
Received January 23, 2018, accepted March 1, 2018, date of publication April 9, 2018, date of current version May 2, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2824341

Co-Simulation of Distributed Smart Grid Software
Using Direct-Execution Simulation
CHONG SHUM 1, (Student Member, IEEE), WING-HONG LAU1, (Senior Member, IEEE),
TIAN MAO 2, (Student Member, IEEE), HENRY SHU-HUNG CHUNG1, (Fellow, IEEE),
KIM-FUNG TSANG1, (Senior Member, IEEE), NORMAN CHUNG-FAI TSE1, (Member, IEEE),
AND LOI LEI LAI3, (Fellow, IEEE)
1Centre for Smart Energy Conversion and Utilization Research, City University of Hong Kong, Hong Kong
2Electric Power Research Institute, China Southern Power Grid, Guangzhou 510623, China
3School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Corresponding author: Wing-Hong Lau (itwhlau@cityu.edu.hk)

This work was supported by Hong Kong RGC under Grant CityU 116013.

ABSTRACT The use of distributed computation and control is pervasive for a wide range of smart grid
research topics. However, recent developments of smart grid co-simulation platforms have not been able to
provide effective support for the modeling and simulation of distributed software systems. In particular, co-
simulation literatures only focused on the integration of electrical and communication network simulators,
and the responsibility for modeling distributed software is often delegated to one of these two simulators.
Since these domain specific simulators are not designed for this purpose, such delegation incurs many
limitations that prevent convenient, effective, and accurate modeling of software behaviors. To mitigate the
problem, this paper presents, to our knowledge, the first co-simulation integration of direct-execution simu-
lators to provide dedicated support for distributed smart grid software. We first present the development of
the novel DecompositionJ framework (DEterministic, COncurrent Multi-PrOcessing SImulaTION for Java
programs), which is a compiler-based code analyzer and transformer to automatically convert multi-thread
Java programs into direct-execution simulators, eliminating the need for manual code or model development.
Next, we apply DecompositionJ framework to generate simulators for a popular multi-agent platform JADE.
The JADE simulators are then integrated with electromagnetic transient simulator (PSCAD) and packet-level
network simulator (OPNET) using standardized co-simulation runtime infrastructure. At last, we conduct
a case study on agent-based smart grid restoration using this novel co-simulation platform. Through the
analysis of simulation results, it is shown that the proposed direct-execution simulation framework is able to
facilitate the understanding, evaluation, and debugging of distributed smart grid software.

INDEX TERMS Smart grid co-simulation, direct-execution simulation, high-level architecture, power
system, communication, distributed systems, multi-agent system, power system restoration.

I. INTRODUCTION
The rapid decentralization of power system is driving revolu-
tionary changes in its underlying ICT infrastructures. Various
smart grid applications require distributed computation and
pervasive data communication for coordinating millions of
automated devices. The study of these smart grid applica-
tions often requires performance evaluation, either via exper-
imentations on real-world testbed or via simulation. Unfor-
tunately, real-world platforms are rarely available for the
purpose of experiments due to the costs and the critical
nature of power stability. Even if a testbed is available,

experiments are usually bounded to a small scale with a
limited set of scenarios. Furthermore, experimental results are
often difficult to repeat due to varying operational conditions.
In contrast, simulation enables fully configurable experi-
ments with arbitrary hypothetical scenarios at a low cost and
the results are easily repeatable. It is therefore of no surprise
that most published results are obtained via software-based
simulations.

For a comprehensive simulation of smart grid, all three
aspects of electrical, communication and distributed compu-
tation, as well as their inter-dependencies should be modeled.

VOLUME 6, 2018 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 20531

https://orcid.org/0000-0001-9273-4025
https://orcid.org/0000-0001-9313-4427

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

Given the complexity and heterogeneity of the smart grid,
creating a comprehensive simulator from scratch would be
costly and time consuming. Therefore, the co-simulation
designs are often implemented by combining existing
well-developed and validated domain-specific simulators,
e.g., power system and communication network simulators,
with each of them responsible for modeling and simulating
some aspects of the smart grid.

This smart grid co-simulation paradigm was pioneered by
the work of Electrical Power and Communication Synchro-
nizing Simulator [3] (EPOCHS), and later works [4]–[16]
contributed to this field mainly in three directions:
1) Exploring various combinations of power system and
communication simulators for integrating and expanding the
tool sets to support different smart grid applications.
2) Improving time synchronization mechanisms. This is to
ensure that simulation events and messages across all simu-
lators are processed in correct timestamp order, such that
simulation outcomes are causally correct and repeatable.
3) Improving the interoperability of co-simulation plat-
forms by conforming to standardized co-simulation frame-
works such as Distributed Interactive Simulation (DIS,
IEEE 1278 Std.) and High Level Architecture (HLA, IEEE
1516 Std.).

Despite previous advancements, discussions are lacked
on the modeling and simulation of distributed computation.
Most previous works simply delegated such responsibility
to either electrical or communication simulators, leading to
several problems:
• Electrical/communication simulators allow creation of
custom models via ‘‘user-codes". However, user code devel-
opment is not as flexible as general programming, typi-
cally subject to many limitations such as reduction of usable
language features, libraries and interfaces. In particular,
multi-threading and blocking calls are generally forbidden to
prevent non-deterministic execution and deadlocks.
• Due to user code limitations, existing software cannot be
simulated in its deployable form. Researchers need to rewrite
the software with respect to user-code constraints. Depending
on the complexity of target software, development process
can be time consuming and labor intensive.
• Due to user-code constraints and development costs,
researchers may need to discard non-essential parts of the
software which may result in loss of functional fidelity.
• Electrical/communication simulators do not provide mech-
anisms to model computation delays which cause loss of
timing fidelity.
• Separation of deployment and simulation codes compli-
cates version control and code maintenance.

To mitigate these problems, we delegate the simula-
tion of distributed software to direct-execution simulators,
in conjunction with the typical integration of electrical and
communication simulators. In a direct-execution simulation,
the original code of the target program will be executed to
emulate its own functional behavior. Additional simulation
control codes are inserted to execute alongside the target

codes, which are responsible for: i) redirect program’s inter-
actions with real systems, i.e., I/O, system clock, timers,
to their simulated counterparts; ii) determine computation
delays and track the logical timestamp of program’s actions;
and iii) control the order of execution over actions performed
by different threads within the simulator, and the order of
execution over events across co-simulators.

In this paper, we discuss the challenges and operating
principles of a direct-execution simulation, then provide
an overview on the design of DecompositionJ simulation
framework (DEterministic, COncurrent Multi-PrOcesssing
SImulaTION for Java programs). This framework performs
compiler-based source analysis on a target Java program,
then automatically transforms the original program into
a direct-execution simulator by instrumenting simulation
control codes. The proposed framework eliminates the need
for manual codemodification, hence significantly reduces the
cost for developing and maintaining a model for the target
software, yet at the same time fully retains its functional
fidelity. Furthermore, this framework does not require new
hardware support and programmer annotation, therefore is
highly compatible with existing Java execution environments
and development tools. This allows researchers to use main-
stream IDEs and debuggers to investigate and debug the target
software during simulation. Further details on the framework,
such as definitions of the simulation model, exploitation of
parallelism, scalability and performance evaluations, can be
found in our paper [27].

To demonstrate the usefulness of our framework, we apply
the direct-execution simulation techniques on a popular
multi-agent platform JADE (JavaAgent Development Frame-
work) [26]. The DecompositionJ framework is used to
analyze and transform JADE source code to produce direct-
execution simulators, which are then integrated with power
system simulator PSCAD and network simulator OPNET via
a runtime infrastructure (RTI). The entire co-simulation plat-
form adheres to the HLA standard. Using this co-simulation
platform, a case study on agent based fault location, isola-
tion and service restoration (FLISR) has been conducted.
Through the analysis of simulation results, it is shown that
the proposed direct-execution simulation framework is able
to facilitate the understanding, evaluation, and debugging
of distributed smart grid software. The rest of this paper
is organized as follows: Section II discusses and compares
related works in smart grid co-simulation with our proposed
framework. Section III presents the operating principle,
design, and implementations of DecompositionJ framework.
Section IV discusses an HLA-based co-simulation platform
that integrates electrical simulator - PSCAD, communica-
tion simulator - OPNET, and DecompositionJ simulators.
Section V presents the FLISR case study, and results are
shown in Section VI. Conclusion is given in Section VII.

