted system that includes
host CPU cores and its architecture, number of racks if
targeted system is larger cluster, total number of nodes in
the system, the GPU devices for accelerated computing and
type of GPUs, memory type and levels. Once these speci-
fications are determined, parallel computing zones started.
MOC provides basically three levels of parallel zones where
first and top level is obtained through inter-node computation.
Inter-node computation was achieved by MPI that commu-
nicate among host CPUS processors in all connected nodes.
MPI defines two types of processes such as master pro-
cess and slave process where master process is indicated
with rank ‘0’ and slave processes are represented with non-
zero ranks. Before data distribution over processes, there
are some fundamental MPI statements that are necessary to
define these ranks and communication size over MPI world.
Continuing the parallel computing, MPI master processes
distribute the data over all connected nodes through slave
processes. In order to distribute and receive the data, several
methods are available to use. For MOC model, we imple-
mented blocking methods MPI_Send() and MPI_Recv() for
sending and receiving data. Although these methods are not
as much efficient as non-blocking Isend() and Irec() but
we blocking methods maintain the synchronization. In our
implementation, we didn’t use any optimization during data
distribution however, this level of parallelism provides only
coarse grain parallelism. After distrusting data over CPU pro-
cesses, the next parallel computing zone started as described
below.

VOLUME 6, 2018 23099

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

FIGURE 3. Workflow of the Hybrid Parallel Programming Model.

B. INTRA-NODE COMPUTATION (START
FROM HERE TO NEXT)
Intra-node computation is second level of parallelism where
distributed data over host CPU cores is computed within
the node. This computation is performed over CPU threads.
These threads can be parallelized through different paral-
lel programming models. Once of the most famous parallel
programming model to parallelize CPU threads is OpenMP.
As discussed above, OpenMP can be used to program both
CPU cores and GPU devices as well. In MOC implementa-
tion, we used OpenMP to program parallelize CPU threads
and achieved fine grain parallelism. OpenMP programming
model contains one main outer pragma that initiate the par-
allel zone. Each statement written within this pragma is
computed in parallel. However, to achieve fine grain par-
allelism, we implemented multiple looping directives and
sections directives, and refine the parallelism. Within these
pragmas, we defined the third level of parallelism called GPU
computation. In order to optimize the resource, we reserved
the similar number OpenMP threads as number of available
GPU devices.

C. ACCELERATED GPU COMPUTATION
The third level of parallelism in MOC model was performed
through data processing over accelerated GPU devices. Each
CPU process was reserved for every GPU device. Therefore,
a looping statement reserve a specific GPU device every time
and transfer data from host to GPU device. This data is further
computed in CUDA kernel that run the code on specific

GPU device. At this stage, data is computed over thousands of
cores in parallel and obtained finer granularity. For a cluster
system having larger number of GPU devices, it’s difficult to
write the kernels each time. However, MOCmodel contained
a generic form of CUDA kernel that receive/return data in
template format and execute accordingly. Once data compu-
tation over GPU devices is completed, it transferred back over
host cores and controlled by OpenMP threads from where
it was initiated. Similarly, OpenMP complete its execution
within the pragma and return data to MPI slave processes.
After receiving data from all these levels, MPI master thread
collect data from slave processes and return the results back
to user call. In such way, we achieve three level of parallelism
from MOC model.

Algorithm in Listing 1, describes the individual role of
MPI, OpenMP and CUDA in MOC model that provide three
levels of parallelism as discussed above. Analysing compu-
tation and communication cost of an algorithm depicts that
whether the algorithm is useful or not. Generally, running
time of any algorithm depends on multiple factors such as
single/multi-processor system, read/write speed to memory,
bit system (32/64 bits) and the input data. Theoretically,
an algorithm is evaluated by calculating the time and space
complexity in it [63], [64]. Space complexity is related to
memory types used in the system. Now a day, we have
advanced memory devices that overcome the space issues
and consequently ignore the space complexity considera-
tions. Generally, a parallel algorithm is analysed by following
factors.

23100 VOLUME 6, 2018

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

List. 1. The Tri-Hybrid MOC Algorithm

In order to evaluate these parameters in MOC model, let’s
assume that N is the problem size in bytes. In MOC model,
each process pi will process these bytes equally as w = N/p
where w is the workload and f is considered the percentage
of workload w that cannot be processed within the parallel
region. According to Amdahl’s law, we consider the Tt the
time factor for processing by adding t threads on each p.
Using asymptotic analysis O(N) approach, the required work
amount for N bytes can be expressed as O(NpTt).