II. RELATED WORKS
The software-based co-simulation paradigm in smart grid
research was pioneered by the work of Electrical Power and

20532 VOLUME 6, 2018

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

TABLE 1. Characteristics of related works in smart grid co-simulation.

Communication Synchronizing Simulator [3] (EPOCHS),
which combined power system simulators PSCAD
(for electromagnetic transients) and PSLF (for electro-
mechanical dynamics) with communication simulator NS2
(for packet-level simulation of wired/wireless commu-
nications). Simulators are interfaced to a Runtime-
Infrastructure (RTI) which facilitates the exchange of data
and the synchronization of event execution across simulators
such that simulation events are executed in correct order
according to their timestamps. The capability of EPOCHS
was demonstrated with an example case study in agent based
wide area monitoring, protection and control (WAMPC).

Many other co-simulation frameworks and platforms have
since been proposed. Table 1 summarizes their characteristics
with respect to several aspects: i) target use cases; ii) selec-
tion of simulation tools for power systems, communication
networks, and distributed software; iii) time synchronization
schemes; and iv) co-simulation interfaces. We discuss each
of these aspects in the following.

A. SIMULATION OF POWER SYSTEMS
The selection of power system simulator depends primarily
on the target use case. In general, power system simulation
models can be classified into two types:
1) Steady state models of which the stable state of the power
network is solved using power flow analysis. The model
is typically used in power network planning, demand side
management (DSM), energy markets, and optimization
studies. Example simulation tools include Adevs, OpenDSS,
GridLab-D, PowerWorld, PSSE, DigSilent and MATLAB.
2) Transient dynamic models of which the power network
is characterized at circuit level by differential equations.
The trapezoidal rule is then applied to discretize the equa-
tions such that sampling and switching events can be
modeled. Simulator then solves the system equations repeat-
edly for each time step to obtain numerical time-domain
solutions. These models are typically used to study power
system control and protection, where transitions between
stable states occur due to the changing of operation point.
Example tools include PSCAD, PSLF, Adevs-THYMS,
DIgSILENT, and MATLAB.

Since our proposed co-simulation framework targets
on delay-sensitive applications that operate during state
transitions (e.g., power system restoration), we select the
PSCAD simulator to model the fast transients in the electrical
system.

B. SIMULATION OF COMMUNICATION NETWORK
Packet-level network simulators such as OPNET, NS-2,
NS-3 and OMNET++ are commonly used for simulating
smart grid communications. The principles for these tools
are similar: the processing and transmission of messages
are modeled as a sequence of discrete events along the
logical time-line. Selection of suitable simulator depends
on model availability, development flexibility and licensing
types (e.g., open source or proprietary).

For this paper, we selected OPNET for its rich set of wired
and wireless communication models, and its built-in HLA
co-simulation interface.

C. SIMULATION OF DISTRIBUTED SOFTWARE
Distributed software programs are usuallymodeledwithin the
network simulator [4]–[7], [10], [11], or within power system
simulator [5], [8], [9], [15], and their drawbacks have been
discussed in the Introduction section. Other approaches [3],
[12], [13], [16] allow the target software to be modeled as
external processes and interfaced to the simulators as slaves.
We do not consider these slave processes to be co-simulators
because they are not time-regulating; rather, they simply
perform computation and return results upon receiving trig-
gering signals from their master simulators. Modeling using
slave processes suffers from the following limitations: i)
blocking operations are forbidden within slave codes since
master simulators need to wait for slave results, other-
wise deadlocks will occur; and ii) multi-threading within
slave process should be avoided to prevent non-deterministic
results. These limitations significantly hindered the modeling
of distributed software as multi-threading and blocking oper-
ations are very common.

Here, we discuss the work of Perkonigg et al. [14] in partic-
ular, which extended the JADE platform to support the simu-
lation of unmodified agent codes. This is achieved by using

VOLUME 6, 2018 20533

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

a wrapper agent class to override the standard JADE agent
class. The wrapper agent class provides the same APIs as the
standard agent class, and in addition, implements simulation
control codes to i) redirect agent communications events to
OPNET simulator; ii) track the computation delay and logical
timestamp of the agent; and iii) control agent code executions
to achieve synchronization. This design philosophy is similar
to that of a direct-execution simulation, but the implementa-
tion is limited to JADE. In this paper, we propose a general-
ized design at the language level to support simulation of Java
programs.

D. TIME SYNCHRONIZATION
Note that during a co-simulation session, simulators execute
local events and advance local logical clocks in parallel.
Synchronization mechanisms must be installed to ensure
events and messages across all simulators are executed
in correct timestamp order. The methods used by previous
works can be classified into three types: master-slave, time-
stepped, and event-driven.
1) In a master-slave synchronization scheme, one of the
simulators is chosen as the master that triggers slave
simulators to execute events and exchange information.
The exact logical time for interaction is only known by the
master. This synchronization method can often be found
in co-simulations with a steady state power system simu-
lator (slave), which calculates new system states when
being triggered by the communication simulator (master).
The master-slave approach should only be used if the slave
simulators do not actively generate events that affect the
master.
2) In a time-stepped synchronization scheme, all co-
simulators execute independently until a specific logical time
is reached.When all co-simulators have reached the time step,
messages accumulated during this period can be exchanged
between simulators. The simulation is then resumed until
the next step. Since messages accumulated within a time-
step are delayed until the next synchronization point, system
error may occur and accumulate througout the simulation.
This error can be reduced by decreasing step-size stati-
cally or allowing changes of step-size adaptively, but cannot
be completely eliminated.
3) In an event-driven synchronization scheme, a simulator
may send and receive messages at arbitrary time. During
simulation, a time bound is assigned to each simulator.
By limiting the execution to events within this bound, it can
be guaranteed that local events and external messages are
processed in a correct order. This eliminates system error
that may occur in a time-stepped approach. Depending on the
implementation, the synchronization protocol can be sequen-
tial or parallel.
Since our proposed co-simulation platform adheres to the
HLA standard, its time synchronization mechanism is inher-
ently parallel and event-driven which i) fully eliminates
system error due to synchronization, and ii) allows the
exploitation of parallelism in the host computer.

E. CO-SIMULATION INTERFACE
Since most proprietary simulation tools do not provide
direct interfaces with standardized co-simulation frame-
works, the implementation of ad-hoc interfaces to integrate
communication and power system simulators is prominent
in practice, especially in earlier works. Recent develop-
ments [12] [14] and this paper, however, devote efforts to
the conformity of standardized IEEE 1516 High-Level Archi-
tecture (HLA) [25] interface to achieve better interoper-
ability, re-usability and scalability in co-simulator design.
The HLA standard specifies i) Object Model Templates
to define co-simulation message structures understandable
by all federates, and ii) the Runtime Infrastructure (RTI)
to coordinate the message exchange, time synchroniza-
tion, and management of a co-simulation session. Details
on HLA-based co-simulation architecture is presented
in Section IV.

III. DIRECT EXECUTION SIMULATION
The use of distributed software is pervasive for a wide range
of smart grid applications. Their designs typically utilizes
multi-threading, with dedicated threads for handling network
events. In addition, synchronization operations are often
performed by threads as a means to achieve inter-thread
coordination. However, these kinds of design patterns are not
supported by smart grid co-simulators reported in the liter-
ature because the unsupervised execution of multi-threading
and blocking codes within a electrical/communication simu-
lator may result in problems such as non-deterministic
outcomes and deadlocks. In this section, we explain how
direct-execution simulators are designed to eliminate this
kind of problems. The following discussions are focused on
the Java language, due to its popularity in distributed software
development.

The major challenges in simulating a multi-thread Java
execution is to ensure deterministic results. To achieve
this, we first explore the reasons for non-deterministic
behaviors, and then describe the corresponding counter-
measures.