During processing of any parallel algorithm, it incurs some
amount of communication overhead [65]. In MOC implan-
tation, we tried to reduce the communication rounds from
three phases including sending, computing and receiving;
and assume the overhead cost as To. During sending round,
let us assume that s bytes data will be send by a pro-
cess pi from working region. Therefore, the communication
complexity for sending s bytes will be as O(NSp). Similarly,
the multithreaded processes can compute C bytes of data
using share memory. During data computation over pro-
cesses, many overhead possibilities exist there such as wait
time during accessing shared data, processes synchronization
etc. However, these overheads during data computation can
be expressed as o = N/M where M is the output of data
computation. Thus the complexity of data computation round
can be determined as O(N

oCp). Once the program execution is
done by all the processes, the third round of data receiving
takes start that can be described as O(log (p + Rec)) where
Rec is timestamps for receiving processed data.
Overall the total time complexity of MOC algorithm can

be summarized as (Tm = Tc + To) where Tc represents the
computation cost of input data and To is the communication
overhead cost.

Tc = O(
N
pTt

) (a)

To = O(
N
Sp

)+ O(
N
oCp

)+ O(log(p+ Rec)) (b)

Tm ≈ O
(
N
p

(
1
Tt
+

1
S
+

1
oC

))
+ O(log(p+ Rec)) (c)

Equation (c) elaborates that the complexity in MOC algo-
rithm depend on multiple parameters under data computation
and communication among the processes.

V. EXPERIMENTAL SETUP
This section explains the selected experimental platform for
proposed MOC model. In experiments, we measured dif-
ferent HPC metrics that includes performance factors such
as execution time, number of achieved flops, power con-
sumption and the energy efficiency in the system. A detailed
description of these metrics is explained in following section.

A. EXPERIMENTAL PLATFORM
In order to evaluate the suggested MOC model, all experi-
ments were performed on Aziz supercomputer available in

VOLUME 6, 2018 23101

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

HPC centre, King Abdulaziz University, Jeddah, Saudi Ara-
bia. Aziz-Fujistu PrimergyCX400 Intel Xeon Truescale QDR
supercomputer is manufactured by Fujistu [55]. According
to top-500 supercomputing list, Aziz was ranked at 360th
position [56]. Originally Aziz was develop to deal HPC appli-
cations in Saudi Arabia and collaborated projects. It con-
tained 492 number of nodes which are interlinked within the
racks through InfiniBand where 380 are regular and 112 are
large nodes with additional specifications. Previously Aziz
was capable to run the applications only on homogeneous
node but due to requirements of massive parallel comput-
ing, it was upgraded by adding two SIMD-architecture-based
accelerated NVIDA Tesla k-20 GPU devices where each
device has 2496 CUDA cores. Moreover, two MIC devices
with an Intel Xeon Phi Coprocessor with 60 cores were also
installed to upgrade homogeneous computational architec-
ture. In such way, Aziz contains total 11904 number of core
in it. Regarding memory, each regular node contained by
96 GB and larger (FAT) nodes with 256 GB. Each node has
Intel E5-2695v2 processor that contains twelve physical cores
with 2.4 GHz processing power. Overall Aziz all nodes and
accelerated devices are interlinked through three different
networks including user, management and InfiniBand net-
work. For Aziz, user network and management networks are
specifically used for the login and job submission handling
whereas InfiniBand to parallelize the file system. Accord-
ing to LINKPACK benchmarks, Aziz’s peak performance
was measured with 211.3 Tflops/s and 228.5 Tflops/s as
theoretical performance [57]. Regarding software speficica-
tions, it run using Cent OS with release 6.4. For accelerated
programming CUDA recent toolkit 9.1 is installed. It also
contained many other compilers required for HPC libraries.

B. PERFORMANCE MEASUREMENT
System performance is the primary aim of current and emerg-
ing HPC systems. The performance metric contains different
factors that evaluates a system’s performance such as execu-
tion time, number of achieved flops. Usually, in HPC systems,
the number of flops are calculated by dividing the number of
floating point operations (FPOps) by parallel execution time
PEt as given in equation (1).

Flops =
FPOps
PE t

(1)

Following equation (1), we measured the number of achieved
flops by executing different datasets of DMM algorithm in
MOC model.

C. POWER MEASUREMENT
Energy consumption is the primary challenge toward emerg-
ing HPC systems. Although this challenges is somehow
addressed in current computing systems but we cannot
increase the system performance under defined power con-
sumption limitations. However, the main theme of Exascale
systems is to minimize the power consumption by selection
optimal hardware and software frameworks [58]. Many novel

programming approaches are being introduced to program
accelerated energy efficient devices that can minimize the
power consumption level. Generally, a system is evaluated
according to its energy consumption, which indicates the
power rate at which processing was executed, as described
in equation (2).

E(kWh) =
∫ t

0
V · I (dt) (2)

From above equation, we can calculate the total energy con-
sumption of a system by integrating the energy consumption,
which is composed of the bandwidth, memory contention,
parallelism and behavior of the application in the HPC paral-
lel system, as described in equation (3).

Esystem =
∫ t

0
BandW (dt)+MemC (dt)+ Prll (dt)

+Bhv(dt) (3)

On the basis of the dictated factors and the fundamental
energy evaluation, we quantified these factors in the current
study with respect to system performance and power con-
sumption. For any heterogeneous cluster system, the power
consumption can be calculated by summation of the prod-
ucts of the power of each component and the corresponding
duration [59]. Generally, Power consumption in a system is
categories in two types.
1) System Specification
2) Application Specification

Since the system specification has GPU devices installed in
it, the power consumption is calculated by equation (4):

Psystem(w) =
N∑
i=1

PiGPU (w
i)+ PCPU (

M∑
j

(wj))

+Pmainboard (w) (4)

From equation 4, it can be speculated that the approximate
power consumption of a system is the sum of the products
of the installed GPUs, CPUs and motherboard. The power
consumption varies with the workload; however, on the appli-
cation side, it can be quantified using equation (5):

Papp =
Napp∑
i=1

PiGPU (w
i)+ PCPU (

M∑
j

(wj))

+Pmainboard (wapp) (5)

According to equations (4) and (5), the power consumption in
watts was measured at the idle state of the system, where only
5 watts of power were consumed by the motherboard and the
remaining power was consumed by the cores of system.

VI. EXPERIMENTAL RESULTS
Tri-hybrid MOC model was implemented in linear algebraic
dense matrix multiplication (DMM) algorithm [60]. We per-
formed all the implementation onAziz supercomputing avail-
able in King Abdulaziz University, Jeddah Saudi Arabia as
the specification are described above. During experiments,

23102 VOLUME 6, 2018

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

TABLE 2. Naïve code and parameters of implemented DMMA.

we observed two fundamental HPC metrics including perfor-
mance and power consumption that are biggest challenges for
current and emerging HPC systems. As Aziz contained mul-
tiple GPU devices, however we computed different matrix
sizes on multiple CUDA kernels (four, eight and twelve).
During experiments, it was observed that multiple kernels
outperformed to single kernel call with respect to perfor-
mance by consuming low power. For a heterogeneous system,
we noticed that larger than four kernels couldn’t performwell.
This happens due to unnecessary utilization of resources and
communication among the devices and host cores. According
to new CUDA build 9.1, the overhead of communication
can be minimized by using additional CUDA statements that
allow to communicate with host cores only when necessary.
In contrast, four kernels outperformed throughout the execu-
tions due to an optimized resources utilization. A naïve code
along with specific parameters of implemented DMM has
been presented in table 2 as follows.

Above code described in table 2 is not explained com-
pletely due to space restrictions. However, readers can
approach to Tiwari et al. [61] that has described DMM
implementation and optimization strategy in details. In our
implementation, z array was reused in the buffer register and
x, y arrays were stored in caches to utilize in efficient way.

However, in order to quantify the performance in selected
linear algebraic dense matrix multiplication application,
the number of floating point (FP) operations of DMM algo-
rithm were determined. Generally, in dense matrix multi-
plication algorithm (DMMA), it is apparent that the total
number (TN) of FP operations to compute a product of two
square matrices can be calculated using a simple formula as
follows in equation (6).

TN FP Ops = (N 3)+ ((N 2) ∗ (N − 1)) (6)

Once the TN of FPOps are determined, we can calcu-
late the number of flops using equation (1). According to
DMM algorithm implementation, it was observed the
peak performance for datasets 1000-10000 reached up
to 1 Teraflops in four kernels. For all kernels implementation
the observed performance was achieved by 716 Gflops as an
average as shown in Figure 4.

We noticed that the implementation of four CPU threads
per node along with equal number of CUDA kernels outper-
formed to all other kernel configurations and consequently
accomplished approximately 1 Teraflops with 68% peak

FIGURE 4. Performance in DMM through multiple kernel configurations.

FIGURE 5. Energy efficiency in DMM for different multiple-kernel
configurations.

performance. Conversely, bigger kernel sizes also achieved
an adequate performance but consumed more power due
to unnecessary communication among heterogeneous cores.
Alongside performance, we evaluated another essential met-
ric, to be specific, energy consuming in the system that
was 28 Joules. At most extreme DMM for a dataset of size
10000 through an enhanced four kernel setup, the evaluated
energy proficiency was 8.3 Gflops/W. The addition of assets
influenced energy effectiveness significantly and diminished
it to 5.6 Gflops/W, as appeared in Figure 5.

Performance and energy efficiency are directly propor-
tional to each other, however the trade-off between both
metrics can be determined [62] as given:

Performance
Power

=
Execution within the time unit

Energy during the execution time unit

=
work
energy

Therefore trade-off between these metrics provides the rate of
accomplishable performance under given energy efficiency
as presented in Figure 6 where horizontal and vertical lines

VOLUME 6, 2018 23103

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

FIGURE 6. Performance-Energy Efficiency tradeoff.

FIGURE 7. MOC performance comparison with KBLAS and CuBLAS
implementations.

presents the entropy of energy efficiency and performance
respectively. Any interacting point in the graph confronts
the peak values of achieved performance and energy effi-
ciency. We can settle the arrangement and parameters at any
crossing point to give most extreme execution and vitality
productivity. These assessments discovered that the best per-
formance and energy efficiency which is accomplishable by
utilizing the proposed demonstrate on the Aziz supercom-
puter was 1086 Gflops, which relates to energy efficiency
of 8.3 Gflops/W.