According to Java memory model (JMM) [30], a single-
thread Java program performs a sequence of actions. Given
a particular control flow path, the order for action execution
is uniquely defined according to the thread-local semantics.
Therefore, the execution of a single thread program is deter-
ministic and repeatable as long as it does not contain unspec-
ified actions such as reading object references and external
inputs.

However, for a multi-threaded program, actions issued by
different threads are not necessarily in order, hence their
execution order may vary in different runs and produce
different timing and functional behaviors. These differences
accumulate as the simulation proceeds and lead to diverged
results. The causes of non-deterministic/un-repeatable behav-
iors are summarized below.
1) Actions’ execution order is not deterministically defined
and enforced as explained above.

20534 VOLUME 6, 2018

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

2) Thread scheduling is not defined nor controlled by
the program, which contributes to the non-determinism of
action’s execution order.
3) The outcomes of Java synchronization operations
(e.g., lock/unlock, wait/notify) may be non-repeatable even
if their order of execution are exactly repeated. For example,
when multiple threads contend for a lock, the order of lock
acquisition is not defined in JMM even if the order of
contention is the same.
4) Interactions between a program and external systems may
not be exactly repeatable.

Corresponding countermeasures are employed by the
DecompositionJ framework to eliminate these four sources
of non-determinism.
1) In the simulation, actions are executed in an order
determined by their timestamps. To enforce this timestamp
ordering of action execution, a logical time barrier is inserted
ahead of each thread action. This barrier postpones an
action execution until all actions with lesser timestamps are
completed.
2) Thread scheduling is modeled by introducing logical
processors, logical threads, logical scheduler, and scheduling
actions in the simulation. Logical threads participate in the
scheduling by executing processor-contend, acquire and
release actions. The outcomes of these actions are determined
by the logical scheduler based on the first-come-first-served
principle. A logical thread must acquire a logical processor
to continue action execution. This is enforced by inserting
a logical processor barrier after a processor release, which
postpones action execution until the thread has re-acquired a
logical processor.
3) Java synchronization operations in the program are
replaced with their deterministic versions, which interacts
with the logical scheduler.
4) External systems are replaced with their simulated
counterparts, i.e., co-simulators. External interactions with
other co-simulators are performed by exchanging times-
tamped messages. External messages and thread actions
are processed according to their timestamp order. This
is enforced by inserting logical time barrier before the
processing of an external message.

A. OPERATION OF A DIRECT-EXECUTION SIMULATION
The design of a direct-execution simulator is in itself a
very complicated matter that deserves dedicated paper [27]
for discussion. Reference [27] provides detailed discussions
on i) concurrent execution model; ii) definitions of actions,
inter-action relationships, and constraints to ensure well-
formedness of simulation; iii) exploitation of parallelism; and
iv) performance and scalability evaluation. In the following
subsections, we provide an overview on the runtime oper-
ation of direct-execution simulation by first describing the
data structures used in the simulation, then followed by the
discussion on the tracking of timestamps and the enforcing
of timestamp order.

1) SIMULATION METADATA
The simulation metadata is a global data structure that tracks
the states of a simulated execution. Metadata provides the
necessary information for evaluating action timestamps and
calculating the outcomes of scheduling and synchronization
operations, and it consists of:
• Processor States: For each processor, metadata main-
tains its ID, logical clock, the latest dispatched thread,
operating frequency, context switching delay, and an idle
flag.

• Logical Threads: For each logical thread, metadata
maintains its ID, the latest acquired processor and time-
slice, the lock it contends, and the wait set it resides in.

• Logical Scheduler: This includes a set of active threads
and a processor contention queue.

• External Event Queue: This includes messages received
from external processes, which are sorted according to
their timestamps.

• Locks: For each lock, metadata keeps track of its
locked/unlocked state, latest acquiring thread, and a
contention queue.

• Wait sets: For each wait set, metadata contains its wait
queue and the associated lock.

Since the metadata is a shared data structure, a metadata
lock is used to prevent concurrent access that leads to incon-
sistent states. A thread must hold the metadata lock when
accessing metadata.

2) ENFORCING SIMULATED THREAD SCHEDULING
To simulate the effect of thread scheduling, actions can only
be executed when the logical thread has acquired a logical
processor. Therefore, processor barrier codes are inserted at
the beginning of threads and at the end of every processor
releasing operation. When a thread reaches a processor
barrier, it will wait until a logical processor is assigned to it
by the logical scheduler. Note that the metadata lock must be
i) acquired before entering processor barrier, and ii) released
while waiting inside or leaving the barrier.

3) TRACKING ACTION TIMESTAMPS
The timestamps of thread actions are tracked by using the
processors’ logical clock in the metadata. When a thread is
being released from processor barriers, the clock of the newly
acquired processor is updated. After leaving the processor
barrier, the processor’s clock will be incremented by the
control codes each time a new action is reached. Essentially,
processor clock tracks the timestamp of the next action to be
performed by the running thread.

4) ENFORCING TIMESTAMP ORDER
The timestamp order of event execution is enforced by
inserting logical time barrier ahead of synchronization
actions or external messages. Note that in a co-simulation
environment, it is also necessary to ensure that no external
messages with lesser timestamps will arrive after leaving a
logical time barrier. Therefore, the barrier contains a loop,

VOLUME 6, 2018 20535

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

in which a thread invokes RTI’s NextMessageRequest service
to obtain the next external message with a timestamp less than
that of the next action, and waits until a TimeAdvanceGrant
is issued by the RTI. This request-grant cycle repeats until no
further messages with lesser timestamp is received.

5) HANDLING EXTERNAL EVENTS
Messages received from co-simulators will be stored in the
external event queue in the metadata. Events in the queue
are sorted according to their timestamps and await to be
processed by an external event thread (EET). The main body
of EET is a loop. In each iteration, EET first waits at a logical
time barrier until the next external message has the least
timestamp. It then executes the handler associated with that
message. If the event queue is empty, EET will wait at an
external event barrier until new events arrive.
The operation principle of an external event thread is

similar to that of a logical thread but with the following
differences: (i) since external actions are not performed
in the context of a logical thread, handlers must not contain
blocking operations such that EET will not be blocked as
a result of executing external operations, and (ii) external
actions do not require logical processors for execution and
therefore EET will not be blocked by processor barriers.

B. DECOMPOSITIONJ FRAMEWORK
The DecompositionJ framework is in essence a runtime
library and a compiler-based code analyzer and transformer.

Data structure and various mechanisms used in a direct-
execution simulation are implemented in a purposely
designed runtime library, such as:

1) The simulation metadata.
2) Execution order enforcing mechanisms. These include

logical scheduler, external event thread, barriers and
time tracking mechanisms that are inserted into the
target source code.

3) Deterministic versions of Java synchronization oper-
ations and time related operations. These include:
Object.wait/notify/notifyAll, Thread.start/ sleep/ yield/
join/ interrupt/ interrupted/ isInterrupted/ isAlive/
getState, monitor enter/ exit, System.currentTimeMillis/
nanoTime.

4) Simulated versions of external interactions. For
example, a simulated version of java.net package has
been implemented to facilitate the simulation of TCP
communications between Java programs. The simu-
lation package translates various network events into
co-simulation messages which are exchanged with the
OPNET network simulator.

With the aid of the runtime library, the compiler-based
analyzer and transformer can then convert a target Java
program into a direct-execution simulator of itself. The anal-
ysis and conversion procedures are as follows:

1) The parser generates abstract syntax trees (AST) for
all the compilation units, i.e., .java source files of the
target program.

2) AST nodes representing Java synchronization opera-
tions are instrumented with barriers or replaced by
their deterministic counterparts in the runtime library.
Specifically, (i) for a volatile variable access, metadata
lock and logical time barrier are inserted before the
access, andmetadata unlock is inserted after the access;
(ii) for Synchronization-Blocks and Synchronization-
Methods, they are replaced by a try-finally block that
begins with a monitor enter and ends with a monitor
exit operation; and (iii) for commonly used synchro-
nization operations, they are replaced by their counter-
parts in the library.

3) AST nodes representing external interactions are
replaced by their simulated versions, e.g., the java.net
package.