In MOC implementations with different kernel sizes,
we concluded that system performance is directly propor-
tional to resource optimization and utilization during any
dataset processing. Sometime, larger number of resources
become the reason of performance decreasing in the
system as (8,12 kernels) used in experiments. In order
to compare the evaluated MOC performance and power
consumption, we computed the similar DMM application
matrix size in KBLAS and CuBLAS libraries. According to
figure 7, KBLAS and CuBLAS could achieve maximum
810 and 630 Gflops/sec respectively whereas MOC achieved
up to one Tflops during the same executions.

FIGURE 8. Energy efficiency in DMM for MOC vs (CuBLAS and KBLAS).

MOC outperformed throughout to KBLAS and CuBLAS
in all executions matrix sizes. During power consumption
quantification, there consequences were different now where
MOC consumed less power as compared to all other imple-
mentations as shown in figure 8.

It was observed that MOC achieved 6.1 Gflops/w during
smaller data computation whereas CuBLAS and KBLAS
attained 5.2 and 5.7 number of Gflops/w respectively.
By increasing matrix size, Gflops/w gradually changed in
all implementations. We noticed that CuBLAS and KBLAS
could achieved the maximum number of Gflops/w as
6.5-6.7 against maximum matrix size computations. In con-
trast, MOC attained the similar number of Gflops/w at ini-
tial matrix size executions. By increasing the matrix size,
number of Gflops/w increased gradually and reached up
to 8.3. Although KBLAS and CuBLAS are also optimized
approaches in solving linear algebraic systems whereasMOC
outperformed by depictingmassive parallelism. Furthermore,
the additional factor was utilization ofNVIDIAGPU that pro-
cessed the data in mili-seconds within small power consump-
tion. However, we evaluated that MOC model accomplished
1086 Gflops by consuming 130 w total power consumption
during larger matrix execution.

VII. EXASCALE COMPUTING SYSTEM DEMAND
The major challenge for future HPC supercomputing Exas-
cale systems is that it doesn’t exist yet. However, the devel-
opment toward Exascale systems are being performed based
on predictions and statistics in existing consequences. This
section demonstrates a statistical analysis of performed
experiments in current study. This factual investigation
explore two primary HPC metrics including performance
and power consumption which has been considered the
challenging factors for Exascale computing systems. The
current study was conducted on heterogeneous architecture
based system that contained 11904 number of cores inte-
grated in 494 number of homogenous nodes. Moreover, two
k-20 NVIDA GPU devices were configured in the sys-
tem for accelerated computing. The peak performance of
selected platform was 211.3 Tflops/s and 228.5 Tflops/s with

23104 VOLUME 6, 2018

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

TABLE 3. Exascale computing system configurations.

TABLE 4. An analysis of measuring parameters based on different
platforms.

Linpack and theoretical performance respectively. Using this
platform,MOCmodel achieved 1086 Gflops/s and consumed
less than 28 joules energy for larger datasets. This rate of
performance and energy consumption conceded the energy
efficiency as 8.3 Gflops/Sec. This efficiency factor can be
determined by using formula given in equation 7.

P (w) =
E(j)
t(s)

However,

watt =
Joule
Second

or W = J / S (7)

Following equation (7), the peak performance was achieved
under the power consumption with 130 W. According to pre-
dictive Exascale systems configuration given in Table 3, if we
enhance the selected platform with thousand-fold increase,
it will be capable to provide Exaflops number of calculations
per second.

Based on the ratio of current computation and required
resources, the predictive performance and power consump-
tion were calculated, which are presented in Table 4.

Table 4 demonstrates the HPC current and emerging plat-
forms. Based on consequences, we categorized the selected
platform Aziz supercomputer into two domains such as
accomplished and prescient. However, the accomplished
results against each metric demonstrates that if Aziz is scaled
with Exascale configurations, MOC model can provide the
predictive performance level and power consumption in it.
As scalability in current architecture doesn’t requires any
additional frameworks that however it can achieve the pre-
dictive figures by using MOC. Therefore, MOC model can
be considered as promising model for emerging Exascale

computing systems if we just scale the existing HPC system
with fundamental resources required for Exascale systems.
The determinations from current study, elicited several chal-
lenging that open new research directions and thoughts as
follows:

• As HPC systems are not confirmed about its architec-
ture, it may homogeneous / heterogeneous, however
it must be investigated that how and which layer can
manage the dynamic behaviour of the system and code
irregularity as well.

• In different studies, we noticed that algorithms enhance
the system performance by consuming less power; it
must be investigated that which optimized approach can
adopt this trade-off.

• As describe in top ten challenges, memory management
is one of those, however, what additional hooks can be
used to increase system efficiency by reducing commu-
nication cost.

• Resource optimization should also be considered as
sometime small input data occupy large number of
resources.