4) Time tracking codes are then inserted between actions.
Note that it is not necessary to inject a tracking
code between every action since multiple intra-thread
actions can be lumped into one if there is no branching
in their control flow, i.e., they belong to the same basic
block. Therefore, basic blocks are identified by using
precise exceptional intra-procedural control flow anal-
ysis [33] and tracking codes are only inserted before
each basic block.

5) The transformed ASTs are then rewritten into Java
source which can then be compiled using JDKs to
produce simulator executables.

The JastaddJ/ExtendJ compiler framework is used to auto-
matically perform the above analysis and source-to-source
transformation. It is important to note that manual modifi-
cation of the original program source code is not required.
The simulator produced by DecompositionJ is compatible
with any JDK, JVM and their associated development tools
such as debuggers, profilers, and IDEs. To begin the simula-
tion, users are only required to write a startup code to specify
parameters for the simulation environment, e.g., number of
logical processors and their operating frequencies, and then
redirect the control flow to the simulator produced byDecom-
positionJ. Therefore, the entire process is convenient and
almost fully automatic.

IV. CO-SIMULATION PLATFORM FOR AGENT-BASED
SMART GRID APPLICATIONS
As noted in recent literatures, the multi-agent software plat-
form JADE [26] has become a popular choice for imple-
menting and studying distributed smart grid applications.
JADE features full compliance with the FIPA [28] (Founda-
tion for Intelligent Physical Agents) specification designed
by IEEE Computer Society for promoting agent interoper-
ability. The platform provides Agent Management System,
Directory Facilitator, Agent Interaction Protocols (AIPs) and
Message Transport Services (MTS). The entire software is
composed of more than 400K lines of codes and continue to
evolve under active developments.

The multi-threading nature and complexity of JADE make
it a good candidate for demonstrating the capability and

20536 VOLUME 6, 2018

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

FIGURE 1. Converting JADE and agent code into direct-execution
simulators using DecompositionJ.

usefulness of the proposed framework. As shown in Fig.1,
the source code of JADE and agents are automatically
analyzed and transformed using the DecompositionJ frame-
work to produce Virtual JADE (V-JADE) simulators. V-JADE
simulators then participate in a co-simulation with eletrical
system simulator PSCAD and network simulator OPNET.

FIGURE 2. Co-simulation architecture.

As illustrated in Fig. 2, the co-simulation is achieved by
interfacing each simulator with a common HLA-compliant
Runtime Infrastructure. For V-JADE, the RTI interface has
been developed as part of the external event handling mecha-
nism inside the DecompositionJ runtime library. For PSCAD,
the RTI interface has been developed as an external library
linked to user-defined modules. For OPNET, the RTI inter-
face is already built into the software. Note that in the
JADE architecture, the multiagent platform is formed by
multiple containers distributed over networked computers.
Each container may encapsulate more than one agent.
Therefore, multiple V-JADE simulators are used in the
co-simulation.

A. CO-SIMULATION MESSAGE EXCHANGE
To develop an HLA co-simulation, it is crucial that the format
of exchanged messages is made known to all simulators.
Therefore, a Federate Object Model (FOM) must be designed
to specify the structures and attributes of all objects and
interactions being exchanged. The FOM specification file is
then shared between simulators.

In our co-simulation design, V-JADEs and PSCAD
exchange information via sensor and actuator objects. At the
initialization phase of a co-simulation, sensor and actuator
objects are created and registered on the RTI by PSCAD.
During simulation, sensor readings from the electrical system
are periodically published to the RTI by PSCAD. The RTI
then delivers the messages to V-JADEs according to time-
stamp order. For actuator objects, their values are published
by V-JADE and subscribed by PSCAD.

The message exchange between V-JADEs and OPNET
is considerably more complicated. Firstly, each V-JADE
simulator is associated with a workstation object which is
in turn associated with multiple network interface objects.
Each network interface contains simulated network attributes
exposed to V-JADE, which include workstation ID / network
interface ID / MAC address / hostname / IP version / IP
address / subnet mask and MTU. During the co-simulation
initialization phase, OPNET creates, registers and publishes
workstation and network interface objects to V-JADE simu-
lators.

Secondly, when TCP socket operations are performed by
V-JADE during simulation, RTI Interaction messages are
sent to OPNET with reference to particular workstation and
interface objects. Different types of interactions are used for
different types of the operation, which include socket create /
open / listen / send / close and abort. Conversely, when TCP
socket events occur in OPNET, interactions will be sent to
V-JADE with reference to particular workstation and inter-
face. The interaction types include open confirmation / close
indication / close confirmation / data reception / error Indi-
cation / Abort indication and FIN reception. The above types
cover most functionalities of the java.net package, which is
sufficient for simulating the communications between JADE
containers.

B. CO-SIMULATION TIME SYNCHRONIZATION
Proper ordering of events across co-simulators is neces-
sary to ensure causality and repeatability of the results.
TimeManagement Service provided by HLA compliant RTIs
handles this ordering using conservative time synchronization
algorithms.

During the co-simulation, a simulator refrains from
processing the next local event until it is guaranteed by the
RTI that nomessages with timestamps less than the next event
will be received. This stop-and-wait procedure is achieved by
first issuing a NextMessageRequest with tnext_event as param-
eter to the RTI, and then wait until a TimeAdvanceGrant
is received from RTI. By issuing the NextMessageRequest ,

VOLUME 6, 2018 20537

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

the simulator also guarantees that it will not generate a
message with timestamp less than min(tnext_msg, tnext_event)+
LA, where tnext_msg refers to the timestamp of next message
that will be delivered to the simulator, and LA refers to simu-
lator’s lookahead. The lookahead is a non-negative value that
allows other simulators to execute beyond this simulator’s
local time. Using large lookahead values improve parallelism
and hence enhance the performance of the co-simulation.
Deriving a suitable lookahead value depends on the phys-
ical limitations of the simulated system, i.e., how quickly a
simulated system can react to events received from another
simulated system. For OPNET and Virtual JADE simulators,
the overhead is assumed to be 1µs with the consideration of
the processing delays between JVM and underlaying protocol
stacks. For PSCAD, the lookahead is the same as the time-
step size since PSCAD will not send out messages between
simulation steps.

V. AGENT BASED FLISR CASE STUDY
Agent-based Fault Location, Isolation, and Service Restora-
tion is a delay sensitive application that relies on fast deci-
sion response to reduce service interruption time. With this
simulation case study, we demonstrate that the timeliness of
service restoration can be influenced by the configurations
of the JADE software and background traffics. In addition,
we investigate a scenario in which both electrical and commu-
nication system failures occur simultaneously.

A. THE RESTORATION PROBLEM
When fault occurs in a radially configured power distribution
network, the protection system isolates the faulted section
and consequently blocks the power flow towards downstream
sections. Switches are reconfigured to restore service for the
affected sections with a network topology to minimize de-
energized loads. Optimal network reconfiguration problem is
traditionally solved off-line and the solutions are statically
programmed to react upon events. This approach does not
adapt well to the dynamic operation of smart distribution
grids. Agent-based solutions were proposed in [19]–[24] to
calculate optimal configuration based on dynamic informa-
tion in a distributed manner.

In a reconfiguration problem, the power distribution
network is considered as a graph G = {V ,E}, where each
edge corresponds to a switch, and each node corresponds to
a set of feeder buses and lines bounded by a common set
of switches. For a node v, its power generation, generation
capacity and load consumption are given by G(v),Gmax(v)
and L(v) respectively; and for an edge {vi, vj}, its power flow
(from node vi to vj) and line capacity are given by P(vi, vj)
and Pmax(vi, vj). Note that power flow is directional, i.e.
P(vi, vj) = −P(vj, vi). A modified IEEE 34-bus system is
shown in Fig. 3a and its graph model is shown in Fig. 3b
which illustrates the graph representation of distribution
network. This system is also used in this FLISR case study.

When a fault occurs, the nodes are classified into three
disjoint subsets: supplier nodes V s (nodes with positive net

FIGURE 3. (a) Shows a modified IEEE 34 bus distribution network, and
feeder buses bounded by a common set of switches are grouped
in dashed boxes. (b) Shows the graph model for the distribution network.

power output), consumer nodes V c, and faulted nodes V f .
Consider a graph G with N supplier nodes, the reconfig-
uration algorithm aims to find a set of N trees H ′ =
{T1,T2, ,TN } for restoration, such that the total restored load
is maximized:

H ′ = argmax
H={T1,,TN }

∑
T∈H

∑
v∈T

L(v). (1)

The optimization subjects to the following constraints:
1) Each tree must contain a supplier node as the root and
exclude all the faulted nodes.

∀Tn = {Vn,En} ∈ H . |Vn ∩ V s
| = 1 (2)

∀Tn = {Vn,En} ∈ H . Vn ∩ V f
= ∅ (3)

2) The trees are disjoint.

∀Tn,Tm ∈ H . Tn 6= Tm H⇒ Tn ∩ Tm = ∅ (4)

3) Power balance must be satisfied, i.e., the input power of
a node is equal to the total output power for its successor
nodes plus local load. For consumer node, the net input power
equals load consumption.

∀v ∈ V c
∩ H .

∑
{v′,v}∈E

P(v′, v) = L(v) (5)

For supplier node, the sum of generation and net input power
equals consumption.

∀v ∈ V s. G(v)+
∑
{v′,v}∈E

P(v′, v) = L(v) (6)

20538 VOLUME 6, 2018

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

4) Power generation of each DER is bounded by its
maximum capacity.

∀v ∈ V s. 0 ≤ G(v) ≤ Gmax(v) (7)

5) Power flow of each line is bounded by maximum line
capacity.

∀{vi, vj} ∈ H . |P(vi, vj)| ≤ Pmax(vi, vj) (8)

B. RECONFIGURATION ALGORITHM
Due to the distributed nature of multi-agent systems and the
dynamic nature of smart grid, each node on the network
only possesses local information. Therefore, after the fault,
the agents at each node explore the graph and obtain infor-
mation from agents in other nodes in order to determine the
restoration trees. Since each restoration tree must contain a
supplier node, the exploration and tree growth start from the
supplier node. The procedures of the reconfiguration algo-
rithm are as follows:
1) Initially, a restoration tree Tn is created for each supplier
node vsn ∈ V

s, which contains vsn as its root.
2) For each restoration tree, frontier edges Fn is defined as
the edges between nodes inside Tn and nodes outside Tn. Fn
will be updated when a new node is recruited to the tree.
3) For each tree node v other than the root supplier node,
in(v) represents the parent tree node that supplies power to v,
and out(v) represents the set of child tree nodes which draws
power from v.
4) For each tree node v, R(v) represents the surplus power
that can be drawn from the node if new nodes are added to the
tree through v. By constraining R(v) ≥ 0 for all nodes, (5)-(8)
can be enforced.

∀v ∈ V c. R(v) = min
(
R(pr(v)),Pmax(pr(v), v)

)
−L(v)−

∑
v′∈out(v)

P(v, v′) (9)

∀v ∈ V s. R(v) = Gmax(v)− L(v)−
∑

v′∈out(v)

P(v, v′) (10)

5) Aweightw, representing the load of the neighboring node
reachable through the edge, is assigned to each frontier edge.

∀{vi, vj} ∈ Fn. w(vi, vj) = w(vj, vi) = L(vj) (11)

6) For as long as Fn is not empty, the algorithm greedily
explores the frontier edgewith the largest weight and attempts
to recruit the neighboring node through that edge.
7) To ensure a neighboring node is eligible for recruitment,
the supplier node’s agent enquires its state through commu-
nications. The neighboring node will be recruited unless it
i) is faulted, or ii) is already included in another restoration
tree, or iii) has a load exceeding the R value of its parent node.
8) New frontier edges Fnew are added to Fn when a new
node is recruited. Supplier node communicates with the new
node in order to acquire Fnew and their associated weights.
Additionally, R value of all tree nodes will be updated to
account for the new load.

9) The algorithm ends when all the frontier edges are
explored. The distribution network will be restored according
to the topology of the restoration trees.

C. RESTORATION AGENTS
The FLISR mechanisms including the reconfiguration
algorithm are implemented using a two-tier multiagent
system (MAS) with four agent types. As shown in Fig. 4,
the upper tier consists of Node Agents (NA) and Switch
Agents (SA), while the lower tier consists of Load
Agents (LA) and DER Agents (DA). Lower tier agents can
only communicate with their supervising NAs, while upper
tier agents can communicate with one another. The operation
of each type of agent will be presented in the following.

FIGURE 4. Two-tiered MAS hierarchy.

SAs, LAs and DAs are connected to their corresponding
physical switches, loads and DERs through sensors and actu-
ators. These agents control and monitor their corresponding
physical devices and respond to their supervising NAs’
requests, such as adjusting operating points and reporting
device status. In addition, SAs are also responsible for over
current protection and fault detection.

NAs have no direct interaction with the electrical system,
but they are responsible for coordinating the FLISR mecha-
nism. Fig. 5 depicts its operating states. Initially, NA stays
in idle state until an anomaly is reported by a neighboring
SA. Upon which the NA will enquire current and voltage
readings from all neighboring SAs. If a fault is detected
within its segment, NA will isolate the fault by requesting
all neighboring SA to open their switches and it will then
remain isolated and not be restored. On the contrary, NA will
proceed to the inquiry phase to identify its local generations

FIGURE 5. Operation flow of a Node Agent.

VOLUME 6, 2018 20539

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

and consumptions through subordinate DAs and LAs. After
that, NAs with local generations (i.e. supplier node) will
initiate the reconfiguration algorithm, while consumer NAs
will wait and respond to inquiries. Supplier NAs will enter
transient state and request both DERs and switches to adjust
to new network configuration upon the completion of the
reconfiguration algorithm. Finally, NAs return to idle state
when stabilized bus voltages is observed.

D. COMMUNICATION NETWORK CONFIGURATIONS
For communication infrastructure, we consider gateway
routers being installed at all buses, which are connected
by optical carriers running alongside with distribution lines.
The distances between routers are stipulated in the IEEE
34 Bus system dataset. Each agent runs in a separate JADE
container which is mapped to a workstation that connects to
a router. Further details are listed in Table 2.

TABLE 2. Characteristics of simulated network.

VI. SIMULATION RESULTS
The agent based FLISR case has been simulated using the
proposed co-simulation platform. In this section, we first
explain theMASoperation by presenting a trace of significant
simulation events in the FILSR process. Then the perfor-
mance of MAS is evaluated with different network and
software configurations: i) background traffics, ii) commu-
nication link failure, iii) communication link failure time,
and iv) location of JADE main container responsible for
maintaining all agents’ network address.

A. AGENT ACTIONS AND EVENTS
The event trace in Table 3 is produced without simulating
background traffic or link failure. This table only shows
relevant information from supplier Node agents, i.e., NA1 and
NA6.
• Phase 1 - Fault Detection

At t=0, a three-phase ground fault occurs between bus
806 and 808 (inside v2), which causes fault current to
flow through Bus 800 towards 808 and voltage sag in the
distribution network. The fault current is first detected
by SA12 and reported to NA1 at t=0.00931 (#1), using
the Switch Anomaly Inform: Inform message. This triggers
NA1 to change its state from Idle to Fault Location (#2).
Similarly, NA6 enters Fault Location state after receiving
the message from SA56 (#15, 16). Note that only the first

TABLE 3. Simulation event trace for NA1 and NA6.