• How we can maintain the power consumption during
larger executions within a particular environment?

• How the communication overhead among the hetero-
geneous cores can be reduced to dilute the power
consumption?

The above concluded facts open new research directions and
challenges for development communities and researchers.
Based on these facts, the suggested MOC model must be
implemented in different complex HPC applications and
observe the system behaviour.

VIII. CONCLUSIONS
HPC innovation is being moved from the Petascale to the
extraordinary ‘‘Exascale’’ processing framework. This pow-
erful system will required massive power consumption to
provide Exaflops number of calculation in secs. However,
HPC pioneers, researchers and development communities
defined some hard limitations that should be considered
for any Exascale system. These limitations includes majorly
power consumption, performance level, delivery time and
number of configured cores. Based on these limitations, cur-
rent technologies are facing several challenges where accom-
plishing massive parallelism under energy constrains is one
of those. Current study proposed a new tri-hybrid MOC
(MPI+OpenMP+CUDA) parallel programmingmodel that
attainedmassive performance throughmonolithic parallelism
in the system. In order to evaluate MOC model, we imple-
mented in linear algebraic dense matrix multiplication appli-
cation and observed different metrics such as performance
and power consumption during different dataset executions.
It was observed that MOC with four kernels outperformed
against eight and twelve kernels implementations. Further,
MOC with peak performance was compared with other most
prominent implementations including KLBAS and CuBLAS.

VOLUME 6, 2018 23105

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

We observed that MOC achieved a tremendous performance
and reached up to 1 Teraflops within 130 W power consump-
tion. Based on experimental consequences, we presented a
predictive performance and power consumption of selected
platform if we increase it up to Exascale configurations.
Although these predictive results were not meeting the Exas-
cale figures but enhance the performance by decreasing three
time power consumption as in current computation systems.
However, the suggested MOC model can be conceived as a
promising model for emerging Exascale computing systems.

By future perspectives, we must rethink and fix the deter-
mined challenges toward Exascale systems. The major chal-
lenge for Exascale is that it doesn’t exist yet. However,
we cannot assure that it will be homogeneous or hetero-
geneous architecture based systems. Therefore, we need
an adaptive hybrid programming model that can deal both
homogenous and heterogeneous architecture systems.

REFERENCES
[1] D. Eddelbuettel, ‘‘CRAN task view: High-performance and parallel com-

puting with R,’’ Comprehensive R Arch. Netw., Tech. Rep. 2018-03-20,
2018.

[2] Inside HPC. What is High Performance Computing.
Accessed: Jan. 10, 2018. [Online]. Available: http://insidehpc.com/
hpc-basictraining/what-is-hpc/

[3] M. Zhou, ‘‘Petascale adaptive computational fluid dynamics,’’
Ph.D. dissertation, Rensselaer Polytech. Inst., Troy, NY, USA, 2009.

[4] J. J. Dongarra and D. W. Walker, ‘‘The quest for petascale computing,’’
Comput. Sci. Eng., vol. 3, no. 3, pp. 32–39, May 2001.

[5] R. Brower et al. (Oct. 2017). ‘‘Lattice QCD application development
within the US DOE exascale computing project.’’ [Online]. Available:
https://arxiv.org/abs/1710.11094

[6] J.-L. Vay et al. (Jan. 2018). ‘‘Warp-X: A new exascale computing platform
for beam-plasma simulations.’’ [Online]. Available: https://arxiv.org/abs/
1801.02568

[7] S. Perarnau, R. Gupta, and P. Beckman, ‘‘Argo: An exascale operating
system and runtime,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal. (SC), 2015.

[8] J. Shalf, S. Dosanjh, and J. Morrison, ‘‘Exascale computing technology
challenges,’’ inProc. Int. Conf. High Perform. Comput. Comput. Sci., 2010,
pp. 1–25.

[9] D. A. Reed and J. Dongarra, ‘‘Exascale computing and big data,’’Commun.
ACM, vol. 58, no. 7, pp. 56–68, 2015.

[10] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, andM. Snir, ‘‘Toward
exascale resilience,’’ Int. J. High Perform. Comput. Appl., vol. 23, no. 4,
pp. 374–388, 2009.

[11] ASCAC Subcommittee for the Top Ten Exascale Research Challenges,
U.S. Dept. Energy State, Washington, DC, USA, 2014.

[12] T. N. Theis andH.-S. P.Wong, ‘‘The end ofMoore’s Law: A new beginning
for information technology,’’ Comput. Sci. Eng., vol. 19, no. 2, pp. 41–50,
2017.

[13] D. A. Jacobsen and I. Senocak, ‘‘Multi-level parallelism for incompressible
flow computations on GPU clusters,’’ Parallel Comput., vol. 39, no. 1,
pp. 1–20, 2013.

[14] CUDA Toolkit 4.0 CUBLAS Library, Nvidia Corp., Santa Clara, CA, USA,
2011, pp. 59–60.

[15] A. Abdelfattah, D. Keyes, and H. Ltaief, ‘‘KBLAS: An optimized library
for dense matrix-vector multiplication on GPU accelerators,’’ ACM Trans.
Math. Softw., vol. 42, no. 3, 2016, Art. no. 18.

[16] J. Dongarra, ‘‘MPI: A message-passing interface standard version 3.0,’’
High Performance Computing Center Stuttgart (HLRS), 2013.

[17] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur,
‘‘An implementation and evaluation of the MPI 3.0 one-sided communi-
cation interface,’’ Concurrency Comput., Pract. Exper., vol. 28, no. 17,
pp. 4385–4404, 2016.

[18] (Jun. 20, 2017.). Message Passing Interface. Accessed: Aug. 3, 2017.
[Online]. Available: https://computing.llnl.gov/tutorials/mpi/

[19] (Jan. 18, 2018). OpenMPI: Open Source High Performance Computing.
Accessed: Feb. 10, 2018. [Online]. Available: https://www.open-mpi.org/

[20] (Jan. 3, 2018). OpenMP. Accessed: Feb. 11, 2018. [Online]. Available:
http://www.openmp.org/

[21] I. Karlin et al., ‘‘Early experiences porting three applications to
OpenMP 4.5,’’ in Proc. Int. Workshop OpenMP, 2016, pp. 281–292.

[22] A. Podobas and S. Karlsson, ‘‘Towards unifying OpenMP under
the task-parallel paradigm,’’ in Proc. Int. Workshop OpenMP, 2016,
pp. 116–129.

[23] NVIDIA CUDA Compute Unified Device Architecture Programming
Guide. NVIDIA Corp., Santa Clara, CA, USA, 2017.

[24] (Jan. 24, 2018).NVIDIA Accelerated Computing. Accessed: Feb. 15, 2018.
[Online]. Available: https://docs.nvidia.com/cuda/cuda-toolkit-release-
notes/index.html

[25] (Jan. 30, 2018). CUDA. Accessed: Feb. 15, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/CUDA

[26] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman,
‘‘High performance computing using MPI and OpenMP on multi-
core parallel systems,’’ Parallel Comput., vol. 37, no. 9, pp. 562–575,
2011.

[27] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, ‘‘In-situ processing and
visualization for ultrascale simulations,’’ J. Phys., Conf. Ser., vol. 78, no. 1,
p. 012043, 2007.

[28] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, ‘‘A hybrid MPI–
OpenMP scheme for scalable parallel pseudospectral computations for
fluid turbulence,’’ Parallel Comput., vol. 37, nos. 6–7, pp. 316–326, 2011.

[29] S. Dong and G. E. Karniadakis, ‘‘Dual-level parallelism for high-order
CFD methods,’’ Parallel Comput., vol. 30, no. 1, pp. 1–20, 2004.

[30] M. U. Ashraf and F. E. Eassa, ‘‘Hybrid model based testing tool architec-
ture for exascale computing system,’’ Int. J. Comput. Sci. Secur., vol. 9,
no. 5, pp. 245–252, 2015.

[31] S. Jin and D. P. Chassin, ‘‘Thread group multithreading: Accelerating the
computation of an agent-based power system modeling and simulation
tool–C GridLAB-D,’’ in Proc. IEEE 47th Hawaii Int. Conf. Syst. Sci.,
Jan. 2014, pp. 2536–2545.

[32] M. Hennecke, W. Frings, W. Homberg, A. Zitz, M. Knobloch, and H. Böt-
tiger, ‘‘Measuring power consumption on IBM Blue Gene/P,’’ Comput.
Sci.-Res. Develop., vol. 27, no. 4, pp. 329–336, 2012.

[33] T. Hoegg, G. Fiedler, C. Koehler, and A. Kolb, ‘‘Flow driven GPGPU
programming combining textual and graphical programming,’’ in Proc.
ACM 7th Int. Workshop Program. Models Appl. Multicores Manycores,
2016, pp. 88–97.

[34] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez,
‘‘The low power architecture approach towards Exascale computing,’’
J. Comput. Sci., vol. 4, no. 6, pp. 439–443, 2013.

[35] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
‘‘Tibidabo1: Making the case for an ARM-based HPC system,’’ Future
Generat. Comput. Syst., vol. 36, pp. 322–334, Jul. 2014.

[36] A. Duran and M. Klemm, ‘‘The Intel many integrated core architecture,’’
in Proc. IEEE Int. Conf. High Perform. Comput. Simulation (HPCS),
Jul. 2012, pp. 365–366.

[37] J. E. Stone, D. Gohara, and G. Shi, ‘‘OpenCL: A parallel program-
ming standard for heterogeneous computing systems,’’ Comput. Sci. Eng.,
vol. 12, no. 3, pp. 66–73, 2010.

[38] M. U. Ashraf and F. E. Eassa, ‘‘OpenGL based testing tool architec-
ture for exascale computing,’’ Int. J. Comput. Sci. Secur., vol. 9, vol. 5,
pp. 238–244, 2015.