Switch Anomaly Inform messages trigger the state change,
later messages are neglected and not shown in the trace.
• Phase 2 - Fault Location

During Fault Location phase, NA1 sends Switch Status
Query: Query-ref messages to all its neighboring SAs (#3),

20540 VOLUME 6, 2018

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

and awaits their responses. Responses (Switch Status Query:
Inform) containing recent current readings are received at
t = 0.01303 (#4). The readings indicate that the fault is
outside v1 (#5). Consequently, NA1 proceeds to Enquire
DERs and Loads state (#6). Similarly operations are also
performed by NA6 (#17, 24-26).
• Phase 3 - Enquire DERs

To identify the total power generation capacity and load
consumption of the node. NA1 sends a query message
(DER/Load Status Query: Query-ref) to DA1 and LA1 (#7).
The corresponding response messages are received at #8,
indicating that v1 has a generation capacity of 18.0 and
load of 3.0, and hence 15.0 units are available for restoring
other nodes. NA1 then enters Restoration Supplier state (#9).
Similarly, NA6 follows the same routine (#27, 29-30) and
has a surplus power of 4 units. For nodes without DER, their
NAs will enter Restoration Consumer state after receiving the
response messages from their subordinate LAs.
• Phase 4 - Reconfiguration

After entering the reconfiguration phase, each supplier
node becomes the root of a restoration tree and its node
agent executes reconfiguration algorithm to expand the
tree. Consumer nodes also participate in the process by
reacting to the messages from supplier nodes. Initially, T1
only consists of the root node v1 with two frontier edges
{v1, v2} and {v1, v7} (#10). The edge with the largest weight
(i.e., {v1, v7}) is selected for restoration. NA1 sends aRestora-
tion Query: Query-If message to NA7 (#13) to verify that
the constraints mentioned in step 7) of the reconfiguration
algorithm are satisfied. Note that v7 is restartable because
it is not faulted, nor has it been included in any restoration
tree. Therefore the recruitment of v7 is confirmed with a
Restoration Query: Agree message replied to NA1 (#14).
Upon recruitment, NA7 issues Switch Operation Request:
Request to SA17 to establish connection to T1 by closing the
switch. Following that, NA7 proceeds to enquire its neigh-
boring SAs and NAs for a list of new frontier edges. These
edges are then identified and reported back to NA1 through
an Restoration Query: Inform message (#18,19). Finally,
NA1 updates the surplus power of v1 and v7 (#20,21).
The above process represents one iteration of the recon-
figuration algorithm. Each restoration supplier will repeat
this process to explore its neighborhood and attempt to
expand the tree until all eligible frontier edges are exhausted.
For NA1 and NA6, their reconfiguration phases end at
t=0.06733(#61) and t = 0.07652 (#70), respectively. Fig.6
shows the final network configuration.
• Phase 5 - Transient

Once the algorithm ends, supplier node enters transient state
and issues an Operation Request: Request to its DA (#62 for
NA1, #71 for NA6). The DA then replies with an Opera-
tion Request: Agree message and starts power generation.
The communication and computational delays of MAS oper-
ations are observable from the electrical system, which is
shown in Fig. 7. The fault current is detected at #1 by
SA12 which controls the switch to open at the next zero

FIGURE 6. New network configuration, with two restoration trees rooted
at node-1 and node-6.

FIGURE 7. Simulation of electrical transients during fault and restoration
process.

crossing point. Voltages of bus 836 and bus 824 are restored
shortly after the DERs agree to power generation (#63, 72).

B. EFFECTS OF BACKGROUND TRAFFICS AND LINK
FAILURE
Background traffic is sent from all feeder buses to a data
aggregator at bus 800 using IP-based protocols. Note that
two OC-1 links are connected to bus 800, i.e., from bus
836 to 802, allowing amaximum throughput of 100.224Mbps
(payload) which is equivalent to 3.037Mbps per bus. Fig. 8
shows the solution time, i.e., time for supplier NA to enter
transient state, of NA1 and NA6 with different levels of
traffics. As the configuration of background traffic rate is
increased towards the maximum throughput, the average
packet queuing delay approaches infinity, which explains the
exponentially increasing solution time.

Since communication links run along with power distri-
bution lines, it is likely for an electrical fault to correlate
with communication link failures. To study the impact, a link
failure is scheduled to occur simultaneously with the elec-
trical fault between buses 806 and 808. As shown in Fig. 8,
the reconfiguration time increases due to more background
traffics being distributed over the remaining links. Table 4
shows the percentage increment of reconfiguration time
caused by simultaneous link failure and the results indicate
a more significant impact under higher traffics.

VOLUME 6, 2018 20541

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

FIGURE 8. Reconfiguration solution time under different levels of
background traffic.

TABLE 4. Percentage change of reconfiguration time.

C. EFFECTS OF LINK FAILURE TIME
Since JADE message transport service benefits from the
retransmissionmechanisms provided by the underlaying TCP
protocol, application programmers may often assume reliable
and timely agent communications without concerning packet
losses in the network so long as the reachability between
JADE containers is maintained. However, the co-simulation
reveals that when both electrical fault and communication
link failures occur, their temporal proximity greatly affects
the reconfiguration solution time.

In Fig. 9, an electrical fault occurs at t = 0. The X-axis
represents the link failure time and Y-axis represents the
reconfiguration solution time of node agents.

FIGURE 9. If comm. link failure occurs shortly after electrical fault, agent
communications may experience large delay due to TCP initial
retransmission delay. Reconfiguration time varies significantly depending
on whether router’s forwarding tables are updated before agent
communications.

If link failure occurs in zone I, i.e., it occurs less than 7.5ms
after the electrical fault, the effect of link failure on solution
time is insignificant. This is because agent communications
only begin at 9.31ms (#1 in Table 3) after the fault, hence
routers adjacent to the failed link have sufficient time to
detect it and update their forwarding tables before the agent
communications. As a result, no MAS packet is lost.

However, a dramatic increment of solution time is observed
if link failure occurs in zone II, i.e., between 7.5ms and
27.5ms after the fault. This is because agents have begun
establishing TCP connections with each other via three-way
handshakes before alternative routes are updated in router’s
forwarding tables. The loss of handshake packets is not
timely retransmitted by TCP because the session’s round-trip
time (RTT) has yet to be measured and a rather long initial re-
transmission timeout of 0.5s is used, leading to a significant
impact on the solution time.

If link failure occurs in zone III, i.e., 27.5ms after the fault,
it will not have a significant impact on the solution time.
Because TCP handshake between agents has been completed
before the link failure and RTT measurements can be used
to perform timely retransmission with a negligible timeout
delay.

A possible solution to achieve short reconfiguration time is
to modify JADE or agent codes which include i) TCP connec-
tions are pre-established between every pair of agents, and
ii) heartbeat signals are sent between agents to periodically
update the RTT. However this is outside the scope of this
paper.

The above analysis of simulation results demonstrates the
capability of the proposed framework to capture the long
solution time when communication failure and electrical fault
occurred in quick succession.

D. EFFECTS OF MAIN-CONTAINER LOCATION
CONFIGURATION
Under the JADE architecture, a Global Agent Descriptor
Table storing the network addresses of all agents is main-
tained by the main container (MC). The network location of
MC has an impact on the solution time since agents must first
enquire MC to resolve each other’s network address before
they attempt to communicate for the first time.

As shown in Fig.10, the solution time for different node
agents varies depending on the location of the MC. When
NA1’s container is selected as MC, its solution time is bene-
fited because all agent interactions originated from NA1 can
be resolved locally. Similar benefit for NA6 can be obtained
if its container is assigned as MC. The timing information is
useful for finding the optimial MC location.

FIGURE 10. Reconfiguration time affected by the network location of
Main Container in the JADE platform.

20542 VOLUME 6, 2018

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

E. SUMMARY ON SIMULATION RESULTS
Through this agent-based FLISR case study, the benefits for
incorporating direct-execution simulators in a smart grid co-
simulation are demonstrated:

• The detailed and authentic behavior of smart grid software
systems can be generated to facilitate the understanding of
system operations, as shown by the agent event trace.
• Inter-dependencies between communication systems and
software systems can be simulated, as shown by the effects
of background traffics on reconfiguration solution time.
• Inherent design concerns in software and communication
systems can be revealed by co-simulation, as demonstrated
in the case where electrical fault and link failure occurred
in quick succession.
• Software designersmay fine-tune the JADEmain container
location to improve solution time.