[39] M. Wolfe et al., ‘‘Implementing the OpenACC data model,’’ in Proc.
IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
May/Jun. 2017, pp. 662–672.

[40] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and
E. J. Kelmelis, ‘‘CULA: Hybrid GPU accelerated linear algebra routines,’’
Proc. SPIE, vol. 7705, p. 770502, Apr. 2010.

[41] S. Tomov, J. Dongarra, and M. Baboulin, ‘‘Towards dense linear algebra
for hybrid GPU accelerated manycore systems,’’ Parallel Comput., vol. 36,
nos. 5–6, pp. 232–240, 2010.

[42] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige,
‘‘Performance analysis of a hybrid MPI/CUDA implementation of the
NASLU benchmark,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 38,
no. 4, pp. 23–29, 2011.

[43] P. S. Rakić, D. D. Milašinović, Ž. Živanov, Z.Suvajdžin, M. Nikolić, and
M. Hajduković, ‘‘MPI–CUDA parallelization of a finite-strip program
for geometric nonlinear analysis: A hybrid approach,’’ Adv. Eng. Softw.,
vol. 42, no. 5, pp. 273–285, 2011.

23106 VOLUME 6, 2018

M. U. Ashraf et al.: Performance and Power Efficient Massive Parallel Computational Model

[44] J. Guan, S. Yan, and J.-M. Jin, ‘‘An openMP-CUDA implementation
of multilevel fast multipole algorithm for electromagnetic simulation on
multi-GPU computing systems,’’ IEEE Trans. Antennas Propag., vol. 61,
no. 7, pp. 3607–3616, Jul. 2013.

[45] F. Lu, J. Song, F. Yin, and X. Zhu, ‘‘Performance evaluation of hybrid pro-
gramming patterns for large CPU/GPU heterogeneous clusters,’’ Comput.
Phys. Commun., vol. 183, no. 6, pp. 1172–1181, 2012.

[46] R. Reyes and F. de Sande, ‘‘Optimization strategies in different CUDA
architectures using llCoMP,’’ Microprocess. Microsyst., vol. 36, no. 2,
pp. 78–87, 2012.

[47] M. Howison, E. W. Bethel, and H. Childs, ‘‘Hybrid parallelism for volume
rendering on large-, multi-, and many-core systems,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 18, no. 1, pp. 17–29, Jan. 2012.

[48] K. Nakajima, ‘‘Three-level hybrid vs. flat MPI on the Earth Simulator:
Parallel iterative solvers for finite-element method,’’ Appl. Numer. Math.,
vol. 54, no. 2, pp. 237–255, 2005.

[49] T. Nguyen-Thoi, G. R. Liu, K. Y. Lam, and G. Y. Zhang, ‘‘A face-based
smoothed finite elementmethod (FS-FEM) for 3D linear and geometrically
non-linear solid mechanics problems using 4-node tetrahedral elements,’’
Int. J. Numer. Methods Eng., vol. 78, no. 3, pp. 324–353, 2009.

[50] S. Amarasinghe et al., ‘‘ASCR programming challenges for exascale com-
puting,’’ Rep. Workshop Exascale Program. Challenges, 2011.

[51] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki, ‘‘CUDA vs Ope-
nACC: Performance case studies with kernel benchmarks and a memory-
bound CFD application,’’ in Proc. 13th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput. (CCGrid), May 2013, pp. 136–143.

[52] J. A. Herdman et al., ‘‘Accelerating hydrocodes with OpenACC, OpenCL
and CUDA,’’ in Proc. IEEE SCCompanion High Perform. Comput., Netw.,
Storage Anal. (SCC), Nov. 2012, pp. 465–471.

[53] A. Lashgar, A. Majidi, and A. Baniasadi. (Dec. 2014) ‘‘IPMACC: Open
source OpenACC to CUDA/OpenCL translator.’’ [Online]. Available:
https://arxiv.org/abs/1412.1127

[54] S. Christgau, J. Spazier, B. Schnor, M. Hammitzsch, A. Babeyko, and
J. Waechter, ‘‘A comparison of CUDA and OpenACC: Accelerating the
tsunami simulation EasyWave,’’ in Proc. Workshop Archit. Comput. Syst.
(ARCS), Feb. 2014, pp. 1–5.

[55] (Sep. 22, 2014). Fujitsu to Provide High-Performance Computing and
Services Solution to King Abdulaziz University. Accessed: Jul. 6, 2017.
[Online]. Available: http://www.fujitsu.com/global/about/resources/news/
press-releases/2014/0922-01.html

[56] (Jun. 2015). King Abdulaziz University. Accessed: Aug. 3, 2017. [Online].
Available: https://www.top500.org/site/50585

[57] Aziz—Fujitsu PRIMERGY CX400, Intel Xeon E5-2695v2 12C 2.4GHz,
Intel TrueScale QDR. Accessed: Aug. 3, 2017. [Online]. Available:
https://www.top500.org/system/178571

[58] L. A. Barroso, ‘‘The price of performance,’’Queue, vol. 3, no. 7, pp. 48–53,
Sep. 2005.