VII. CONCLUSION
This paper presents a novel integration of direct-execution
simulators to a Smart Grid co-simulation platform that
adheres to the HLA standard. The DecompositionJ frame-
work automatically performs static analysis and source-to-
source transformation to convert a target program into its own
simulator. This removes the burden of manual modeling and
code development, and simplifies version control andmainte-
nance. The transformed simulator is compatible with existing
Java environments and tools, which facilitates researchers
to debug and study a target program during simulation.
A complex multiagent platform JADE is simulated and used
in an FLISR case study. Results illustrate that low-level
details in software and network configuration can affect the
time required for restoration, which would otherwise be
overlooked. This convenient and effective direct-execution
simulation framework with high-fidelity modeling capability
is believed to be important for enabling simulation studies on
a wide range of smart grid applications.

REFERENCES

[1] K. Mets, J. A. Ojea, and C. Develder, ‘‘Combining power and commu-
nication network simulation for cost-effective smart grid analysis,’’ IEEE
Commun. Surveys Tuts., vol. 16, no. 3, pp. 1771–1796, 3rd Quarter., 2014.

[2] W. Li, M. Ferdowsi, M. Stevic, A. Monti, and F. Ponci, ‘‘Cosimulation for
smart grid communications,’’ IEEE Trans. Ind. Informat., vol. 10, no. 4,
pp. 2374–2384, Apr. 2014.

[3] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman, and D. Coury,
‘‘EPOCHS: A platform for agent-based electric power and communication
simulation built from commercial off-the-shelf components,’’ IEEE Trans.
Power Syst., vol. 21, no. 2, pp. 548–558, May 2006.

[4] J. Nutaro, P. T. Kuruganti, L. Miller, S. Mullen, and M. Shankar, ‘‘Inte-
grated hybrid-simulation of electric power and communications systems,’’
in Proc. IEEE Power Eng. Soc. General Meeting, Tampa, FL, USA,
Jun. 2007, pp. 1–8.

[5] J. Nutaro, ‘‘Designing power system simulators for the smart grid:
Combining controls, communications, and electro-mechanical dynamics,’’
in Proc. IEEE Power Eng. Soc. General Meeting, San Diego, CA, USA,
Jul. 2011, pp. 1–5.

[6] V. Liberatore and A. Al-Hammouri, ‘‘Smart grid communication and co-
simulation,’’ in Proc. IEEE Energytech, Cleveland, OH, USA, May 2011,
pp. 1–5.

[7] K. Mets, T. Verschueren, C. Develder, T. L. Vandoorn, and L. Vandevelde,
‘‘Integrated simulation of power and communication networks for smart
grid applications,’’ in Proc. IEEE 16th Int. Workshop Comput. Aided
Modeling Design Commun. Links Netw. (CAMAD), Cleveland, Kyoto,
Jun. 2011, pp. 61–65.

[8] W. Li, H. Li, and A. Monti, ‘‘Using co-simulation method to analyze the
communication delay impact in agent-based wide area power system stabi-
lizing control,’’ in Proc. Grand Challenges Modeling Simulation Conf.,
Vista, CA, USA, Jun. 2011, pp. 356–361.

[9] W. Li, A. Monti, M. Luo, and R. A. Dougal, ‘‘VPNET: A co-simulation
framework for analyzing communication channel effects on power
systems,’’ in Proc. IEEE Electr. Ship Technol. Symp., Alexandria, VA,
USA, Apr. 2011, pp. 143–149.

[10] H. Lin, S. S. Veda, S. S. Shukla, L. Mili, and J. Thorp, ‘‘GECO: Global
event-driven co-simulation framework for interconnected power system
and communication network,’’ IEEE Trans. Smart Grid, vol. 3, no. 3,
pp. 1444–1456, Sep. 2012.

[11] M. Lévesque, D. Q. Xu, Gé. Joós, and M. Maier, ‘‘Communications and
Power Distribution Network Co-simulation for Multidisciplinary Smart
Grid Experimentations,’’ inProc. 45th Annu. Simulation Symp., SanDiego,
CA, USA, Mar. 2012, pp. 2:1–2:7.

[12] H. Georg, S. C. Müller, C. Rehtanz, and C. Wietfeld, ‘‘Analyzing
cyber-physical energy systems:The INSPIRE cosimulation of power and
ICT systems using HLA,’’ IEEE Trans. Ind. Informat., vol. 10, no. 4,
pp. 2364–2373, Nov. 2014.

[13] G. Celli, P. A. Pegoraro, F. Pilo, G. Pisano, and S. Sulis, ‘‘DMS cyber-
physical simulation for assessing the impact of state estimation and
communication media in smart grid operation,’’ IEEE Trans. Power Syst.,
vol. 29, no. 5, pp. 2436–2446, Sep. 2014.

[14] F. Perkonigg, D. Brujic, and M. Ristic, ‘‘Platform for development and
validation agent-based smart grid applications incorporating accurate
communications modelling,’’ IEEE Trans. Ind. Informat., vol. 11, no. 3,
pp. 728–736, Apr. 2015.

[15] X. Li, Q. Huang, and D. Wu, ‘‘Distributed large-scale co-simulation for
IoT-aided smart grid control,’’ IEEE Access, vol. 5, pp. 19951–19960,
2017.

[16] M. Garau, G. Celli, E. Ghiani, F. Pilo, and S. Corti, ‘‘Evaluation of smart
grid communication technologies with a co-simulation platform,’’ IEEE
Wireless Commun., vol. 24, no. 2, pp. 42–49, Apr. 2017.

[17] V. Salehi, A. Mohamed, A. Mazloomzadeh, and O. A. Mohammed,
‘‘Laboratory-based smart power system, part I: Design and system devel-
opment,’’ IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1394–1404, Sep. 2012.

[18] X. Wang et al., ‘‘Interfacing issues in multiagent simulation for smart grid
applications,’’ IEEE Trans. Power Del., vol. 28, no. 3, pp. 1918–1927,
Jul. 2013.

[19] C. P. Nguyen and A. J. Flueck, ‘‘Agent based restoration with distributed
energy storage support in smart grids,’’ IEEE Trans. Smart Grid, vol. 3,
no. 2, pp. 1029–1038, Jun. 2012.

[20] M. Eriksson, M. Armendariz, O. O. Vasilenko, A. Saleem, and
L. Nordström, ‘‘Multiagent-based distribution automation solution for self-
healing grids,’’ IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2620–2628,
Apr. 2015.

[21] J. M. Solanki, S. Khushalani, and N. N. Schulz, ‘‘A multi-agent solution to
distribution systems restoration,’’ IEEE Trans. Power Syst., vol. 22, no. 3,
pp. 1026–1034, Aug. 2007.

[22] F. Ren, M. Zhang, D. Soetanto, and X. Su, ‘‘Conceptual design of a multi-
agent system for interconnected power systems restoration,’’ IEEE Trans.
Power Syst., vol. 27, no. 2, pp. 732–740, May 2012.

[23] D. Ye, M. Zhang, and D. Sutanto, ‘‘A hybrid multiagent framework with
Q-learning for power grid systems restoration,’’ IEEE Trans. Power Syst.,
vol. 26, no. 4, pp. 2434–2441, Nov. 2011.

[24] A. Sharma, D. Srinivasan, and A. Trivedi, ‘‘A decentralized multiagent
system approach for service restoration using DG islanding,’’ IEEE Trans.
Smart Grid, vol. 6, no. 6, pp. 2784–2793, Nov. 2015.

[25] IEEE Standard for Modeling and Simulation (M&S) High Level Architec-
ture (HLA)—Framework and Rules, IEEE Standard 1516-2010 (Revision
of IEEE Standard 1516-2000), Mar. 2013, pp. 1–38.

[26] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, ‘‘JADE—A Java agent
development framework,’’ in Multi-Agent Programming. NewYork, NY,
USA: Springer, 2005, ch. 5, pp. 125–147.

[27] C. Shum et al., ‘‘DecompositionJ: Parallel and deterministic simulation of
concurrent Java executions in cyber-physical systems,’’ IEEE Access, to be
published, doi: doic 10.1109/ACCESS.2018.2825254.

VOLUME 6, 2018 20543

C. Shum et al.: Co-Simulation of Distributed Smart Grid Software Using Direct-Execution Simulation

[28] FIPA. (2014). Foundation for Intelligent Physical Agents. A Stan-
dards Organization of the IEEE Computer Society. [Online]. Available:
http://www.fipa.org/

[29] H. W. Dommel, EMTP Theory Book. Portland, OR, USA: Bonneville
Power Administration, 1984.

[30] J. Manson, W. Pugh, and S. V. Adve, ‘‘The Java memory model,’’ in Proc.
32nd ACM SIGPLAN-SIGACT Symp. Principles Programming Lang.,
Long Beach, CA, USA, 2005, pp. 378–391.

[31] T. Ekman and G. Hedin, ‘‘The jastadd extensible Java compiler,’’ ACM
SIGPLAN Notices, vol. 42, no. 10, pp. 1–18, Oct. 2007.

[32] J. Öqvist and G. Hedin, ‘‘Extending the JastAdd extensible Java compiler
to Java 7,’’ in Proc. Int. Conf. Principles Practices Programming
Java Platform, Virtual Mach., Lang., Tools, Stuttgart, Germany, 2013,
pp. 147–152.

[33] E. Söderberg, T. Ekman, G. Hedin, and E. Magnusson, ‘‘Extensible
intraprocedual flow analysis at the abstract syntax tree level,’’ Sci. Comput.
Programming, vol. 78, no. 10, pp. 1809–1827, 2013.

CHONG SHUM (S’14) received the B. Eng.
degree in computer engineering from the City
University of Hong Kong in 2012, where he
is currently pursuing the Ph.D. degree in elec-
tronic engineering. His research interests include
the modeling and simulation of cyber-physical
systems and smart grids.

WING-HONG LAU (M’88–SM’06) received the
B.Sc. and Ph.D. degrees in electrical and electronic
engineering from the University of Portsmouth,
Portsmouth, U.K., in 1985 and 1989, respectively.
He joined the Department of Electronic Engi-
neering, City University of Hong Kong, as an
Associate Professor in 1990.

His current research interests include digital
signal processing, digital audio engineering, pulse
width modulation spectrum analysis, embedded

system design, and smart-grid development.
Dr. Lau received the IEEE ThirdMillenniumMedal. He was the Chairman

of the IEEE Hong Kong Section in 2005.

TIAN MAO (S’14) received the B.S. degree
in electrical engineering and its automation
and the M.S. degree in electrical engineering
from Hunan University in 2010 and 2013,
respectively, and the Ph.D. degree from the
City University of Hong Kong in 2017. He is
currently with the Electric Power Research Insti-
tute, China Southern Power Grid. His research
interests include power system operation, elec-
tric vehicle charging scheduling, and smart-grid

energy management and optimization.

HENRY SHU-HUNG CHUNG (M’95–SM’03–
F’16) received the B.Eng. and Ph.D. degrees
in electrical engineering from The Hong Kong
Polytechnic University in 1991 and 1994, respec-
tively.

Since 1995, he has been with the City Univer-
sity of Hong Kong. He is currently a Professor
with the Department of Electronic Engineering
and the Director of the Centre for Smart Energy
Conversion and Utilization Research. His research

interests include renewable energy conversion technologies, lighting tech-
nologies, smart-grid technologies, and computational intelligence for power
electronic systems. He has edited one book, and he authored eight research
book chapters and over 355 technical papers, including 178 refereed journal
papers in his research areas, and holds 42 patents.

Dr. Chung has received numerous industrial awards for his invented energy
saving technologies. He was the Chair of the Technical Committee of the
High-Performance and Emerging Technologies, IEEE Power Electronics
Society, from 2010 to 2014. He is currently the Editor-in-Chief of the
IEEE POWER ELECTRONICS LETTERS and an Associate Editor of the IEEE
TRANSACTIONS ON POWER ELECTRONICS and the IEEE JOURNAL OF EMERGING AND

SELECTED TOPICS IN POWER ELECTRONICS.

KIM-FUNG TSANG (M’95–SM’14) received
the Associate degree in electrical engineering
from The Hong Kong Polytechnic University
in 1983 and the M.Eng. (by research) and
Ph.D. degrees in electrical engineering from
the University of Wales College of Cardiff
(formerly known as the University of Wales Insti-
tute of Science and Technology), Cardiff, U.K.,
in 1987 and 1995, respectively.

He joined the City University of Hong Kong
in 1988, where he is currently an Associate Professor with the Department
of Electronic Engineering. He has published about 200 technical papers and
four books/chapters.

Dr. Tsang is a fellow of HKIE, a Chartered Engineer and a member of
IET, an Associate Editor and a Guest Editor of the IEEE TRANSACTIONS OF

INDUSTRIAL INFORMATICS, an Associate Editor of IEEE Industrial Electronics
Magazine and the IEEE ITeN, and an Editor of the KSII Transactions on
Internet and Information Systems.

NORMAN CHUNG-FAI TSE (M’09) received the
Graduate degree fromTheHongKong Polytechnic
University in 1985, the M.Sc. degree from the
University of Warwick, Coventry, U.K., in 1994,
and the Ph.D. degree from City University of
London, London, U.K., in 2007.

He is currently with the Centre for Smart Energy
Conversion and Utilization Research, City Univer-
sity of Hong Kong. His current research interests
include power quality measurement and analysis,

Web-based power quality monitoring, harmonics mitigation, and building
energy efficiency study.

LOI LEI LAI (M’09–SM’92–F’07) received the
B.Sc., Ph.D., and D.Sc. degrees from the Univer-
sity of Aston and the City University of London,
respectively. He was the Director of the Research
and Development Centre, a Pao Yue Kong Chair
Professor, the Vice President, a Professor, and
the Chair in electrical engineering and a Fellow
Committee Evaluator of the State Grid Energy
Research Institute, China, Zhejiang University,
China, the IEEE Systems, Man and Cybernetics

Society (IEEE/SMCS), the City University of London, and the IEEE Indus-
trial Electronics Society, respectively. He is currently a University Distin-
guished Professor with the Guangdong University of Technology, China.
He is a fellow of IET, and a National Distinguished Expert in China and a
Distinguished Expert in the State Grid Corporation of China. He received
the IEEE Third Millennium Medal, the IEEE Power and Energy Society
(IEEE/PES) UKRI Power Chapter Outstanding Engineer Award in 2000,
the IEEE/PES Energy Development and Power Generation Committee Prize
Paper in 2006 and 2009, the IEEE/SMCS Outstanding Contribution Award
in 2013 and 2014, and the Most Active Technical Committee Award in 2016.

20544 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORKS
	SIMULATION OF POWER SYSTEMS
	SIMULATION OF COMMUNICATION NETWORK
	SIMULATION OF DISTRIBUTED SOFTWARE
	TIME SYNCHRONIZATION
	CO-SIMULATION INTERFACE

	DIRECT EXECUTION SIMULATION
	OPERATION OF A DIRECT-EXECUTION SIMULATION
	SIMULATION METADATA
	ENFORCING SIMULATED THREAD SCHEDULING
	TRACKING ACTION TIMESTAMPS
	ENFORCING TIMESTAMP ORDER
	HANDLING EXTERNAL EVENTS

	DECOMPOSITIONJ FRAMEWORK

	CO-SIMULATION PLATFORM FOR AGENT-BASED SMART GRID APPLICATIONS
	CO-SIMULATION MESSAGE EXCHANGE
	CO-SIMULATION TIME SYNCHRONIZATION

	AGENT BASED FLISR CASE STUDY
	THE RESTORATION PROBLEM
	RECONFIGURATION ALGORITHM
	RESTORATION AGENTS
	COMMUNICATION NETWORK CONFIGURATIONS

	SIMULATION RESULTS
	AGENT ACTIONS AND EVENTS
	EFFECTS OF BACKGROUND TRAFFICS AND LINK FAILURE
	EFFECTS OF LINK FAILURE TIME
	EFFECTS OF MAIN-CONTAINER LOCATION CONFIGURATION
	SUMMARY ON SIMULATION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	CHONG SHUM
	WING-HONG LAU
	TIAN MAO
	HENRY SHU-HUNG CHUNG
	
	KIM-FUNG TSANG
	NORMAN CHUNG-FAI TSE
	LOI LEI LAI