[59] D. Ren and R. Suda, ‘‘Power efficient large matrices multiplication by load
scheduling on multi-core and GPU platform with CUDA,’’ in Proc. IEEE
Int. Conf. Comput. Sci. Eng. (CSE), vol. 1. Aug. 2009, pp. 424–429.

[60] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh, ‘‘Parallel algorithms for
dense linear algebra computations,’’ SIAM Rev., vol. 32, no. 1, pp. 54–135,
1990.

[61] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, ‘‘A scal-
able auto-tuning framework for compiler optimization,’’ in Proc. IPDPS,
Rome, Italy, May 2009, pp. 1–12.

[62] H. Anzt, B. Haugen, J. Kurzak, P. Luszczek, and J. Dongarra, ‘‘Experiences
in autotuning matrix multiplication for energy minimization on GPUs,’’
Concurrency Comput., Pract. Exper., vol. 27, no. 17, pp. 5096–5113,
2015.

[63] J. Y.-T. Leung, Ed., Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Boca Raton, FL, USA: CRC Press, 2004.

[64] G. C. Fox, R. D. Williams, and G. C. Messina, Parallel Computing Works!
New York, NY, USA: Elsevier, 2014.

[65] Introduction to Parallel Computing. Accessed: Feb. 15, 2018. [Online].
Available: https://computing.llnl.gov/ tutorials/parallel_comp/

M. USMAN ASHRAF was born in Paddali,
Sialkot, Pakistan, in 1988. He received the B.Sc.
degree in mathematics from the University of the
Punjab, Pakistan, in 2007, and the M.S. degree in
computer science from the University of Lahore,
Pakistan, in 2014. He is currently pursuing the
Ph.D. degree in computer science from King
Abdulaziz University, Jeddah, Saudi Arabia. From
2010 to 2014, he was a Senior Software Engi-
neer with Coeus Software Solutions, GmbH. He

is currently a member of the Software Engineering Group, King Abdulaziz
University Jeddah, Saudi Arabia. His research interests include high per-
formance computing, parallel computing, exascale computing, and software
engineering.

FATHY ALBURAEI EASSA received the B.Sc.
degree in electronics and electrical communication
engineering fromCairo University, Egypt, in 1978,
and the M.Sc. and Ph.D. degrees in computers and
systems engineering from Al-Azhar University,
Cairo, Egypt, in 1984 and 1989, respectively, with
joint supervision with the University of Colorado,
USA, in 1989. He is currently a Full Professor
with the Computer Science Department, Faculty
of Computing and Information technology, King

Abdulaziz University, Saudi Arabia. His research interests include agent
based software engineering, cloud computing, software engineering, big
data, distributed systems, and exascale system testing.

AIIAD AHMAD ALBESHRI received the B.S.
degree in computer science from King Abdulaziz
University, Jeddah, Saudi Arabia, and the Ph.D.
degree in computer science from the Queens-
land University of Technology, Australia, in 2013.
He is currently an Assistant Professor with the
Department of Computer Science, King Abdu-
laziz University, Saudi Arabia. His research inter-
ests include cloud computing, security in cloud
computing, storage in cloud computing, parallel
computing, and big data.

ABDULLAH ALGARNI received the bachelor’s
degree from King Abdulaziz University Jeddah,
Saudi Arabia, and the master’s and Ph.D. degrees
from the College of Natural Sciences, Colorado
State University, USA, in 2016, all in computer
science. He is currently an Assistant Professor and
the Chairman of the Computer Science Depart-
ment, King Abdulaziz University, Jeddah, Saudi
Arabia. His research interest includes software
vulnerabilities, software riskmanagement andmit-

igation, quantitative evaluation, software risk assessment, software engineer-
ing, and software security.

VOLUME 6, 2018 23107

	INTRODUCTION
	EXASCALE CHALLENGES

	BACKGROUND MATERIAL AND LITERATURE REVIEW
	TECHNOLOGY BACKGROUND
	MPI
	OPENMP
	CUDA

	LITERATURE REVIEW

	CONTRIBUTIONS
	TRI-HYBRID MPI+OPENMP+CUDA (MOC) PARALLEL PROGRAMMING MODEL
	INTER-NODE COMPUTATION
	INTRA-NODE COMPUTATION (START FROM HERE TO NEXT)
	ACCELERATED GPU COMPUTATION

	EXPERIMENTAL SETUP
	EXPERIMENTAL PLATFORM
	PERFORMANCE MEASUREMENT
	POWER MEASUREMENT

	EXPERIMENTAL RESULTS
	EXASCALE COMPUTING SYSTEM DEMAND
	CONCLUSIONS
	REFERENCES
	Biographies
	M. USMAN ASHRAF
	FATHY ALBURAEI EASSA
	AIIAD AHMAD ALBESHRI
	ABDULLAH ALGARNI

